Browse Topic: Coatings, colorants, and finishes

Items (5,213)
This study investigates the correlation between moisture behavior and corrosion stiction mechanisms in NAO friction materials. While previous studies on corrosion stiction have primarily focused on electrochemical approaches, this study aims to elucidate the mechanism by examining moisture behavior within the friction material. Although recent research has investigated changes in pad properties in humid environments, most studies have primarily focused on variations in pad stiffness and the friction coefficient. To date, no studies have investigated the behavior of moisture within pads using Fick’s Second Law and its impact on corrosion stiction. In this study, Fick’s Second Law was applied to model moisture behavior in friction materials. The diffusion coefficient and maximum moisture content were quantified, revealing that moisture behavior in the friction material can be divided into two distinct stages: one following Fick’s Second Law and the other not. For NAO friction materials
Choi, NakcheonJu, JoungsuYoun, Deokki
This research focuses on the thermal analysis of internal combustion engine pistons, evaluating the effects of high-temperature exposure during operation. A three-dimensional numerical study is conducted using OpenFOAM, modifying the software’s governing equations to analyze temperature distribution in different piston geometries. The study aims to assess the spatial temperature variation within the entire volume of the piston, providing a detailed understanding of heat transfer mechanisms. A multilayer approach is implemented, considering various configurations of ceramic coatings with distinct thermal and optical properties. The investigation incorporates an internal heat source model, where the heat absorption characteristics of the coating material influence the thermal behavior of the system. By evaluating aluminum- and titanium-based ceramic coatings, the study examines how semitransparency and heat radiation absorbance affect heat accumulation and transfer. The results highlight
Gutierrez, MarcosTaco, DianaBösenhofer, Markus
Innovators at NASA Johnson Space Center have developed a thin film sensor that measures temperatures up to 1200 °F, and whose prototype successor may achieve measurements up to ~3000 °F — which was the surface temperature of the Space Shuttle during its atmospheric reentry.
Battery performance suffers over time, like when a phone needs to be charged more frequently after years of use. A thin film that forms on the metal anode when the battery is charging and discharging plays a part in that issue. This film has benefits, but its roughness gradually wears the battery down.
San Francisco startup Canvas has developed a robotic system handling one of the most labor-intensive trades in construction: drywall finishing. Leveraging robotic arms from Universal Robots, Canvas has built a machine that reduces the usual five to seven days of spraying and sanding the drywall to just around two days for both Level 4 and Level 5 finishes.
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
A spacecraft power system that combines the technological know-how of engineers and scientists at the University of Leicester and NASA Glenn has passed its first test with flying colors.
A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies.
The mobility industry is rapidly advancing towards more autonomous modes of transportation with the adoption of sophisticated self-driving technologies. However, a critical challenge, being the lack of standardized norms for defining, measuring, and ensuring vehicle visibility across various dynamic traffic environments, remains. This lack of awareness of visibility is hindering the development of new regulations for vehicle visibility and the controlled transition to a fully-integrated autonomous future. While current efforts focus on improving sensing technologies like computer vision, LiDAR systems, and sensor fusion development, two key issues remain unresolved: 1 The absence of a representative and realistic three-dimensional color visibility model for measuring and comparing the visibility of complex shapes with large but varying color coated three-dimensional surface areas. 2 The need for enhanced visibility solutions that improve visibility and vehicle detectability for all
Mijnen, Paul W.Moerenburg, Joost H.
