Browse Topic: Materials

Items (64,616)
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a low-alloy steel in the form of bare welding wire. Type 2 - copper coated wire was removed from this document (see 8.4).
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for electrodeposited cadmium on metal parts.
AMS B Finishes Processes and Fluids Committee
This specification covers a magnesium alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers the requirements for silver deposited on metal parts with a copper strike between the basis metal and the silver deposit.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
Rear drive vehicles transfer power to the rear wheels through the Gear Carrier Assembly, which is fit at the central section of the Rear Axle. The Gear Carrier Assembly includes hypoid ring and pinion gears, set at the heart of the system. However, one of the common issues with hypoid gears is gear scoring and whine noise, both of which can seriously affect durability and reduce the overall performance of a vehicle. In this study, the focus is on design changes as well as process improvements to address these problems and at the same time improve gear reliability. On the design side, changes such as refining the macro geometry, upgrading materials, and modifying the heat treatment cycle were carried out. These helped in improving properties like contact stress resistance, bending and impact strength, and also reduced motion transmission error (MTE). From the process point of view, careful control over carburizing, hardening, and quenching temperatures, along with adjustments in
Praveen, AbhinavDeshpande, PraveenJain, Saurabh KumarParmar, MayurKarle, NileshKanagaraj, PothirajPagar, Pawan
A fatigue failure in the transmission input shaft was identified during a bench-level endurance test under 2nd gear loading conditions. The test transmission’s input shaft comprises fixed 1st, reverse, and 2nd gears, with the remaining gears mounted as floating. The shaft was subjected to cyclic torsional loads, and failure occurred after a defined number of cycles. Metallurgical analysis revealed a brittle fracture surface with crack initiation at the outer surface, propagating to core in a helical pattern, ultimately resulting in complete shaft fracture. To monitor and replicate the failure, the test setup was instrumented with a Reilhofer Delta Analyzer for early fault detection. TTL signals from accelerometers mounted on the transmission and a bench speed sensor were fed into the system, which generates FFT spectra and trend indices. A warning alarm triggered upon deviation in the trend index, indicating premature damage initiation. The test was subsequently halted for component
Kushwaha, RakeshPatel, HiralNavale, Pradeep
Tire wear progression is a nonlinear and multi-factor degradation phenomenon that directly influences vehicle safety, handling stability, braking performance, rolling resistance, and fleet operational cost. Global accident investigations indicate that accelerated or undetected tread depletion contributes to nearly 30% of highway tire blowouts, highlighting the limitations of conventional wear indicators such as physical tread wear bars, mileage-based service intervals, and periodic manual inspections. These manual and threshold-based approaches fail to capture dynamic driving loads, compound ageing, pressure imbalance effects, or platform-specific wear behaviours, thereby preventing timely intervention in real-world conditions. This work presents an Indirect Tire Wear Health Monitoring System that employs an advanced Machine Learning + Transfer learning architecture to infer tread wear level and Remaining Useful Life (RUL) without relying on any tire-mounted sensors. The system ingests
Imteyaz, ShahmaIqbal, Shoaib
In recent decades, Computer-Aided Engineering (CAE) has become increasingly critical in the early stages of vehicle development, particularly for performance improvement and weight optimization. At the core of this advancement lies the accuracy of CAE models, which directly impacts design insights and reliable TEST-CAE correlation. Yet, accurately replicating real-world physical systems in virtual environments remains a significant challenge. This research introduces a structured methodology for improving correlation in door system models. It focuses specifically on reducing glass regulator operating noise, a common design issue that can lead to unwanted sounds and passenger discomfort. Traditional CAE models often fail to predict this problem, exposing the limitations of virtual-only validation. To address this gap, the study proposes a modal correlation-based approach aligned with actual assembly stage conditions. This strategy enables more precise assessment of the glass regulator’s
Panuganti, Naresh KumarChoi, Seungchan
This research investigates the applicability of ADC12 aluminum alloy in sand casting processes and compares its casting behavior and performance with that of conventionally sand-cast alloys such as A356 and AlSi10Mg. ADC12 is primarily utilized in high-pressure die casting (HPDC) and low-pressure die casting (LPDC) due to its excellent castability, pressure tightness, and favorable mechanical properties in thin-walled components. However, its use in sand casting is minimal globally, primarily due to the alloy’s high silicon and iron content, which can lead to poor feeding characteristics, increased porosity, and structural non-uniformity in non-pressurized molds. In this study, 3 mm thick test castings were produced using conventional sand casting methods, with particular attention to mold and core design to simulate challenging flow and solidification conditions. Comparative castings of A356 and AlSi10Mg were also produced under identical conditions to establish performance baselines
