Browse Topic: Coatings, colorants, and finishes

Items (5,179)
The power assist system of an electric bicycle uses a magnetostrictive torque sensor to detect the pedal force based on the magnetic properties of the crankshaft, which change according to stress. Fe–Ni alloy plating is used to coat the surface of the crankshaft with a magnetic film to enhance the magnetostrictive effect. However, the sensor performance decreases as the plating solution degrades, which necessitates replacement of the plating solution. In this study, experiments were performed to investigate how to prevent or mitigate degradation of the plating solution to reduce waste. The amounts of carbon and sulfur in the magnetic film were found to increase with degradation of the plating solution. The carbon derived from organic reducing agents and their decomposition products, and the sulfur derived from stress relievers and their decomposition products. A method was developed for reducing the amounts of carbon and sulfur in the magnetic film, which would help maintain the sensor
Ohnishi, Hiromichi
Reducing CO2 emissions is now a major focus in India heading towards net zero emissions by 2070. India is the 3rd largest automobile market in the world and the transportation sector is the 3rd largest CO2 emitter. In this direction, it is necessary to reduce the carbon footprint from the automobile sector to combat climate change. The adoption of sustainable biofuels such as ethanol will enable us to reduce emissions, as ethanol is carbon neutral fuel. However, vehicle manufacturers are facing challenges in manufacturing flex fuel compatible parts in the vehicle mainly fuel systems. Ethanol has both nonpolar and polar bonds, making it miscible to both gasoline and water, thereby water contamination is inevitable in ethanol blend fuels. In addition, control of ethanol contamination by sulfates and chlorides during ethanol production is challenging. Thus, ethanol blend fuels are considered more corrosive and tendency towards deposit formation than normal gasoline fuels. Design and
Pandi, Dinesh BabuShanmugam, Gomathy PriyaNagarkatti, ArunGopal, ManishAnbalagan, Prathap
Blistering in aesthetic parts poses a significant challenge, affecting overall appearance and eroding brand image from the customer's perspective and blister defects disrupt painting line efficiency, resulting in increased rework and rejection rates. This paper investigates the causes and effects of blistering, particularly in the context of internal soundness of Aluminum castings, emphasizing the crucial role of Computed Tomography in defect analysis. Computed Tomography is an advanced Non-Destructive Testing technique used to examine the internal soundness of a material. This study follows a structured 7-step QC story approach, from problem identification to standardization, to accurately identify the root Cause and implement corrective actions to eliminate blister defect. The findings reveal a strong link between internal soundness and surface quality. Based on the root cause, changes in the casting process and die design were made to improve internal soundness, leading to reduced
D, BalachandarNataraj, Naveenkumar
The current ASTM A653 standard for determining the bake hardening index (BHI) of sheet metals can lead to premature fracture at the transition radius of the tensile specimen in high strength steel grades. In this study, a new test procedure to characterize the BHI was developed and applied to 980 and 1180 MPa third generation advanced high strength steels (3G-AHSS). The so-called KS-1B methodology involves pre-straining over-sized tensile specimens followed by the extraction of an ASTM E8 sample, paint baking and re-testing to determine the BHI. Various pre-strain levels in the range of 2 to 10% were considered to evaluate the KS-1B procedure with select comparisons with the ASTM A653 methodology for pre-strain levels of 2 and 8%. Finally, to characterize the influence of paint baking at large strain levels, sheared edge conical hole expansion tests were conducted. The tensile mechanical properties of the 3G steels after paint baking were observed to be sensitive to the pre-strain with
Northcote, RhysBerry, AvalonNarayanan, AdvaithTolton, CameronLee, HaeaSmith, JonathanMcCarty, EricButcher, Cliff
Mechanical analysis was performed of a non-pneumatic tire, specifically a Michelin Tweel size 18x8.5N10, that can be used up to a speed of 40 km/h. A Parylene-C coating was added to the rubber spoke specimens before performing both microscopic imaging and cyclic tensile testing. Initially, standard ASTM D412 specimens type C and A were cut from the wheel spokes, and then the specimens were subjected to deposition of a nanomaterial. The surfaces of the specimens were prepared in different ways to examine the influence on the material behavior including the stiffness and hysteresis. Microscopic imaging was performed to qualitatively compare the surfaces of the coated and uncoated specimens. Both coated and uncoated spoke specimens of each standard type were then subjected to low-rate cyclic tensile tests up to 500% strain. The results showed that the Parylene-C coating did not affect the maximum stress in the specimens, but did increase the residual strain. Type C specimens also had a
Collings, WilliamLi, ChengzhiSchwarz, JacksonLakhtakia, AkhleshBakis, CharlesEl-Sayegh, ZeinabEl-Gindy, Moustafa
To obtain real-time tire wear status during vehicle operation, this paper proposes a tire wear detection method based on signal analysis. Firstly, PVDF piezoelectric thin film sensors are pasted in the center of the airtight layer of tires with different degrees of wear to collect tire stress data under different working conditions. Secondly, filter and extract the time-domain and frequency-domain feature information of the collected data to construct a feature dataset. Finally, a deep regression model is established to train the feature dataset and achieve real-time detection of tire damage status. The results indicate that the prediction algorithm based on signal analysis and feature extraction achieves a maximum error of 0.3mm in tire wear detection, demonstrating high accuracy in tire wear detection. Providing tire information for safe driving of vehicles has high industrial application value.