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys using gold-nickel alloy filler metal.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
AMS G8 Aerospace Organic Coatings Committee
This specification establishes the requirements for a waterborne, corrosion-inhibiting, chemical- and solvent-resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
AMS G8 Aerospace Organic Coatings Committee
When a train passes continuously over a section of the track, the track gradually moves away from the intended vertical and horizontal alignment with time and repeated use. Regular maintenance on the track, such as leveling, lifting, lining, and tamping, is necessary to maintain the optimal geometry of the track. Ballast is leveled and squeezed by hydraulic rams in tamping machines. The tamping is a process of ballast packing under railway tracks. In current system a set of tungsten carbide chips are attached either by welding or by coating on tamping tool tip made of EN24 steels. These tungsten carbide chips directly come in contact with the ballasts. After few tamping works, gradually these chips torn out and need to be replaced after certain period. Tungsten carbide is a costly material, therefore this research deals with replacement of tungsten carbide with silicon carbide (easily available cheaper) coating used for tamping tools tip. The study consists of microstructural
Mishra, MamtaPandey, ManasSingh, ShrutiSrivastava, SanjayKumar, Jitendra
This specification covers an aircraft-quality, low-alloy steel in the form of round, non-welded tubing free from OD surface seams.
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for a hard anodic coating on magnesium alloys and the properties of the coating.
AMS B Finishes Processes and Fluids Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 32 square inches (206 cm2) in area (see 8.6).
AMS D Nonferrous Alloys Committee
The aim of this work is to present the overviewing results of the low friction coating technology for modern automotive application with the themes, e.g. electric vehicle (EV), R&D trends and bioethanol fuel application. According to Forbes, China, armed with EV, could have several companies among the top 10 global brands by sales in 2030. EV’s friction is more severe than traditional powertrain friction. For the protection of EV’s wear and friction, the coatings, diamond like carbon (DLC) and CrCuN, are compared in the literature. Global coating companies developed with the keywords: hybrid process, low-temperature coating process for polymer material. Last coating conferences showed R&D trends: coating for polymer materials, tetrahedral amorphous carbon (taC) coating, low-temperature coating process and multi-elements containing coatings. In Korea, research institutions, universities and Hyundai Motor Group have a long-term project for the development of ultralow friction coatings of
Cha, Sung ChulMoon, Kyoung IlKim, JongkukPark, Chang HoKim, Dong Sik
Ford has engineered the 2025 Expedition with an eye to putting it at the top of the large SUV class in which it has usually been a contender. With loads of tech that works well and is controlled easily, friendly features and a highly capable new Tremor off-road edition, it offers plenty of justifications for its pricing. SAE Media was hosted by Ford in Louisville, Kentucky, for a drive of various Expedition trim levels, including a first-hand view of the Tremor's off-road prowess. Among the useful features is the new Split Gate, of which the top 75% lifts like a traditional SUV liftgate. The utility comes in with the lower 25%, which drops like a truck tailgate and can support up to 500 pounds for your football tailgating or other purposes. And avoiding a potential user annoyance is available Open-on-Approach, which opens both gate portions by merely standing near the back of the Expedition. The design of the upper part of the Split Gate, by the way, evokes the apocryphal quote from
Clonts, Chris
This specification establishes requirements for coating systems having high durability for use as aircraft exterior surface finishes. These coating systems normally are comprised of a surface treatment, a primer, and a topcoat. Alternatively, a coating system may be comprised of a surface treatment and a unicoat. Testing includes use of a chemical stripper for removal and a cleaning compound for topcoat washing, but these components are not a part of the coating system.
AMS G8 Aerospace Organic Coatings Committee
This specification establishes the requirements for chemical-film (conversion) coatings on aluminum alloys.
AMS B Finishes Processes and Fluids Committee
This specification establishes requirements for thermoset protective coatings in powder form.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a honeycomb core fabricated from a corrosion and heat-resistant steel.
