Browse Topic: Materials

Items (64,335)
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
In the transition towards sustainable mobility, Circular Design principles are crucial. Electric Motors are subject to continuous innovation to improve efficiency, performance density and reduce externalities associated with their production. Therefore, the choice of technological solutions during design phase must guarantee optimal performance and minimal environmental impact throughout the entire product life cycle: production, use, and end-of-life. In the automotive sector, the use phase is particularly critical since the efficiency of the traction system is directly related to total energy consumption during the life cycle and, consequently, to its environmental impact. This research introduces a simulation-based approach to evaluate the use phase of an Axial Flux Electric Motor equipped with Permanent Magnets (AFPM). While providing high performance for electric traction motors, these magnets are composed of Rare Earth Elements (REEs), e.g. Neodymium, classified as Critical Raw
Guadagno, MaurizioBerzi, LorenzoPugi, LucaDelogu, Massimo
In this study, the optimization of robotic gas metal arc welding (GMAW) parameters for joining hot-rolled ferritic-bainitic FB590 steel sheets with a thickness of 2.5 mm was investigated. The main objective was to evaluate the effect of wire feed speed and welding speed on the penetration depth, throat thickness, and mechanical performance of the welded joint. A series of welding experiments were carried out with wire feed speeds ranging from 50 cm/min to 100 cm/min and welding speeds ranging from 5 cm/min to 15 cm/min. Tensile and microhardness tests were carried out to evaluate the structural integrity of the welded joints. The results show that increasing the wire feed speed significantly improves the weld penetration and throat thickness, especially at constant welding speeds. The most suitable combination was found to be 70 cm/min wire feed at 8 cm/min travel speed and 100 cm/min wire feed at 12 cm/min and 15 cm/min travel speeds. The microhardness in the heat-affected zone
Babir, NaimeÜzel, Uğur
Type IV composite pressure (CP) vessels composed of a plastic liner and composite layers require special design attention to the dome region. The cylindrical portion of the composite cylinder is wrapped with composite layers consisting of the 900 hoop layers and low-angle helical layers, whereas the dome surface carries helical layers only. The winding angle of the helical layers being a constant over the cylindrical portion starts to vary from the cylinder-dome junction toward the boss at the top continuously. Along with the winding angle, the composite thickness also varies continuously resulting in a maximum thickness at the top crown region. The complete analysis and layer-wise stress prediction of Type IV composite cylinders for service pressures up to 70 MPa was analyzed by the Classical Lamination theory (CLT)-based MATLAB program. The MATLAB program developed in this work for the dome initially performs the dome profile generation through the numerical integration of the dome
R. S., NakandhrakumarTandi, RonakM, RamakrishnanRaja, SelvakumarElumalai, SangeethkumarVelmurugan, Ramanathan
To address the thermal management challenges in lithium-ion batteries-which are associated with safety, real-world driving, and operating cycles, particularly at high discharge rates and in extreme ambient conditions-it is essential to maintain the battery temperature within its optimal range. This work introduces a novel hybrid Battery Thermal Management System (BTMS) that integrating a Phase Change Material (PCM) and air cooling with fins attached to air-channel in PCM side. Unlike conventional approaches that use standard rectangular fins, this study employs angular fins with varying dimensions to enhance heat dissipation. The hybrid system is designed to leverage the high latent heat storage capability of the PCM while ensuring efficient convective heat removal through air cooling. The airflow through the cooling channel accelerates heat dissipation from the PCM, thereby increasing its effectiveness. The angular fins are strategically positioned within the PCM section to enhance
Kalvankar, TejasLam, Prasanth Anand KumarAruri, Pranushaa
Over the past decade, significant progress in nano science and nanotechnology has opened new avenues for the development of high-performance photovoltaic cells. At present, a variety of nanostructure-based designs—comprising metals, polymers, and semiconductors—are being explored for photovoltaic applications. Advancements in the understanding of optical and electrical mechanisms governing photovoltaic conversion have been supported by theoretical analyses and modeling studies. Nevertheless, the high fabrication cost and relatively low efficiency of conventional solar photovoltaic cells remain major barriers to their large-scale deployment. One-dimensional (1D) nano materials, in particular, have introduced promising prospects for enhancing photovoltaic performance owing to their unique structural and electronic characteristics. Nanowires, nano rods, and nanotubes exemplify such 1D nanostructures, offering substantial potential to improve photon absorption, electron transport, and
P, GeethaSudarmani, Rc, VenkataramananSatyam, SatyamNagarajan, Sudarson
