Browse Topic: Coatings, colorants, and finishes

Items (5,234)
As electric vehicles continue to revolutionize transportation, ensuring the reliability of their powertrain systems and Battery Packs has become a critical focus. One key challenge is galvanic corrosion, which occurs when dissimilar metals in contact are exposed to an electrolyte, such as seashore moisture or road salt used in snow or ice zones. This corrosion can weaken structural components, compromise electrical conductivity, and reduce the lifespan of critical systems. Common areas at risk include metallic joints within battery enclosures, busbars, cooling systems, and electrical connectors. Environmental factors such as high humidity and temperature fluctuations further amplify the issue, making it a pressing concern for manufacturers. This paper aims to systematically identify critical galvanic joints within electric powertrain systems and Battery Packs and provide effective strategies to mitigate corrosion risks. Preventative measures include choosing compatible materials with
Narain, AdityaVenugopal, SivakumarGopalan, VijaysankarVaratharajan, Senthilkumaran
This study investigates the tribological behaviour of Sesbania rostrata fiber (SRF) reinforced polycaprolactone (PCL) biocomposites using a pin-on-disc wear couple. The stationary SRF/PCL composite specimen interacted with a rotating EN31 steel disc (64 HRC), establishing the sliding wear interface in accordance with ASTM G99 standards. Composite laminates containing 10, 20, and 30 wt% SRF were evaluated at a sliding velocity of 1 m/s over a fixed distance of 1000 m under varying normal loads. The incorporation of SRF significantly enhanced the wear performance relative to neat PCL, with 20 wt% fiber loading achieving the lowest coefficient of friction and specific wear rate due to improved load transfer, stronger interfacial adhesion, and a more uniform laminate structure. In contrast, the 30 wt% composite exhibited fiber agglomeration, reduced homogeneity, and weakened fiber–matrix interactions, resulting in increased wear. SEM microstructural analysis confirmed the formation of a
Raja, K.Senthil Kumar, M.S.
This specification covers a coating consisting of tungsten disulfide without binders and does not require a curing process.
AMS B Finishes Processes and Fluids Committee
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
Wheel Standards Committee
Dr. Mustafa Akbulut, Professor of Chemical engineering, has teamed up with Horticultural Science Professor Luis Cisneros-Zevallos to engineer longer-lasting, bacteria-free produce.
The growing environmental, economic, and social challenges have spurred a demand for cleaner mobility solutions. In response to the transformative changes in the automotive sector, manufacturers must prioritize digital validation of products, manufacturing processes, and tools prior to mass production. This ensures efficiency, accuracy, and cost-effectiveness. By utilizing 3D modelling of factory layouts, factory planners can digitally validate production line changes, substantially reducing costs when introducing new products. One key innovation involves creating 3D models using point cloud data from factory scans. Traditional factory scanning processes face limitations like blind spots and periodic scanning intervals. This research proposes using drones equipped with LiDAR (Light Detection and Ranging) technology for 3D scanning, enabling real-time mapping, autonomous operation, and efficient data collection. Drones can navigate complex areas, access small spaces, and optimize
Narad, Akshay MarutiC H, AjheyasimhaVijayasekaran, VinothkumarFasge, Abhishek
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
Rear drive vehicles transfer power to the rear wheels through the Gear Carrier Assembly, which is fit at the central section of the Rear Axle. The Gear Carrier Assembly includes hypoid ring and pinion gears, set at the heart of the system. However, one of the common issues with hypoid gears is gear scoring and whine noise, both of which can seriously affect durability and reduce the overall performance of a vehicle. In this study, the focus is on design changes as well as process improvements to address these problems and at the same time improve gear reliability. On the design side, changes such as refining the macro geometry, upgrading materials, and modifying the heat treatment cycle were carried out. These helped in improving properties like contact stress resistance, bending and impact strength, and also reduced motion transmission error (MTE). From the process point of view, careful control over carburizing, hardening, and quenching temperatures, along with adjustments in
Praveen, AbhinavDeshpande, PraveenJain, Saurabh KumarParmar, MayurKarle, NileshKanagaraj, PothirajPagar, Pawan
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
Recent regulations limiting brake dust emissions have presented many challenges to the brake engineering community. The objective of this paper is to provide a low cost, mass production solution utilizing well known existing technologies to meet brake emissions requirements. The proposed process is to alloy the Gray Cast Iron with Niobium and subsequently Ferritic Nitrocarburize (FNC) the disc. The Niobium addition will improve the wear resistance of the FNC case, reducing wear debris. The test methodology included: 1. Manufacture of disc samples alloyed with Niobium, 2. Finish machining and ferritic nitrocarburizing and 3. Evaluation of airborne wear debris utilizing a pin-on-disc tribometer equipped with emission collection capability. The airborne emission and wear surfaces were further analyzed by Scanning Electron Microscopy, Energy Dispersive techniques (SEM-EDS), X-Ray Diffraction and Optical Microscopy. The cast iron test matrix included four groups; Unalloyed eutectic 4.3