AMS F Corrosion and Heat Resistant Alloys Committee
The power assist system of an electric bicycle uses a magnetostrictive torque sensor to detect the pedal force based on the magnetic properties of the crankshaft, which change according to stress. Fe–Ni alloy plating is used to coat the surface of the crankshaft with a magnetic film to enhance the magnetostrictive effect. However, the sensor performance decreases as the plating solution degrades, which necessitates replacement of the plating solution. In this study, experiments were performed to investigate how to prevent or mitigate degradation of the plating solution to reduce waste. The amounts of carbon and sulfur in the magnetic film were found to increase with degradation of the plating solution. The carbon derived from organic reducing agents and their decomposition products, and the sulfur derived from stress relievers and their decomposition products. A method was developed for reducing the amounts of carbon and sulfur in the magnetic film, which would help maintain the sensor
Ohnishi, Hiromichi
Reducing CO2 emissions is now a major focus in India heading towards net zero emissions by 2070. India is the 3rd largest automobile market in the world and the transportation sector is the 3rd largest CO2 emitter. In this direction, it is necessary to reduce the carbon footprint from the automobile sector to combat climate change. The adoption of sustainable biofuels such as ethanol will enable us to reduce emissions, as ethanol is carbon neutral fuel. However, vehicle manufacturers are facing challenges in manufacturing flex fuel compatible parts in the vehicle mainly fuel systems. Ethanol has both nonpolar and polar bonds, making it miscible to both gasoline and water, thereby water contamination is inevitable in ethanol blend fuels. In addition, control of ethanol contamination by sulfates and chlorides during ethanol production is challenging. Thus, ethanol blend fuels are considered more corrosive and tendency towards deposit formation than normal gasoline fuels. Design and
Pandi, Dinesh BabuShanmugam, Gomathy PriyaNagarkatti, ArunGopal, ManishAnbalagan, Prathap
Two 50-hr engine dynamometer tests were conducted on 12-cylinder diesel military engines with differing piston ring sets. Engine A exhibited more than double the oil consumption over engine B. An investigation was conducted to explain why the oil consumption differed by employing several posttest analytical techniques including cylinder bore geometry measurements, surface metrology, wear characterization, and chemical analysis on the piston rings and cylinder wall coatings. The 3D colormaps of cylinder bore deformation showed uneven volumetric deformation through the piston stroke instead of 2D plane deformation. It was found that the primary reason of high oil consumption was direct loss of sealing between the piston, piston ring and cylinder bore due to predominately abrasive wear, three-body abrasive wear and bore polishing. Furthermore, the compromised sealing of the combustion chamber led to blow-by. Carbon deposits, corrosive byproducts, surface abrasives, loss of desired surface
Thrush, StevenChen, AijieFoley, MichaelSebeck, KatherineBoufakhreddine, Ziad
Given the strategic importance of aluminum cast materials in producing lightweight, high-performance products across industries, it is fundamental to assess their mechanical and cyclic fatigue properties thoroughly. This investigation is primarily for optimizing material utilization and enhancing the efficiency and reliability of aluminum cast components, contributing to significant conservation of raw materials and energy throughout both the manufacturing process and the product's lifecycle. In this study, a systematic material investigation was conducted to establish a reliable estimation of the fatigue behavior of different aluminum cast materials under different loading ratios and elevated temperatures. This paper presents an analysis of the statistical and geometrical influences on various aluminum alloys, including AlSi10MnMg, AlSi7Mg0.3, and AlSi8Cu3Fe, produced via pressure die casting and gravity die casting (permanent mold casting), and subjected to different heat treatment
Qaralleh, AhmadNiewiadomski, JanBleicher, Christoph
Blistering in aesthetic parts poses a significant challenge, affecting overall appearance and eroding brand image from the customer's perspective and blister defects disrupt painting line efficiency, resulting in increased rework and rejection rates. This paper investigates the causes and effects of blistering, particularly in the context of internal soundness of Aluminum castings, emphasizing the crucial role of Computed Tomography in defect analysis. Computed Tomography is an advanced Non-Destructive Testing technique used to examine the internal soundness of a material. This study follows a structured 7-step QC story approach, from problem identification to standardization, to accurately identify the root Cause and implement corrective actions to eliminate blister defect. The findings reveal a strong link between internal soundness and surface quality. Based on the root cause, changes in the casting process and die design were made to improve internal soundness, leading to reduced
