Browse Topic: Materials
Ride comfort is an important factor in the development of vehicles. Understanding the characteristics of seat components allows more accurate analysis of ride comfort. This study focuses on urethane foam, which is commonly used in vehicle seats. Soft materials such as urethane foam have both elastic and viscous properties that vary with frequency and temperature. Dynamic viscoelastic measurements are effective for investigating the vibrational characteristics of such materials. Although there have been many studies on the viscoelastic properties of urethane foam, no prior research has focused on dynamic viscoelastic measurements during compression to simulate the condition of a person sitting on a seat. In this study, dynamic viscoelastic measurements were performed on compressed urethane foam. Moreover, measurements were conducted at low temperatures, and a master curve using the Williams–Landel–Ferry (WLF) formula (temperature–frequency conversion law) was created.
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils.
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils (see 8.7).
This specification covers an aluminum alloy in the form of extruded bars, rods, shapes (profiles), and tubing 0.250 to 3.000 inches (6.35 to 76.20 mm), inclusive, in nominal diameter, least thickness, or nominal wall thickness (see 8.5).
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm), inclusive (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, profiles, and tubing.
This specification establishes testing methods and maximum permissible limits for trace elements in nickel alloy castings and powder materials. It shall apply only when required by the material specification.
This specification covers a corrosion-resistant steel in the form of bars and forgings 8 inches (203 mm) and under in nominal diameter or maximum cross-sectional dimension and forging stock of any size.
Items per page:
50
1 – 50 of 64560