Subramani, RajeshSingh, GajendraDoddamani, Mrityunjay
Elastomeric materials are essential in advanced automotive engineering for mobility, isolation, damping, fluid transfer (cooling, steering, fuel, and brake), and sealing because of their unique physio mechanical properties. Elastomers are commonly used in both static and dynamic components, such as hoses, mounts, bushes, and tires. Engine emission standards and weight optimization have caused higher temperature exposure conditions for automotive components. The steering system uses special purpose elastomers like Chlorinated Polyethylene that can deteriorate under abnormal conditions during vehicle operation or manufacturing process due to the high temperature exposure. Therefore, it is crucial to understand the causes and consequences of thermal degradation of elastomers. Thermal degradation is a significant phenomenon that changes the physiochemical properties of elastomers, which results in a product not meeting functional requirements. This study investigates the thermal
Thiruppathi, AnandhiMishra, NitishKrishnamoorthy, Kunju
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Deshpande, SanjanaBorgaonkar, Subodh
Engine mount brackets are a primary structural components of passenger vehicles that supports the powertrain to the chassis via engine mounts. These brackets are important to control vibrations and the transmission of noise into the cabin as well as vehicle stability. Since they support the engine mounts, these brackets play a role in determining ride comfort and load distribution on the mounts and the engine. While traditionally made from steel, cast iron and aluminum, we are trying to redesign engine mount brackets with recyclable engineering plastics to fit current demands of light-weighting, cost efficiency, and sustainability. The present work is concerned with the design of a plastic engine mount bracket, which aims to hit specified natural frequency targets in order to avoid resonance and fulfill strict NVH (Noise, Vibration, and Harshness) requirements. Because of the superior mechanical strength, thermal stability, and vibration-dampening properties, PPS, glass-fiber
Hazra, SandipGupta, DeepakKhan, ArkadipGite, Yogesh
In automotive suspension systems, components like bump stoppers and jounce bumpers play critical roles in controlling suspension travel and enhancing ride comfort. Material selection for these components is driven by functional demands and performance criteria. Traditionally, Natural rubber (NR) has traditionally been favored for bump stopper applications due to its excellent vibration absorption, tear resistance, cost-effectiveness, and biodegradability. However, in more demanding environments, it has been largely replaced by microcellular polyurethane (PU) elastomers, which offer superior durability, environmental resistance, and enhanced noise, vibration, and harshness (NVH) performance. This study revisits NR with the goal of re-establishing its viability by enhancing its performance to match or surpass that of PU. Through compound optimization and advanced material processing techniques, significant improvements have been achieved in NR’s mechanical strength, compression set
Murugesan, AnnarajanHingalaje, AbhijeetPerumal, MathavanPawar, Rohit
Vibration is one of the prominent factors that determine the quality & comfort level of a vehicle. Moreover, if vibration occurs in areas that are almost entirely within customer touchpoints, it could become a critical factor behind vehicle comfort and affects the brand image within the market negatively. The interior rear-view mirror (IRVM) is one of the important components inside passenger cabin, providing drivers with a clear view of the rear traffic. However, vibrations induced by engine operation, road irregularities, and aerodynamic forces can cause the IRVM to oscillate, leading to image blurriness and compromised visibility and safety. This paper investigates the underlying causes of IRVM vibration and its impact on rear visibility. Through experimental analysis we identify key factors contributing to mirror instability. The findings indicate the specific frequencies of vibration, particularly those resonating with the mirror's natural frequency, significantly exacerbating
Khan, Aamir NavedSaraswat, VivekJha, KartikSingh, HemendraSeenivasan, GokulramKhan, Nafees
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
With the advent of digital displays in driver cabins in commercial vehicles, drivers are being offered many features that convey some useful or critical information to drivers or prompt the driver to act. Due to the availability of a vast number of features, drivers face decision fatigue in choosing the appropriate features. Many are unaware of all available functionalities displayed in the Human Machine Interface (HMI) System, leading to a bare minimum usage or complete neglect of helpful features. This not only affects driving efficiency but also increases cognitive load, especially in complex driving scenarios. To alleviate the fatigue faced by drivers and to reduce the induced lethargy to choose appropriate features, we propose an AI driven recommendation agent/system that helps the driver choose the features. Instead of manually choosing between multiple settings, the driver can simply activate the recommendation mode, allowing the system to optimize selections dynamically. The