D, BalachandarNataraj, Naveenkumar
The current ASTM A653 standard for determining the bake hardening index (BHI) of sheet metals can lead to premature fracture at the transition radius of the tensile specimen in high strength steel grades. In this study, a new test procedure to characterize the BHI was developed and applied to 980 and 1180 MPa third generation advanced high strength steels (3G-AHSS). The so-called KS-1B methodology involves pre-straining over-sized tensile specimens followed by the extraction of an ASTM E8 sample, paint baking and re-testing to determine the BHI. Various pre-strain levels in the range of 2 to 10% were considered to evaluate the KS-1B procedure with select comparisons with the ASTM A653 methodology for pre-strain levels of 2 and 8%. Finally, to characterize the influence of paint baking at large strain levels, sheared edge conical hole expansion tests were conducted. The tensile mechanical properties of the 3G steels after paint baking were observed to be sensitive to the pre-strain with
Northcote, RhysBerry, AvalonNarayanan, AdvaithTolton, CameronLee, HaeaSmith, JonathanMcCarty, EricButcher, Cliff
As the utilization of lithium-ion batteries in electric vehicles becomes increasingly prevalent, there has been a growing focus on the mechanical properties of lithium-ion battery cores. The current collector significantly impacts the tensile properties of the electrode and the internal fracture of the battery cell. The stripping process tends to cause additional damage to the current collector, so tensile testing is not able to obtain in-situ mechanical properties of the current collector. Therefore, nanoindentation tests are required to acquire the in situ mechanical properties of the current collector. Nanoindentation testing represents the primary methodology for the determination of the mechanical properties of thin films. The Oliver-Pharr method is the standard approach used by commercial indentation instruments for the evaluation of mechanical properties in materials. Nevertheless, this approach is constrained by the limitations imposed by the sample boundary conditions. To
Dai, RuiSun, ZhiweiPark, JeongjinXia, YongZhou, Qing
In Formula SAE , the primary function of the frame is to provide structural support for the different components and withstand the applied load. In recent years, most Formula Student teams worldwide to adopt monocoque made of carbon fiber composites, which are lighter and stronger. Enhancing the mechanical performance of carbon fiber laminates has been a key focus of research for these teams. In three-point bending tests, significant stress at the adhesive layer between the skin and the core material at both ends of the laminate, often lead to potential adhesive failure. Consequently, experimental boards often exhibit delamination between the outer skin and the core material, and premature core crushing, which compromises the mechanical performance of the laminate and fails to pass the Structural Equivalency Spreadsheet. Therefore, it is necessary to consider the influence of the bonding factor of toughened epoxy prepreg film on the mechanical properties of the laminated plate. This
Ning, Zicheng
Mechanical analysis was performed of a non-pneumatic tire, specifically a Michelin Tweel size 18x8.5N10, that can be used up to a speed of 40 km/h. A Parylene-C coating was added to the rubber spoke specimens before performing both microscopic imaging and cyclic tensile testing. Initially, standard ASTM D412 specimens type C and A were cut from the wheel spokes, and then the specimens were subjected to deposition of a nanomaterial. The surfaces of the specimens were prepared in different ways to examine the influence on the material behavior including the stiffness and hysteresis. Microscopic imaging was performed to qualitatively compare the surfaces of the coated and uncoated specimens. Both coated and uncoated spoke specimens of each standard type were then subjected to low-rate cyclic tensile tests up to 500% strain. The results showed that the Parylene-C coating did not affect the maximum stress in the specimens, but did increase the residual strain. Type C specimens also had a
Collings, WilliamLi, ChengzhiSchwarz, JacksonLakhtakia, AkhleshBakis, CharlesEl-Sayegh, ZeinabEl-Gindy, Moustafa
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
This specification covers a zinc molybdate primer in the form of a liquid.
AMS B Finishes Processes and Fluids Committee
This specification covers the requirements for the application and properties of a titanium nitride coating on metal parts applied by physical vapor deposition (PVD).