Xianyi, XieYang, HaoJin, Lisheng
As the utilization of lithium-ion batteries in electric vehicles becomes increasingly prevalent, there has been a growing focus on the mechanical properties of lithium-ion battery cores. The current collector significantly impacts the tensile properties of the electrode and the internal fracture of the battery cell. The stripping process tends to cause additional damage to the current collector, so tensile testing is not able to obtain in-situ mechanical properties of the current collector. Therefore, nanoindentation tests are required to acquire the in situ mechanical properties of the current collector. Nanoindentation testing represents the primary methodology for the determination of the mechanical properties of thin films. The Oliver-Pharr method is the standard approach used by commercial indentation instruments for the evaluation of mechanical properties in materials. Nevertheless, this approach is constrained by the limitations imposed by the sample boundary conditions. To
Dai, RuiSun, ZhiweiPark, JeongjinXia, YongZhou, Qing
Two 50-hr engine dynamometer tests were conducted on 12-cylinder diesel military engines with differing piston ring sets. Engine A exhibited more than double the oil consumption over engine B. An investigation was conducted to explain why the oil consumption differed by employing several posttest analytical techniques including cylinder bore geometry measurements, surface metrology, wear characterization, and chemical analysis on the piston rings and cylinder wall coatings. The 3D colormaps of cylinder bore deformation showed uneven volumetric deformation through the piston stroke instead of 2D plane deformation. It was found that the primary reason of high oil consumption was direct loss of sealing between the piston, piston ring and cylinder bore due to predominately abrasive wear, three-body abrasive wear and bore polishing. Furthermore, the compromised sealing of the combustion chamber led to blow-by. Carbon deposits, corrosive byproducts, surface abrasives, loss of desired surface
Thrush, StevenChen, AijieFoley, MichaelSebeck, KatherineBoufakhreddine, Ziad
In Formula SAE , the primary function of the frame is to provide structural support for the different components and withstand the applied load. In recent years, most Formula Student teams worldwide to adopt monocoque made of carbon fiber composites, which are lighter and stronger. Enhancing the mechanical performance of carbon fiber laminates has been a key focus of research for these teams. In three-point bending tests, significant stress at the adhesive layer between the skin and the core material at both ends of the laminate, often lead to potential adhesive failure. Consequently, experimental boards often exhibit delamination between the outer skin and the core material, and premature core crushing, which compromises the mechanical performance of the laminate and fails to pass the Structural Equivalency Spreadsheet. Therefore, it is necessary to consider the influence of the bonding factor of toughened epoxy prepreg film on the mechanical properties of the laminated plate. This
Ning, Zicheng
Given the strategic importance of aluminum cast materials in producing lightweight, high-performance products across industries, it is fundamental to assess their mechanical and cyclic fatigue properties thoroughly. This investigation is primarily for optimizing material utilization and enhancing the efficiency and reliability of aluminum cast components, contributing to significant conservation of raw materials and energy throughout both the manufacturing process and the product's lifecycle. In this study, a systematic material investigation was conducted to establish a reliable estimation of the fatigue behavior of different aluminum cast materials under different loading ratios and elevated temperatures. This paper presents an analysis of the statistical and geometrical influences on various aluminum alloys, including AlSi10MnMg, AlSi7Mg0.3, and AlSi8Cu3Fe, produced via pressure die casting and gravity die casting (permanent mold casting), and subjected to different heat treatment
Qaralleh, AhmadNiewiadomski, JanBleicher, Christoph
This specification covers a zinc molybdate primer in the form of a liquid.