The work presents a micro-electromechanical system (MEMS) temperature sensor that has been designed using COMSOL Multiphysics 6.0 software for use in predicting the temperature of automotive parts. Due to its versatility, the shape of this design employs a meander, and this involves joule heating physics. It clearly shows the variation of resistance with temperature. For this design, Nitinol nano material is used because of the following advantages: Enhanced Shape Memory Effect, Superior Super elasticity, Increased Surface Area, Increased Surface Area, Improved Biocompatibility, Tunable Properties, Enhanced Mechanical Properties. Nitinol having high strength to weight ratio find its application in aerospace industry. This sensor works based on the principle of temperature dependence of resistance; that is, the resistance of the material increases or decreases based on temperature. It is observed that Nitinol has low von Mises stress, proving the safety nature of the material in
P, Geetha
Automotive mobile air conditioning (MAC) systems rely on effective thermal insulation to maintain cabin comfort and energy efficiency. However, insulation materials degrade over time due to thermal cycling and environmental exposure, impacting overall system performance. This study investigates the effects of reducing insulation material density (GSM) in critical areas such as the engine firewall, plenum, roof and door panels on MAC system efficiency. A multi-disciplinary approach combining basic engineering calculations, frontloading CAE simulations and targeted experimental testing was employed. Initial calculations provided directional input for cabin heat load analysis, guiding early-stage design decisions. Simulation models were used to predict the impact of insulation reduction on cooling performance, energy consumption and component durability, reducing reliance on iterative physical testing. Experimental validation was then conducted selectively, focusing on critical areas to
Kulkarni, ShridharDeshmukh, GaneshJoshi, GauravNayakawadi, UttamShah, GeetJaybhay, Sambhaji
This paper describes a simulation methodology developed to predict the temperature distribution in separator plate and friction disc of the wet clutch corresponding to given slip power, oil flow rate and clutch geometry for off-highway applications. This study adopts a model-based design approach to understand thermal behavior of the wet clutch. This simulation methodology has been developed in a 1D environment with the right fidelity modeling approach to predict thermal performance of the clutch. This model includes heat flow through conduction and convection corresponding to heat generated due to friction between separator plate and friction material. Lab test includes multiple thermocouples installed on separator plate to capture temperature distribution in radial direction. This methodology has been correlated >90% with test data acquired in the lab. This dynamic simulation model aids to identify the potential root cause of clutch failures and risk mitigation. DOE has been
Kumar, SuneelMemane, NileshVeerkar, Vikrant
The proton exchange membrane (PEM) water electrolyzer is an emerging technology to produce green hydrogen due to its compactness and producing high purity hydrogen. This study presents a numerical investigation on multiphase flow dynamics and heat transfer within the anode flow field of a PEM water electrolyzer. Two different channel configurations, i.e., rectangular, semi-circular are considered having same cross-sectional area while keeping the porous transport layer (PTL) thickness constant (which is within the commercially available ranges). Simulations are conducted for various oxygen generation rates and heat fluxes (corresponding to different current densities) and different inlet water flow rates. The effects of channel configurations on pressure drop, flow uniformity, and temperature distribution are illustrated pictorially and graphically. The impact of water flow rates and oxygen generation rates on phase distribution, pressure drop, and temperature profiles, particularly
Dash, Manoj KumarBansode PhD, Annasaheb
Measurement plays a crucial role in the precise and accurate management of automotive subsystems to enhance efficiency and performance. Sensors are essential for achieving high levels of accuracy and precision in control applications. Rapid technical advancements have transformed the automobile industry in recent years, and a wide range of novel sensor devices are being released to the market to speed up the development of autonomous vehicle technology. Nonetheless, stricter regulations for reliable pressure sensors in automobiles have resulted from growing legal pressures from regulatory bodies. This work proposes and investigates a tribo electric nano sensor that is affected by a changing parameter of the separation distance between the device's primary electrode and dielectric layers. The system is being modeled using the COMSOL multiphysics of electrostatics and the tribo-electric effect. Open circuit electric potential and short circuit surface charge density are two of the
P, GeethaK, NeelimaSudarmani, RC, VenkataramananSatyam, SatyamNagarajan, Sudarson
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
AMS CE Elastomers Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
TOC
Tobolski, Sue
This specification covers a premium aircraft-quality alloy steel in the form of welding wire.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
AMS CE Elastomers Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Highway tunnel lighting has a key impact on traffic safety and lowcarbon energy saving. Under the same lighting conditions, the brightness and uniformity of the road surface are closely related to the reflection characteristics of the road surface. In this paper, firstly, the brightness of asphalt concrete specimens made of different materials was tested by indoor experiments, and the reflective parameters of asphalt concrete of different colors were compared, and then the images of colored pavement of different colors were collected at the tunnel site, and the brightness and uniformity indexes of the colored pavement and the conventional asphalt pavement were analyzed and compared by using graphic image analysis technology. The results show that when the lighting conditions are the same, the luminance of yellow asphalt concrete is about 2.3 times that of black asphalt concrete, and the luminance of red asphalt concrete is about 1.5 times that of black asphalt concrete, and the use of