K, SunilDhoot, Disha
The structural integrity and fatigue life of engine connecting rods are critical to ensuring reliability and performance in internal combustion (IC) engines. Traditional Finite Element Analysis (FEA) methods for stress and life prediction are computationally expensive, requiring extensive simulation time for varying loading conditions. This study proposes an Advanced AI-driven approach using Graph Neural Networks (GNNs) which is subset of Geometric deep learning (GDL) to predict stress distribution and fatigue life of a connecting rod based on historical simulation data. The methodology involves training on past high-fidelity FEA results, enabling the model to learn spatial stress patterns and fatigue behavior across different design variations and loading conditions. Unlike traditional models, GNNs effectively captures the geometric and topological dependencies inherent in the connecting rod structure, providing robust predictions with minimal computational overhead. Experimental
Pathan, Mohammed ShakilK, KarthikeyanPilla, SashankaS Kangde, Suhas
Generating a reliable drive file for an electrodynamic (ED) shaker from Road Load Data Acquisition (RLDA) and validating its correlation with real-world conditions through damage and fatigue analysis is crucial for accurate component testing, particularly in complex systems like off-highway exhaust systems. This paper presents a methodology for creating such a drive file and establishing its validity, highlighting the necessity of ED shakers for simulating the intricate dynamic loads experienced by these systems. The process begins with acquiring comprehensive RLDA under representative operational conditions of the off-highway vehicle. Drive files are generated using this data, which records accelerations at important exhaust system mounting locations. Advanced signal processing techniques are employed to condense the raw RLDA into a format suitable for shaker control. To establish proper correlation, the generated drive file is used to excite the exhaust system on an ED shaker
Khaire, Santosh RamdasKhaire, RushikeshYadav, Dnyaneshwar
Addressing the challenge of optimal strain gauge placement on complex structural joints and pipes, this research introduces a novel methodology combining strategic gauge configurations with numerical optimization techniques. Traditional methods often struggle to accurately capture combined loading states and real-world complexities, leading to measurement errors and flawed structural assessments [9]. For intricate joints, a looping strain gauge configuration is proposed to comprehensively capture both bending and torsional effects, preventing the bypassing of applied loads. A calibration technique is used to create strain distribution matrices and access structural behavior under different loading conditions. Optimization algorithms are then applied to identify gauge placements that yield well-conditioned matrices, minimizing measurement errors and enhancing data reliability. This approach offers a cost-effective solution by reducing the number of gauges required for accurate stress
Shingate, UttamYadav, DnyaneshwarDeshpande, Onkar
The Automotive industry widely uses cast iron due to its better mechanical performance and cost-effectiveness. However, repair welding or assembly of cast iron components remain highly challenging due to the material’s high carbon content, inherent brittleness, rapid thermal conductivity, and complex microstructural transformations. Multi-pass welding exacerbates these challenges by subjecting materials to repeated thermal cycling, accumulating residual stress, and inducing distortion – all of which potentially degrade the integrity of welded joints. A comprehensive understanding of welded joint behavior is essential to effectively mitigate these effects. Finite element analysis (FEA) serves as a powerful tool, enabling accurate prediction of thermal profiles, phase transformations, residual stress development, and resulting deformations. These valuable insights are critical for optimizing welding processes and enhancing overall joint quality. This study investigates and validates the
Vidhate, DigambarNalawade, RahulDabhadkar, MandarVaidya, AbhijitAmmasi, VinothRajagopalan, Sridhar
The payload retention and material outflow pattern during the unloading process of dump trucks are critical factors influencing the efficiency and effectiveness of operations in construction and mining industries. This paper investigates the impact of tipping angles and the shape of the dump truck body on payload retention and outflow characteristics. Using FEA methodology, we explore the material outflow pattern for different body geometries such as box body, scoop body etc. for comparative analysis in order to optimize the shape for better & effective unloading. The results demonstrate a comparative estimation for an optimal body shape configuration to effectively unload payload and correlation of payload retention at various tipping angles. The current study also describes the effect of high cohesive forces between the payload particles on the discharge efficiency, and the pattern of mass flow rate is mapped against the tipping angle for various types of material properties for