AMS B Finishes Processes and Fluids Committee
Wet pavement conditions during rainfall present significant challenges to traffic safety by reducing tire–road friction and increasing the risk of hydroplaning. During high-intensity rain events, the roadway pavement tends to accumulate water, forming a film that can have serious implications for vehicle control. As the longitudinal speed of the vehicle increases, a water wedge forms in front of the tire, leading to partial loss of contact with the road. At critical hydroplaning speed, a complete water layer forms between the tire and the road. Although less common, dynamic hydroplaning poses severe risks when high-intensity rainfall coincides with high vehicle traveling speed, leading to a complete loss of control over vehicle steering capabilities. This study advances hydroplaning research by integrating real-world data from the Road Weather Information System (RWIS) with an existing hydroplaning model. This approach provides more accurate hydroplaning risk assessments, emphasizing
Vilsan, AlexandruSandu, CorinaAnghelache, Gabriel
Electrical discharge machining (EDM) technology is one of the unconventional machining processes with an ability to machine intricate geometrics with micro finishing. Powder-mixed EDM (PMEDM) extends the EDM process by adding conductive powder to the dielectric fluid to improve performance. This set of experiments summarizes the effect of brass and copper electrode on HcHcr D2 tool steel in chromium powder-mixed dielectric fluid. Powder concentration (PC), peak current (I), and pulse on-time (Ton) are considered as variable process parameters. General full factorial design of experiment (DOE) and ANOVA has been used to plan and analyze the experiments where powder concentration is observed as the most significant process parameter. The results also reveal that a brass electrode offers a high material removal rate (MRR). Whereas, the copper electrode has reported noteworthy improvement in surface roughness (Ra). Moreover, teaching–learning-based optimization (TLBO) algorithm has been
Sonawane, Gaurav DinkarSulakhe, VishalDalu, RajendraKaware, KiranMotwani, Amit
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamyKatta, Lakshmi NarasimhamuSilambarasan, R
In automotive applications, most of the engineering components come across the material removal process in manufacturing. Face milling is one of the prominent material removal processes wherein a multi-point cutter is used to machine the flat workpiece to bring it to its required dimension. In the material removal process, the cost of the cutting tool occupies the major part of the total manufacturing cost of a product. Also, the continuous usage of the cutting tool results in tool wear. The usage of the cutting tool after the threshold value of the tool wear deteriorates the surface finish of the workpiece which leads to product rejection. Hence, optimal tool usage is inevitable. The continuous monitoring of the cutting tool condition will ensure optimal tool usage. In the present work, four real-time tool conditions are considered, namely, fresh tool (G), tool flank wear (FW), tool flaking on rake surface (FL) and tool with broken tip (B). Vibration signals are acquired while milling
D, Pradeep KumarSyed, ShaulV, MuralidharanS, Ravikumar
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has emerged as a revolutionary method for fabricating complex geometries using a variety of materials. Polyethylene terephthalate glycol (PETG) is a thermoplastic material that is biodegradable and environmentally friendly, making it a preferred choice in additive manufacturing (AM) due to its affordability and ease of use. This study aims to optimize the FDM settings for PETG material and investigate the impact of key process parameters on printing performance. An experimental study was conducted to evaluate the influence of crucial factors in FDM, including layer thickness, infill density, printing speed, and nozzle temperature, on significant outcomes such as dimensional accuracy, surface quality, and mechanical properties. The use of the Grey Relational Analysis (GRA) approach enabled a systematic assessment of multi-performance characteristics, facilitating the optimization of the FDM process. The findings
Pasupuleti, ThejasreeNatarajan, ManikandanKumar, VKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R
Fused Deposition Modeling (FDM) is a highly adaptable additive manufacturing method that is extensively employed for creating intricate structures using a range of materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability, making it well-suited for use in industries such as footwear, automotive, and consumer goods. Hoses, gaskets, seals, external trim, and interior components are just a few of the many uses for thermoplastic polyurethanes (TPU) in the automobile industry. The objective of this study is to enhance the performance of Fused Deposition Modeling (FDM) by optimizing the parameters specifically for Thermoplastic Polyurethane (TPU) material. This will be achieved by employing a Taguchi-based Grey Relational Analysis (GRA) method. The researchers conducted experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
Items per page:
1 – 50 of 5213