AMS B Finishes Processes and Fluids Committee
This specification covers the requirements for the application and properties of a titanium nitride coating on metal parts applied by physical vapor deposition (PVD).
AMS B Finishes Processes and Fluids Committee
Electrical discharge machining (EDM) technology is one of the unconventional machining processes with an ability to machine intricate geometrics with micro finishing. Powder-mixed EDM (PMEDM) extends the EDM process by adding conductive powder to the dielectric fluid to improve performance. This set of experiments summarizes the effect of brass and copper electrode on HcHcr D2 tool steel in chromium powder-mixed dielectric fluid. Powder concentration (PC), peak current (I), and pulse on-time (Ton) are considered as variable process parameters. General full factorial design of experiment (DOE) and ANOVA has been used to plan and analyze the experiments where powder concentration is observed as the most significant process parameter. The results also reveal that a brass electrode offers a high material removal rate (MRR). Whereas, the copper electrode has reported noteworthy improvement in surface roughness (Ra). Moreover, teaching–learning-based optimization (TLBO) algorithm has been
Sonawane, Gaurav DinkarSulakhe, VishalDalu, RajendraKaware, KiranMotwani, Amit
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
Fused Deposition Modeling (FDM) is a highly adaptable additive manufacturing method that is extensively employed for creating intricate structures using a range of materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability, making it well-suited for use in industries such as footwear, automotive, and consumer goods. Hoses, gaskets, seals, external trim, and interior components are just a few of the many uses for thermoplastic polyurethanes (TPU) in the automobile industry. The objective of this study is to enhance the performance of Fused Deposition Modeling (FDM) by optimizing the parameters specifically for Thermoplastic Polyurethane (TPU) material. This will be achieved by employing a Taguchi-based Grey Relational Analysis (GRA) method. The researchers conducted experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
Polyaniline (PANI)-polymer based smart paints have emerged as a promising solution for enhancing the durability and performance of automobile surface coatings. These paint coatings offer a superior corrosion resistance, conductivity, and environmental stability, making it an ideal. Here novel copolymers of dodecylbenzene sulfonic acid(DBSA) aided poly (aniline-co-m-chloroaniline) nanocomposites of various compositions were prepared by oxidative method in micellar solution. These nanocomposites were analyzed by using UV-Vis and FT-IR spectroscopic methods. The crystalline nature of the polymer was evidenced through XRD patterns. SEM revealed the presence of particles with spherical morphology 100 nm in diameter. The electrical activity of the doped polymer was found to be content increasing from 3:1 to 3:3 x 10-2 S/cm to 5.64 x 10-7 S/cm with chloroaniline. These copolymers are added as additives in manufacturing of paint. These novel paints offer multiple protective mechanisms
Pachanoor, VijayanandMoorthi, Bharathiraja
In recent years, Additive Manufacturing (AM), more especially Fused Deposition Modeling (FDM), has emerged as a very promising technique for the production of complicated forms while using a variety of materials. Polyethylene Terephthalate Glycol, sometimes known as PETG, is a thermoplastic material that is widely used and is renowned for its remarkable strength, resilience to chemicals, and ease of processing. Through the use of Taguchi Grey Relational Analysis (GRA), the purpose of this investigation is to improve the process parameters of the FDM technology for PETG material. In order to investigate the influence that several FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, have on significant outcome variables, such as dimensional accuracy, surface quality, and mechanical qualities, an empirical research was conducted. For the purpose of constructing the regression prediction model, the obtained dataset is used to make