Phukan, PrernaSahu, HemantDave, Rajeev
Tyre rolling resistance is a fundamental parameter in automotive engineering, directly impacting vehicle fuel efficiency and overall performance. The Rolling Resistance Coefficient (RRC) is influenced by tyre construction, material properties, and operational conditions such as inflation pressure, vehicle speed, ambient temperature, and road surface roughness. This study investigates the influence of critical parameters—including test speed, inflation pressure, temperature on the rolling resistance of tyres of various sizes. While previous research has predominantly focused on radial tyres, this paper extends the analysis to include bias-ply tyres. The findings aim to offer valuable insights for policymakers and researchers by examining the behavior of bias tyres under real-world conditions. The results will be particularly beneficial for vehicle and steering system designers, offering data-driven insights to support future tyre and vehicle development. Additionally, the study presents
Joshi, AmolBelavadi Venkataramaiah, ShamsundaraKhairatkar, Vyankatesh
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
Survade, LalitKoulage, Dasharath BaliramBiswas, Kaushik
The automotive industry is advancing rapidly with the integration of cutting-edge technology, aesthetics, and performance. One area that has remained relatively underexplored in the pursuit of sleek, minimalistic interiors is the packaging of Sunshade in door trim system. Traditional sunshade design, often bulky and increasingly incompatible with the trend towards compact design and packaging. The car sunshade is a shield that is placed on a car side window and used for regulating the amount of light entering from the car window and helps improve the passenger comfort inside the cabin. Car Interior components, specifically plastic and seats are based on thermal stress properties. When we expose these parts to direct contact with sunlight, humidity and ambient temperature above threshold limit, the interior plastic parts can start to soften and melt. Due to this, they start emitting harmful chemicals which cause anemia and poor immune systems. So, the Sunshade, in addition to protecting
Palyal, NikitaD, GowthamBhaskararao, PathivadaBornare, HarshadRitesh, Kakade
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~8 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
Modal analysis is performed to determine the natural frequencies and mode shapes of a structure or system. It helps engineers understand how a system vibrates and how external forces, such as mechanical loads, might excite unwanted resonances. To check the stresses due to vibration inputs, certain G levels are assumed, and stresses are scaled to those vibration levels. This gives an understanding of the stresses of components with respect to its EFR limit and design margins are calculated. But, assumed acceleration levels in pre-prototype stage level can over predict or under predict the design margins. A quick modal analysis correlation technique can be used by using test measured accelerations conducted at prototype stage of the program. In this work, a modal analysis correlation technique is used to perform risk assessment of intake manifold. The intake manifold failed due to high vibration levels which were not captured from high cycle fatigue analysis with assumed G-level. In the
Bale, Shrikant BhaskarBawache, Krushna
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
The global push for clean energy has made hydrogen a central element in decarbonizing transport, industrial processes, and energy systems. Effective hydrogen storage and distribution are critical to supporting this transition, and type IV Composite Overwrapped Pressure Vessels (COPVs) have emerged as the preferred solution due to their lightweight, high pressure capacity, hydrogen embrittlement and corrosion resistance. However, the cascade infrastructure used to house and transport these vessels has lagged behind in innovation. Steel-based cascades, while strong, are heavy prone to corrosion, and unsuitable for mobile deployment. This paper introduces a custom designed aluminium cascade system offering a 65% weight reduction while maintaining structural integrity and safety. Designed for mobile use, the system features modularity, better damping, and enhanced corrosion protection. The paper outlines design methodology, material selection, fabrication process, and comparative
Parasumanna, Ajeet BabuMuthusamy, HariprasadAmmu, Vnsu ViswanathKola, Immanuel Raju
This paper presents the design, structural analysis, structural test validation and risk assessment done by Cummins to evaluate the structural integrity of Light Duty engine cylinder head for a Medium Wheelbase (MWB) pick-up truck. Initially, Cummins used the 2.5L and 3.0L (4-cylinder) engines that have standard power ratings based on existing requirements, but rising market demands for more power, fuel efficiency, lower cost and weight, and future emission compliance led to customer requirements for 15% uprate for 2.5L and 22% uprate for 3.0L from the same base engine. The increase in power requirement possesses challenges on critical components, especially cylinder heads in terms of thermal and structural limits. Multiple analysis led design iterations were performed using cutting edge CAE software such as Ansys, Dassault Systems fe-safe, and PTC Creo to ensure the structural integrity of the cylinder head under high thermal and mechanical loads, and to keep design margins within