Barile, BernardoHolly, Mike
As the transportation industry pivots towards safer and more sustainable mobility solutions, the role of advanced surface technologies is becoming increasingly critical. This paper presents a novel application of electroluminescent (EL) coating systems in heavy-duty trucks, exploring their potential to enhance vehicular safety and reduce environmental impact through lightweight, energy-efficient lighting integration. Electroluminescent coatings, capable of emitting light uniformly across painted surfaces when electrically activated, offer a transformative alternative to conventional external lighting and reflective materials. In the context of heavy-duty trucks, these systems can significantly improve visibility under low-light and adverse weather conditions, thereby reducing the risk of road accidents. Furthermore, the uniform illumination achieved without bulky fixtures contributes to aerodynamic efficiency, supporting fuel economy and reducing carbon emissions. use of this coating
Harel, Samarth DattatrayaBorse, ManojL, Kavya
In automotive vehicle manufacturing, paint shop constitutes one of the highest energy intensive processes. This steers automotive OEMs to continuously improve production efficiency and reduce operational costs of the processes involved in paint shop through digital twin technologies. In addition, the push for shorter time-to-market emphasizes the need for simulation-based manufacturing processes, such as virtual testing and CAE simulations. The simulation-based processes enable faster and data-driven decision-making early in the product development cycle, thereby ultimately reducing cost and development time. Among the various stages in the paint shop, two of the important stages are: 1 Electro-dip coating (E-coating), also known as Electro-Deposition coating, which applies a corrosion-resistant primer to the Body-in-White (BIW). 2 Oven curing, which ensures the primer is properly bonded and cured for long-term protection and finish quality. To optimize the processes in these stages
Gundavarapu, V S KumarP, VivekaanandanGarg, ManishNavelkar, TanayBS, Balachandran
The automotive industry is highly competitive, especially in terms of design and perceived quality. The use of hard plastics with a high gloss finish is driven by styling trends and the push towards zero gaps, making interfaces critical. In-cabin mood lighting is another feature being offered as a theme for interiors. Dashboard or cockpit designs often incorporate a significant amount of polycarbonate-acrylonitrile butadiene styrene (PC-ABS) and polycarbonate (PC). These materials provide strength and design flexibility but have the disadvantage of material incompatibility when used together, leading to stick-slip phenomena. Traditionally, felt tapes were used as interface isolation to solve this problem, but this increased manufacturing costs and assembly complications. The study focuses on the stick-slip phenomenon and material interface modifications. Specifically, it examines selecting the right surface finish on one side of the PC & PC-ABS interface to change adhesion and friction
Mohammed, RiyazuddinR, PrasathRahman, Shafeeq
Quieter cabins in an automobile are the new era, they provide customers with pleasurable driving experience. Squeak and Rattle are spoil sport for any OEM that aim to improvise customer driving experience. Their nonlinear nature makes it difficult to formulate design frontloading methods. The issue of seals rubbing against the body & door interface is a clear sign of seal squeak & seal chucking. Seals are applied with anti-friction coatings to avoid stick slip phenomena between EPDM and painted panel. Primary root cause for seal squeak is coating erosion. The challenge lies in determining whether the body or the closure side contributes to the seal issue. This paper presents a distinctive approach for identifying the seal squeaking noise and enriches on the new modelling methods for seal interaction with door and body interfaces using FE software. The proposed method was able to highlight the locations along the door-body interface for squeak noise. The approach for reducing the
H, RavishankarC M, MithunMichael Stephan, Navin Estac RajaMohammed, Riyazuddin
The adoption of sustainability in electric mobility has made it crucial to investigate environmentally friendly materials. Polymer materials used in automotive application plays very important role in material circularity contributing significant value addition to the overall carbon footprint index. This study discloses the development of recycled polyester textiles derived from PET bottle waste and use for automotive interior parts. The use of recycled textiles is directly helping the organization in scope 3 emissions to get the lower carbon footprint value as it is eliminating the use of fossil fuel resources in making the PET textiles. In this study, the development of 50% recycled PET textile and its feasibility for automotive interior is disclosed in detail. The 50 % recycled PET was tested against automotive critical requirements such as sun load UV resistance, abrasion durability, color migrations, soiling resistance, mechanical and thermal properties. The findings showed that
Palaniappan, ElavarasanVaratharajan, SenthilkumaranBalaji, K VDodiya, Rohanbhai
This specification covers a coating consisting of finely powdered graphite in a heat-resistant inorganic binder applied to parts.