Natarajan, ManikandanPasupuleti, ThejasreeShanmugam, LoganayaganKatta, Lakshmi NarasimhamuSilambarasan, RKiruthika, Jothi
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has emerged as a revolutionary method for fabricating complex geometries using a variety of materials. Polyethylene terephthalate glycol (PETG) is a thermoplastic material that is biodegradable and environmentally friendly, making it a preferred choice in additive manufacturing (AM) due to its affordability and ease of use. This study aims to optimize the FDM settings for PETG material and investigate the impact of key process parameters on printing performance. An experimental study was conducted to evaluate the influence of crucial factors in FDM, including layer thickness, infill density, printing speed, and nozzle temperature, on significant outcomes such as dimensional accuracy, surface quality, and mechanical properties. The use of the Grey Relational Analysis (GRA) approach enabled a systematic assessment of multi-performance characteristics, facilitating the optimization of the FDM process. The findings
Pasupuleti, ThejasreeNatarajan, ManikandanKumar, VKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamyKatta, Lakshmi NarasimhamuSilambarasan, R
In commercial vehicle, Hydraulic Power Assisted Steering (HPAS) gear plays a vital role to utilize the hydraulic force to assist the steering application. HPAS gear consists of housing, sector shaft, side cover, worm shaft, valve housing and rack piston. Side cover assembly is connected with the housing assembly through bolts which is in exposure to high pressure working hydraulic fluid. Since, some of the bolts are exposed to the fluid environment in the inner surface of the housing, during high pressure running condition, torque relaxation in the bolt is observed which leads to the loosening of bolts and tends to hydraulic fluid leakage through bolts. The current phosphate coated bolts are getting relaxed and loosened due to the bolts that exposed to the oil environment which have insufficient coefficient of friction in the bolt head and thread. To overcome the bolt failure during high pressure hydraulic application, various bolt coating analysis is experimented to withstand the
Ayyappan, RakshnaGovindarasu, AnbarasuP, RajasekarD, Senthil Kumar
A novel sintering method of bridging the two mechanically polished and oriented single-crystals together face-to-face in a non- environmental controlled atmosphere to fabricate the bicrystal substrate of NaCl of macroscopic thickness, with a common zone axis and having planarity over large areas, has been developed. Epitaxial [001] bicrystalline thin face-centered cubic (fcc) metal film of surface-reactive metal-containing tilt grain boundary across the interface is first grown in high vacuum directly by flash deposition on initially fabricated [001] oriented bicrystalline substrate of NaCl. The [001] tilt boundary, thus produced, and is examined by electron microscopy to characterize grain boundary morphology and structure. The findings of some preliminary investigations are then presented. A distinct atomic structure is observed for 310 and 210 inclination. Both HAADF-STEM and Diffraction images reveal that such fabricated high-angle grain boundary accommodates minor deviations from
Dish, NilabhGautam, AbhayBehera, RakeshBanka, HemasunderChavan, Pradeep
Exterior paint look is one the important tie braker on vehicle aesthetic appeal when compared with equal contenders. Time to time, globally new trend emerges to make the vehicle look attractive, one of the technologies is matt finish. To adapt with changing trends, current Indian market trend is moving from glossy finish paint to Matte finish paint by low gloss and attractive texture characteristics, which can provide soft light and pleasant feel. Matt finish helps to enhance the shape and features of the painted surface, feature lines clarity and enhanced visual appeal with absorption of light rather than reflection by glossy finish. Any new technology comes with challenges and limitations compared to traditional approach of vehicle painting and handling in field. In this paper, we have discussed on development of matt finish paint for automotive sector as per OEM manufacturing setup, definition of gloss for matt finish, quantification method, classification of gloss, mechanism