Si, JialaiWang, ZijianWang, LuhaiMa, FeiHan, LuluZhang, Zhongbin
River regulation engineering is pivotal for harmonizing flood resilience, ecological integrity, and navigation efficiency in large alluvial systems, particularly under intensified hydrological stressors. The Yangtze River, Asia’s largest fluvial network, has experienced altered hydro-sedimentary regimes and exacerbated channel instability due to cascade reservoir operations, demanding adaptive strategies to stabilize dynamic reaches. This study investigates hydrodynamic and flow distribution responses to integrated regulation measures in the Chizhou Reach—a vulnerable alluvial segment characterized by severe bank erosion, sedimentation-induced flow imbalances, and constrained floodplains. Using a 1:500/1:100 scaled hydraulic model validated under flood and low-flow conditions, we assess synergistic effects of dredging, submerged dams, and flow-regulating groynes. Here we show that dredging the Wanchuanzhou right branch increases its flow diversion ratio by 1.71% (annual average flow
Gao, JinFeng, LileiRuan, JunshengLu, LixinYan, Jun
With the rise of prefabricated metro stations in metro construction, the selection of its block type has become a key issue under specific stratigraphic conditions. In this paper, three types of prefabricated metro stations (Type 1, Type 2 and Type 3) are studied in the stratum of a metro station in Shenzhen as an example. Through MIDAS GTS NX, a single-ring stratum-structure model is established and the same calculation step is set to analyse the mechanical response of precast component assembly to the concrete at the bottom of the pit and the bottom slab. In terms of the concrete at the base of the footing, the stress of Type 3 has an advantage but the overall fluctuation is complicated, the stress of Type 2 fluctuates greatly and the stress of some nodes is high, and the change of Type 1 is relatively smooth; in terms of deformation, Type 2 and Type 3 settle symmetrically, and the influence of Type 2 is small. For precast structural base plate, stress on type 3 part of the stage of
Xie, JunJiang, WeiFan, XiaominZheng, PengpengHuang, ZhumingYang, Zhao
The height valve adjusting rod is an important part of the suspension system, used to adjust the height of the train to adapt to the train through the curve, slope or uneven track when the height valve adjusting rod fracture failure, the train’s suspension system can not be adjusted normally, may lead to the height of the train is too high or too low, affecting the stability of the train and the driving safety. In this paper, an underground vehicle height valve adjusting rod fracture failure of the problem was studied and analysed, the specific conclusions are as follows: height valve adjusting rod there are two main vibration frequency, 60Hz and 340Hz, 60Hz main frequency has always existed, and 340Hz vibration frequency are present in part of the interval, but also caused by the vehicle vibration of the main reason for the local larger; height valve adjusting rod stress there is also a significant vibration The main frequency of 340Hz, similar to the vibration characteristics of the
Wang, ChaoYang, ChenPan, Minkai
Urban road traffic state classification is essential for identifying early-stage deterioration and enabling proactive traffic management. This study presents a novel method to accurately assess the traffic state of urban roads while addressing the limitations of existing methods in spatial generalization performance. The approach consists of three key components. First, several indicators are designed to capture the spatial-temporal evolution mechanisms of traffic state, speed freedom, flow saturation, and their variations over time and space. Then, a feature learning module based on an AutoEncoder network is introduced to reduce the dimensionality of the constructed feature set. This enhances feature distinction while mitigating noise effects on classification results. Third, k-means clustering is applied to analyze significant features extracted from the AutoEncoder latent space, categorizing road traffic states into fluent, basic fluent, moderate congested and severe congested
Wang, XiaocongHuang, MinGuo, XinlingXie, JieminZhang, Xiaolan
The accurate prediction of road performance decay is of great significance for road maintenance and management. This paper takes the Xinjiang G577 highway as the research object, collects the measured data of the typical indexes of asphalt pavement since the past years (Deterioration Condition Index (PCI), Technical Condition Index (PQI)), and studies its decay. The model is constructed on the basis of time series1, and the exponential decay model of asphalt road PQI and PCI is derived. The model’s accuracy is then tested by calculating the correlation coefficient, mean absolute error (MAE), and other accuracy tests. The results demonstrate that the model exhibits a high degree of fit.
Tian, WeiBai, HaotianWang, TaiweiWang, JiayanDai, Xiaomin
This specification covers an aluminum-lithium alloy in the form of sheet and plate 0.032 to 0.500 inch (0.81 to 12.70 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 64335