Browse Topic: Materials
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
A proprietary metamaterial has been shown to reduce panel vibration. In this particular case, the metamaterial is designed to be attached to the edge of a glass panel and can reduce panel vibration and noise transmission due to wind or other sources into the vehicle interior. Acoustic transmission loss and panel vibration assessments show the benefit of this approach.
This study focuses on the numerical analysis of weather-strip contact sealing performance with a variable cross-sectional design, addressing both static and dynamic behaviors, including the critical issue of stick-slip phenomena. By employing finite element modeling (FEM), the research simulates contact pressures and deformations under varying compression loads, DCE (Door Closing Efforts) requirements, typical in automotive applications. The analysis evaluates how changes in the cross-sectional shape of the weather-strip affect its ability to maintain a consistent sealing performance, especially under dynamic vehicle operations. The study also delves into stick-slip behavior, a known cause of noise and vibration issues, particularly improper/ loosened door-seal contact during dynamic driving condition. This study identifies key parameters influencing stick-slip events, such as friction coefficients, material stiffness, surface interactions, sliding velocity, wet/dry condition
High-frequency whine noise in electric vehicles (EVs) is a significant issue that impacts customer perception and alters their overall view of the vehicle. This undesirable acoustic environment arises from the interaction between motor polar resonance and the resonance of the engine mount rubber. To address this challenge, the proposal introduces an innovative approach to predicting and tuning the frequency response by precisely adjusting the shape of rubber flaps, specifically their length and width. The approach includes the cumulation of two solutions: a precise adjustment of rubber flap dimensions and the integration of ML. The ML model is trained on historical data, derived from a mixture of physical testing conducted over the years and CAE simulations, to predict the effects of different flap dimensions on frequency response, providing a data-driven basis for optimization. This predictive capability is further enhanced by a Python program that automates the optimization of flap
This article follows a companion article [1] presented at the SAE NVC 2021, in which a new system for the measurement on small samples of the normal-incidence Insertion Loss (IL) of multilayers used for the manufacturing of automotive sound package parts was first introduced. In addition to simplifying the evaluation of the sound-insulation of multi-layers used to produce sound-package components, the system aims at overcoming the limitations of the test procedure based on the ASTM E2611 standard. In this article, the latter point is demonstrated by comparing the insertion loss results obtained with the new system with those obtained with the test procedure based on the ASTM E2611 standard on a few multilayers commonly used for the manufacturing of automotive sound package parts. Results indicate that the data obtained by means of the newly developed system are more meaningful, practically usable and less prone to edge-effects, compared to those obtained according to the ASTM E2611
Road noise caused by road excitation is a critical factor for vehicle NVH (Noise, Vibration, and Harshness) performance. However, assessing the individual contribution of components, particularly bushings, to NVH performance is generally challenging, as automobiles are composed of numerous interconnected parts. This study describes the application of Component Transfer Path Analysis (CTPA) on a full vehicle to provide insights into improving NVH performance. With the aid of Virtual Point Transformation (VPT), blocked forces are determined at the wheel hubs; afterward, a TPA is carried out. As blocked forces at the wheel hub are independent of the vehicle dynamics, these forces can be used in simulations of modified vehicle components. These results allow for the estimation of vehicle road noise. To simulate changes in vehicle components, including wheel/tire and rubber bushings, Frequency-Based Substructuring (FBS) is used to modify the vehicle setup in a simulation model. In this
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.008 to 1.000 inches (0.203 to 25.4 mm) supplied in the -T3/-T351 temper (see 8.5).
This specification establishes requirements for thermoset protective coatings in powder form.
This specification covers two methods for determining the percentage of delta ferrite in steels and other iron alloys. When applicable, this specification will be invoked by the material specification.
This specification covers an arc-cast molybdenum alloy in the form of round bars 0.125 to 4.5 inches (3.00 to 112.50 mm), inclusive (see 8.6).
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes from vacuum hot pressed powder.
This specification covers a copper-beryllium alloy in the form of sand, investment, or centrifugal castings (see 8.7).
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing (see 8.6).
This specification covers an aluminum alloy in the form of sheet 0.009 to 0.126 inch (0.23 to 3.20 mm), inclusive, in nominal thickness, alclad (see 8.5).
This specification covers a synthetic rubber in the form of sheet, strip, tubing, molded shapes, and extrusions. This specification should not be used for molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications
This specification covers an aluminum alloy in the form of extruded wide panel profiles (shapes) and rod and bars 0.500 to 1.000 inch (12.7 to 25.4 mm), inclusive, in thickness produced with cross-sectional area of 14 to 30 square inches (90 to 194 cm2) from circumscribing circle diameters (see 2.4.1) of 14 to 22 inches (356 to 559 mm) (see 8.7).
This specification covers a free-machining, corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.4).
This specification covers an aluminum alloy in the form of plate 0.500 to 1.500 inches (12.70 to 38.10 mm), inclusive, in thickness (see 8.5).
This SAE Standard outlines the requirements for a preformed thermosetting hose intended for use in heavy-duty vehicle engines, such as air cleaner inlet, crank case vent, or air cleaner to turbo or to engine inlet.
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars and forgings in the solutioned, stabilized, and precipitation heat-treated condition. Stock for forging shall be in the condition ordered.
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
Items per page:
50
1 – 50 of 64423