Kumar, VinayLalwani, RahulJayanthan, B
Copper Antimony Sulfide (CuSbS2) is a promising ternary semiconductor for use as an absorber layer in third-generation thin film heterojunction solar cells. This newly developed optoelectronic material offers a viable alternative to cadmium telluride (CdTe) and copper indium gallium di-selenide (Cu(In,Ga)Se2) due to its composition of inexpensive, readily available, and non-toxic elements. These films were successfully produced at an optimal substrate temperature of 533 K using the conventional spray technique. X-ray diffraction and Raman studies confirm that the films exhibit a chalcostibite structure. Characterization studies reveal that the films possess lattice parameters of a = 0.60 nm, b = 0.38 nm, and c = 1.45 nm, with an absorption coefficient of 105 cm-1 and a band gap of 1.50 eV. Notably, the films exhibit p-type conductivity. All of these studies confirm that CuSbS2 is an excellent choice for the absorber layer in solar cell applications. An attempt was made in this study to
Kumar, YB KishoreYb, KiranTarigonda, HariprasadReddy M, Surya Sekhar
A diesel engine with a Yttria Stabilised Zirconium (YSZ) thermal barrier layer (TBL) on the piston crown was used in an experiment. The aim of the investigation was to evaluate the influence of the thermal barrier layer on the efficiency and pollution levels of a diesel engine. The selection of YSZ as the coating material was based on its desirable physical properties including a high coefficient of expansion when exposed to heat, low degree of thermal conductivity, and a high Poisson's number. These characteristics make it a suitable material for use in coatings applied to engine components. In addition to their current research, the scientists are also focusing on identifying sustainable substitutes for conventional petroleum fuels. This is because of the growing concern over environmental impacts and the limited availability of fossil fuel resources. The researchers are seeking new options that are both environmentally friendly and capable of meeting the world's energy demands. By
Sagaya Raj, GnanaNatarajan, ManikandanPasupuleti, Thejasree
This specification covers the requirements for a low-electrical-resistance chemical conversion coating on aluminum and aluminum alloy parts.
AMS B Finishes Processes and Fluids Committee
This standard provides the recommended requirements for electrostatic spray application of AMS3143 powder coatings to aerospace components. Adherence to these requirements will facilitate satisfactory performance of the applied powder coating.
AMS G8 Aerospace Organic Coatings Committee
The advantages of magnesium alloy composites over traditional engineering materials include their high strength and lightweight for automotive applications. The proposed work is to compose the AZ61 alloy composite configured with 0–12% silicon nitride (Si3N4) via semisolid-state stir processing assisted with a (sulfur hexafluoride—SF6) inert environment. The prepared AZ61 alloy and AZ61/4% Si3N4, AZ61/8% Si3N4, and AZ61/12% Si3N4 are machined by electrical discharge machining (EDM) under varied source parameters such as pulse On/Off (Ton/Toff ) time (100–115/30–45 μs), and composition of composite. The impact of EDM source parameters on metal removal rate (MRR) and surface roughness (Ra) is measured. For finding the optimum source for higher MRR and good surface quality of EDM surface, the ANOVA optimization tool with L16 design is executed and analyzed via a general linear model approach. With the influence of ANOVA, the Ton/Toff and composite composition found 95.42%/1.27% and 0.36
Venkatesh, R.
This specification covers requirements for the superfinishing of High Velocity Oxygen/Fuel (HVOF) applied tungsten carbide thermal spray coatings.
AMS B Finishes Processes and Fluids Committee
This specification covers requirements for a coating consisting of finely powdered molybdenum disulfide in a heat-resistant inorganic binder applied to parts.
AMS B Finishes Processes and Fluids Committee
This specification covers the engineering requirements for applying coatings to parts by the plasma spray process and the properties of such coatings.