AMS B Finishes Processes and Fluids Committee
In low-light driving scenarios, in-vehicle camera images encounter technical challenges, including severe brightness degradation and short exposure times. Conventional driving image enhancement algorithms are susceptible to issues such as the loss of image features and significant color distortion. The proposed solution to this problem is a multi-scale attention fusion network (MAF-NET) for the enhancement of images captured during low-light driving conditions. The network’s structural design is uncomplicated. The model incorporates a meticulously designed multi-scale attention fusion module (MAFB), along with all essential components for network connectivity. The MAF is predicated on a heavy parameter residual feature block design and incorporates a multi-scale channel attention mechanism to capture richer global/local features. A substantial body of experimental evidence has demonstrated that, in comparison with prevailing algorithms, MAF-NET exhibits superior performance in low
Pan, DengChen, YuhanShi, YicuiLi, JieLi, Guofa
Objective:Methods:Conclusion:
Dai, HongzhouLi, JianZhao, DiLiu, Haoran
There is a growing demand for new materials that meet mechanical and structural performance requirements, with specific properties, especially in the automotive industry. From a context of innovation and global needs to be met, there is the appreciation of composite materials, specifically applied in the automotive sector, since these can be obtained from the combination of two or more different materials, obtaining certain properties from the individual characteristics of its phases, expanding the availability of materials to be used in this sector. In recent years the use of natural fibers in composite materials for automotive applications has gained relevance due to factors such as sustainability, low weight and good mechanical properties. The attempt to combine innovation and environmental preservation make such applications promising, aiming to obtain ecological solutions, considering that natural fibers of vegetable origin such as sisal, jute and flax are biodegradable and
Dias, Roberto Yuri CostaSantos Borges, Larissa dosBrandao, Leonardo William MacedoMendonca Maia, Pedro Victor deSilva de Mendonça, Alian Gomes daFujiyama, Roberto Tetsuo
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
This study presents the results of applying a Lean Six Sigma-based analytical approach to optimize the manufacturing of automotive coatings, specifically in a PU primer filling process. Through production flow mapping and the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, unplanned stoppages in the filling line were significantly reduced, addressing critical inefficiencies in automotive coating production. The research was driven by the need to enhance manufacturing productivity and ensure process reliability in the production of coatings used in the automotive sector. To achieve this, Quality Management tools, such as Pareto Analysis and the Cause-and-Effect Diagram, along with Lean Manufacturing techniques, including Kaizen Blitz, were applied. These methods facilitated the identification and mitigation of key causes of unplanned downtime, improving process efficiency and reliability. The results demonstrated a significant reduction in downtime, enhanced
Filho, William Manjud MalufRodrigues, Mateus FerreiraCarriero, Emily AmaralYoshimura, Sofia LucasMarini, Vinicius KasterSiqueira, GonçaloAlves, Marcelo Augusto Leal
In this study, an intelligent monitoring system for electric vehicle seats based on flexible pressure sensor array is proposed. Through the design of multi-layer composite film structure and the collaborative development of STM32 embedded platform, high-precision sensing (error<5%) and rapid response (<200ms) of pressure distribution are realized. The experimental results show that the linearity of the sensor array is ± 1.5% FS in the range of 0-100kpa, and the dynamic response time is 3.6 times higher than that of the traditional sensor; By establishing a three-level adjustment algorithm (fuzzy PID+LSTM prediction+genetic optimization), the seat comfort is improved by 20.5%, and the system energy consumption is reduced by 33.5%. The research provides theoretical and technical support for the transformation of intelligent seats from “passive support” to “active interaction”.
Huang, YifengRong, DaozhiLin, GuoyongHuang, ZhenguiWang, RuliangTao, Chengxi
This specification covers the requirements for a manganese phosphate coating on ferrous alloys.