Pathak, Arun JyotiAdiverekar, VaidehiSingh, RahulBiyani, Mayur
In modern four-wheelers, seat suspension systems play a crucial role in enhancing occupant comfort by mitigating the effects of road unevenness and vibrations. Among these systems, active suspension mechanisms offer advanced performance through complex assemblies involving welded, riveted, and bolted joints. This study investigates the failure of an air spring bracket - a critical component of a pneumatic active suspension system - manufactured by Gas Metal Arc Welding (GMAW) of two dissimilar ferrous materials which are likely to be SAPH440 and S355J2. These different materials were used based on mechanical properties required to perform by their particular part. System level validation tests were conducted to ensure the reliability of the seat suspension system. The one of the validation tests is continuous cyclic fatigue test which is carried out on the complete seat assembly. However, during vibration / cyclic endurance testing, premature failures were observed near the weld joints
Patale Jr, ReshmaPinjari, Jayant NamdevBali, Shirish
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
High Voltage cables and terminals are prone to high temperatures and rapid heat generation due to high current ratings, especially in electric vehicles (EVs). If the temperature exceeds a critical limit, danger may be posed to the components which are connected and the overall safety of the passengers. Traditionally, cooling methods are often energy-intensive and rely on active systems, which may not always be practical for high-power applications. Thus, a localized, fast, and reliable passive thermal management methodology that can be retrofitted into existing connector designs through modifications (e.g., enlargement and PCM integration) would provide significant safety enhancement. The material property of phase change materials, which possess high latent heat, has been used to maintain a steady temperature for a period of time. A dual PCM-layer has been incorporated into the design of the high-voltage connector to serve two purposes:1. The first PCM layer (PCM-1), with good
Neogi, AngshumanShinde, Shardul
This research paper investigates the failure of an isolator clip used in the seat slider assembly, which guides and restricts the sliding motion of the tooth bracket within the seat. The component is made of C80 high-carbon spring steel, known for its high strength. According to the manufacturing process details, zinc plating was applied to the component for corrosion protection, as confirmed by EDS analysis. A fractographic examination of the failed part revealed a brittle, intergranular fracture morphology with visible cracks. Certain areas also exhibited micro-void coalescence, indicating a dimpled fracture surface. The primary failure mode was intergranular (IG) fracture. The delayed fracture was attributed to intergranular fracture mechanisms, micro-void coalescence, and the high strength of the steel, which made the component susceptible to hydrogen embrittlement. Hydrogen embrittlement occurs when hydrogen atoms become trapped along the grain boundaries, where they form hydrogen
Saindane, Mehul KishorBali, Shirish
Accurately determining the loads acting on a structure is critical for simulation tasks, especially in fatigue analysis. However, current methods for determining component loads using load cascade techniques and multi-body dynamics (MBD) simulation models have intrinsic accuracy constraints because of approximations and measurement uncertainties. Moreover, constructing precise MBD models is a time-consuming process, resulting in long turnaround times. Consequently, there is a pressing need for a more direct and precise approach to component load estimation that reduces efforts and time while enhancing accuracy. A novel solution has emerged to tackle these requirements by leveraging the structure itself as a load transducer [1]. Previous efforts in this direction faced challenges associated with cross-talk issues, but those obstacles have been overcome with the introduction of the "pseudo-inverse" concept. By combining the pseudo-inverse technique with the D-optimal algorithm
Pratap, RajatApte, Sr., AmolBabar, Ranjit
Quality of the Shear Trimmed edge of HSLA 550 steels is significantly affected by process variations such as Shear Trimming Clearance, trim tolerance, burr height and clamping force. All these parameters largely influence the characteristics of the Shear Affected Zone, a region on sheet metal where it undergoes deformation during the trimming process. The Shear Affected Zone is predominantly vulnerable to failure due to work hardening and the effects of strain rate, induced by the tonnage during the trimming operation. To assess the edge ductility of these materials, Tensile, Fatigue Strength, Die Punch Clearance, Roughness and Hardness Tests are carried out. These tests are crucial for applications that demand high formability and resistance to edge failure. Virtual simulation of edge trimming operation using elastoplastic material models in LS-Dyna have been performed to gain insights into burr formation and damage evolution during shearing. These simulations act as a precursor to
Thota, Badri VishalKashyap, AmitBhuvangiri, Jaydev
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
Items per page:
1 – 50 of 64616