AMS B Finishes Processes and Fluids Committee
Wear-resistant, die-cast B390 aluminum represents a relevant material frequently used in the automotive industry. The wear and its relation to the microstructure along with different alloying additives is studied with efforts toward improved performance. Alloying by Sr allows for a lower Fe content helps in mitigating iron needling. This paper addresses wear performance of B390 and Sr-modified B390 alloys, tested against pearlitic cast iron, used for manufacture of piston rings. The wear tests were designed by using an ASTM G99 standardized pin-on-disc protocol at “wet” (motor oil) and “dry” conditions and were performed using a UMT (Bruker) benchtop tester. The polished cross-sections and friction surfaces were studied to identify the microstructural differences and dominating wear mechanisms. Interestingly, the stronger and harder Sr-modified B390 alloys wear more at dry conditions compared to the standard die-cast B390 alloy. This was ascribed to a change in wear mechanisms of the
Kancharla, Sai KrishnaJogineedi, RohitSingireddy, Vishal ReddyMirzababaei, SaerehDierks, MikeFilip, Peter
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a revolutionary technology for creating intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly properties, affordability, and ease of use. The objective of this study is to optimize the FDM parameters for PLA material and create predictive models using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast printing performance. An investigation was carried out through experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes such as dimensional accuracy, surface finish, and mechanical properties. The utilization of design of experiments (DOE) methodology enabled a methodical exploration of parameters. A predictive model using ANFIS was created to
Pasupuleti, ThejasreeNatarajan, ManikandanKiruthika, JothiRamesh Naik, MudeSilambarasan, R
Additive Manufacturing (AM), specifically Fusion Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of complex structures using a wide range of materials. The objective of this study is to enhance the FDM process for Thermoplastic Polyurethane (TPU) material by utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) optimization method. The study examines the influence of FDM parameters, such as layer height, nozzle temperature, and infill density, on important characteristics of the printing process, such as tensile strength, flexibility, and surface finish. The collection of experimental data is achieved by conducting systematic FDM printing trials that cover a variety of parameter combinations. The TOPSIS optimization method is utilized to determine the optimal parameter settings by evaluating each parameter combination against the ideal and anti-ideal solutions. This method determines the optimal parameter
Pasupuleti, ThejasreeNatarajan, ManikandanKiruthika, JothiRamesh Naik, MudeSilambarasan, R
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Natarajan, ManikandanPasupuleti, ThejasreeKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R.
To meet the corrosion target of automotive vehicles, different coated steel sheets are used in various parts of the body in white (BIW), chassis, and powertrain. Hot dip galvanized (GI) and hot hip galvannealed (GA) are the two most commonly used steel sheets worldwide. Other coatings, such as Zn-Ni, Al-Si, Zn plating, and electro-galvanized zinc coating, are application-specific coatings that are used suitably to meet different performance requirements. To meet the robust corrosion and performance requirements, there is a trend of increasing the use of coated steel sheets in automotive vehicles. While different coated steels have different corrosion performance, they also exhibit different joining and paint adhesion performance. Spot welding is one of the most common technique used for joining automotive parts. Joint strength majorly depends on steel base material grade, chemistry and properties. However, coating on base material also influence joining performance. Major challenge is
Jain, VikasMisal, SwapnaliDeshmukh, MansiPaliwal, Lokesh
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape.
This specification establishes the requirements for dyed anodic coatings on aluminum alloys.
AMS B Finishes Processes and Fluids Committee
Super Duplex Stainless Steels (SDSS) are attracting attentions of the manufacturing industries due to the excellent corrosion resistance to critical corrosion. But SDSS2507 is the hardest to machine with lowest machinability index among DSS family. Moreover, formation of built-up layer (BUL) and work hardening tendency makes it further difficult to machine. Researchers have the conflict in opinions on using wet machining or dry machining using tool coatings. In this investigation SDSS2507 machining is carried out using uncoated and PVD–TiAlSiN-coated tools. The wet and dry machining environment are compared for increase in cutting speed from 170 m/min to 230 m/min. Excellent properties of PVD–TiAlSiN coatings exhibited microhardness of 39 GPa and adhesion strength of 88 N, which outperformed the uncoated tools. Tool life exhibited by coated tools was four times higher than uncoated tools. Wet machining was found to be ineffective when PVD-coated tools are used, exhibiting the same
Sonawane, Gaurav DinkarBachhav, Radhey
An ultrathin coating was developed that contradicts a physics phenomenon of materials related to thermal radiation: The hotter an object gets, the brighter it glows. The new coating is engineered from samarium nickel oxide, a unique tunable material. The coating “breaks” the relationship between temperature and thermal radiation; essentially, there is a temperature range within which the power of the thermal radiation emitted by the coating stays the same.
Butterflies can see more of the world than humans, including more colors and the field oscillation direction, or polarization, of light. This special ability enables them to navigate with precision, forage for food, and communicate with one another. Other species, like the mantis shrimp, can sense an even wider spectrum of light, as well as the circular polarization, or spinning states, of light waves. They use this capability to signal a “love code,” which helps them find and be discovered by mates.