AMS B Finishes Processes and Fluids Committee
As demand for microcomponents has escalated in diverse areas of automotive, medicine, communications, electronics, optics, biotechnology, and avionics industries, there is a need for hybrid manufacturing techniques that can effectively micromachine hard and brittle materials. Electrochemical discharge machining (ECDM) is an advanced manufacturing process for machining difficult-to-cut materials. With a need for precision and accuracy, tool kinematics is a potential research area in ECDM for achieving geometrical dimensioning and tolerances (GD&T). Therefore, the present study reviews the ultrasonic vibration–assisted ECDM (UA-ECDM) hybrid process and the performance of its process parameters (voltage, electrolyte type and its concentration, electrode material, pulse duration, and amplitude) on the material removal rate (MRR), tool electrode wear (TEW), surface integrity, and difficult-to-cut materials. Also, the present work mentions current problems (debris and bubbles trapped
Prajapati, Mehul S.Lalwani, Devdas I.
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
This specification covers engineering requirements for applying tungsten carbide thermal spray coatings to ultrahigh-strength steels (220 ksi and above) utilizing high-velocity oxygen fuel (HVOF) combustion-driven processes and the properties for such coatings. The processes and procedures herein apply only to the properties of the as-deposited coating.
AMS B Finishes Processes and Fluids Committee
In complex manufacturing processes, reliable & efficient simulation tools are essential to supplement expensive prototyping and physical testing, optimizing the design stage efficiently. The manufacturing industry seeks solutions for e-coating, which involves optimizing design painting process parameters like tank dimensions, part trajectory, line speed, and geometrical part design details. New generation CFD tools, such as Creo Flow Analysis (CFA), which is integrated in PTC (Cre-o) offer high accuracy, efficient workflows, and short computational times. The goal is to gain insights into how design parameters affect the process and optimize them. CFA provides powerful Volume of Fraction (VOF) multiphase simulation techniques along with body motions in a user-friendly process, enabling quick verification of painting processes or part designs. Surface coating protects industrial products from corrosion and other environmental influences. Electrophoretic coating (e-coating) is a surface
Rao, Pooja DhavalTirumala, BhaskarSoni, Tanushree
Imagine a user opening a technical manual, eager to troubleshoot an issue, only to find a mix of stark black-and-white illustrations alongside a few color images. This inconsistency not only detracts from the user experience but also complicates understanding. For technicians relying on these documents, grayscale graphics hinder quick interpretation of diagrams, extending diagnostics time and impacting overall productivity. Producing high-quality color graphics typically requires significant investment in time and resources, often necessitating a dedicated graphics team. Our innovative pipeline addresses this challenge by automating the colorization and classification of colored graphics. This approach delivers consistent, visually engaging content without the extensive investment in specialized teams, enhancing the visual appeal of materials and streamlining the diagnostic process for technicians. With clearer, more vibrant graphics, technicians can complete tasks more efficiently
Khalid, MaazAkarte, AnuragKale, AniketRajmane, GayatriNalawade, Komal
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
Highway tunnel lighting has a key impact on traffic safety and lowcarbon energy saving. Under the same lighting conditions, the brightness and uniformity of the road surface are closely related to the reflection characteristics of the road surface. In this paper, firstly, the brightness of asphalt concrete specimens made of different materials was tested by indoor experiments, and the reflective parameters of asphalt concrete of different colors were compared, and then the images of colored pavement of different colors were collected at the tunnel site, and the brightness and uniformity indexes of the colored pavement and the conventional asphalt pavement were analyzed and compared by using graphic image analysis technology. The results show that when the lighting conditions are the same, the luminance of yellow asphalt concrete is about 2.3 times that of black asphalt concrete, and the luminance of red asphalt concrete is about 1.5 times that of black asphalt concrete, and the use of
Si, JialaiWang, ZijianWang, LuhaiMa, FeiHan, LuluZhang, Zhongbin
NiCoCrAlY powders were thermally sprayed by combustion flame spray (CFS) and high-velocity oxygen fuel (HVOF) processes on IN 718 alloy substrates. Experimental parameters were fixed to manufacture coatings with a thickness about 200 μm. Microscopy and X-ray diffraction analyses were performed to reveal microstructural characteristics of both developed CFS and HVOF coatings, and it was observed that they were formed by a lamellar morphology composed of β and γ phases. The analyses also revealed lower porosity in the coatings produced by HVOF process while was compared with CFS process. While a microstructure composed of like-deformed powder was developed in HVOF process, in the case of CFS a building layer-by-layer was characteristic. Vickers hardness tests were also performed, and it was found that coating developed by HVOF process showed quite higher hardness values compared with those measured on the coatings developed with the CFS process, nonetheless this difference was small