Vehicle light-weighting constitutes a critical component in the automotive sector’s drive to improve fuel economy and reduce greenhouse gas emissions. Among the various options for lightweight materials, thermoplastic foams are distinguished by their durability, low weight, and environmental sustainability. This study explores the manufacturing of novel graphene-filled polypropylene (PP) foam, employing supercritical nitrogen as an eco-friendly substitute instead of conventional chemical foaming agents, and investigated the role of over-molding a solid skin over a foamed core on the flexural strength of the molded component. Our approach is broken down into four distinct investigations—Study I investigated the effect of different graphene content by weight percentage (wt.%), namely 0.1%, 0.5%, and 1%, on flexural properties and foam morphology obtained for 15 wt.% reduction of the PP thermoplastic, thereby helping identify an optimum graphene loading wt.%. Study II broadened the wt
Pradeep, Sai AdityaDeshpande, Amit MakarandShah, BhavikKhan, SaidaFarahani, SaeedSternberg, JamesLi, GangPilla, Srikanth
From televisions to smartphones, organic light-emitting diodes (OLEDs) are finding their way into many everyday devices. For use in displays, blue OLEDs are also required to supplement the primary colors — red and green. Especially in blue OLEDs, impurities give rise to strong electrical losses, which could be partly circumvented by using highly complex and expensive device layouts.
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
EV motors and transmissions operate at high speeds and handle high power densities, placing heavy demands on bearings, seals, and gears. TEHD and meshless CFD simulations open new ways to the design and optimization of lubrication and thermal management solutions for EV transmissions and e-axles. Properly parametrized CAE models can provide valuable insights into the effects of different lubricant properties on cooling and lubrication efficiencies, thereby helping in matching the lubricant and hardware characteristics for optimal performance. In the present communication, we demonstrate the effects of different lubricants and surface finishing technologies on the tribology of high-speed gears using tribological tests and simulations. Important roles of lubricity additives and surface finish optimization are highlighted in conjunction with a move towards ultralow viscosity fluids.
Zhmud, BorisMerelli, Michele
This specification covers the requirements for black oxide coatings on parts.
AMS B Finishes Processes and Fluids Committee
Many performance sport passenger vehicles use drilled or grooved cast iron brake rotors for a better braking performance or a cosmetic reason. Such brake rotors would unfortunately cause more brake dust emission, appearing with dirty wheel rims. To better understand the effects of such brake rotors on particle emission, a pin-on-disc tribometer with two particle emission measurement devices was used to monitor and collect the emitted airborne particles. The first device was an aerodynamic particle sizer, which is capable of measuring particles ranging from 0.5 to 20 μm. The second device was a condensation particle counter, which measures and collects particles from 4 nm to 3 μm. The testing samples were scaled-down brake discs (100 mm in diameter) against low-metallic brake pads. Two machined surface conditions (plain and grooved) with uncoated or ceramic-coated friction surfaces were selected for the investigation. The results showed that the grooved friction surface led to a higher
Cai, RanNie, XueyuanLyu, YezheWahlström, Jens
A soft, flexible film senses the presence of nearby objects without physically touching them. The study features the new sensor technology to detect eyelash proximity in blink-tracking glasses.
This research explores the experimental analysis of titanium alloy using an innovative approach involving a 2–7% carbon nanotube (CNT)-infused cubic boron nitride (CBN) grinding wheel. Employing a full-factorial design, the study systematically investigates the interactions among varied wheel speed, workpiece feed rate, and depth of cut, revealing compelling insights. The integration of CNTs in the CBN grinding wheel enhances the machining performance of titanium alloy, known for its high strength and challenging machinability. The experiment varies CNT infusion levels to assess their impact on material removal rate (MRR) and surface finish. Significantly, MRR is influenced by CNT content, with 5% and above demonstrating optimal performance. The 7% CNT-CBN wheel exhibits a remarkable 61% improvement in MRR over the conventional CBN wheel. Interaction studies highlight the pivotal role of depth of cut, indicating that slower speeds and feeds, combined with increased depth of cut
Stephen, Deborah SerenadeSethuramalingam, Prabhu
Items per page:
1 – 50 of 5179