Juarez-Lopez, FernandoMendoza, Melquisedec VicenteMeléndez, Rubén CuamatziRamírez, Ángel de Jesús Morales
In recent years, there has been a trend towards lower engine speeds and downsizing of diesel engines to improve fuel efficiency. This has the advantage of reducing frictional losses in the hydrodynamic lubrication condition but causes severe lubrication in the mixed lubrication condition. In order to reduce friction losses without the risk of abnormal wear or seizure, pattern coatings of the piston skirt area have been proposed. In this study, the oil film thickness between piston and cylinder was measured to investigate the effect of pattern coating on the oil film thickness. The oil film thickness between the piston and cylinder were measured by the laser-induced fluorescence method using the optical fibers embedded in the cylinder. The oil film thickness on the piston skirt was successfully measured under the engine operating conditions for the medium duty Direct Injection (DI) diesel engine. The oil film thickness for the pattern coatings was compared with that for the solid
Tanimoto, KeisukeIto, AkemiSumoto, Masayuki
AE-8C2 Terminating Devices and Tooling Committee
The intent of the SAE Aerospace Recommended Practice (ARP) is to provide a process for users to identify the part number of AS7928 terminal lugs installed in civilian or military applications, although it can also be used to identify terminals that have been stored incorrectly. This ARP is subject to change to keep pace with experience and technical advances of AS7928 terminals. A current set of tables are provided to list and identify current AS7928 terminal lug configurations per the associated specification detail sheet and terminal lug configuration. Specific configuration details, graphic, size, and marking information for each individual terminal lug is provided to assist the product user with accurate selection for replacement or identification.
AE-8C2 Terminating Devices and Tooling Committee
Scientists have produced a new, powerful electricity-conducting material that could improve wearable technologies, including medical devices. The new technique uses hyaluronic acid applied directly to a gold-plated surface to create a thinner, more durable film, or polymer, used to conduct electricity in devices like biosensors. It could lead to major improvements in the function, cost, and usability of devices like touchscreens and wearable biosensors.
Image sensors built into every smartphone and digital camera, distinguish colors like the human eye. In our retinas, individual cone cells recognize red, green and blue (RGB). In image sensors, individual pixels absorb the corresponding wavelengths and convert them into electrical signals.
Thermal runaway in electric vehicle (EV) batteries is rare, but it can happen, producing smoke, fire, and explosions. This uncontrollable, self-heating state can transfer intense heat to adjacent cells and cause pressure buildups that exceed the mechanical limits of cell casings. Since the gases that can form inside a battery cell are flammable, a spark or other ignition source could propagate fire or lead to an explosion and cause the violent venting of shrapnel or particulates, putting vehicle occupants and emergency responders at risk. To support EV safety, silicone thermal management materials are placed between battery cells and between battery modules. For battery pack enclosures, however, mica sheets traditionally have been used as protective barriers. Mica provides thermal and electrical insulation, but sheets made of this mineral are limited in terms of thermal performance, mechanical durability, processability, and sustainable sourcing. To address these challenges, advanced
This SAE Aerospace Recommended Practice (ARP) covers procedures or methods to be used for fabricating, handling, testing, and installation of oxygen lines in an aircraft oxygen system.
A-10 Aircraft Oxygen Equipment Committee
This study investigates the correlation between moisture behavior and corrosion stiction mechanisms in NAO friction materials. While previous studies on corrosion stiction have primarily focused on electrochemical approaches, this study aims to elucidate the mechanism by examining moisture behavior within the friction material. Although recent research has investigated changes in pad properties in humid environments, most studies have primarily focused on variations in pad stiffness and the friction coefficient. To date, no studies have investigated the behavior of moisture within pads using Fick’s Second Law and its impact on corrosion stiction. In this study, Fick’s Second Law was applied to model moisture behavior in friction materials. The diffusion coefficient and maximum moisture content were quantified, revealing that moisture behavior in the friction material can be divided into two distinct stages: one following Fick’s Second Law and the other not. For NAO friction materials
Choi, NakcheonJu, JoungsuYoun, Deokki
Items per page:
1 – 50 of 5234