Browse Topic: Coatings, colorants, and finishes

Items (5,219)
In low-light driving scenarios, in-vehicle camera images encounter technical challenges, including severe brightness degradation and short exposure times. Conventional driving image enhancement algorithms are susceptible to issues such as the loss of image features and significant color distortion. The proposed solution to this problem is a multi-scale attention fusion network (MAF-NET) for the enhancement of images captured during low-light driving conditions. The network’s structural design is uncomplicated. The model incorporates a meticulously designed multi-scale attention fusion module (MAFB), along with all essential components for network connectivity. The MAF is predicated on a heavy parameter residual feature block design and incorporates a multi-scale channel attention mechanism to capture richer global/local features. A substantial body of experimental evidence has demonstrated that, in comparison with prevailing algorithms, MAF-NET exhibits superior performance in low
Pan, DengChen, YuhanShi, YicuiLi, JieLi, Guofa
Objective:Methods:Conclusion:
Dai, HongzhouLi, JianZhao, DiLiu, Haoran
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
This study presents the results of applying a Lean Six Sigma-based analytical approach to optimize the manufacturing of automotive coatings, specifically in a PU primer filling process. Through production flow mapping and the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, unplanned stoppages in the filling line were significantly reduced, addressing critical inefficiencies in automotive coating production. The research was driven by the need to enhance manufacturing productivity and ensure process reliability in the production of coatings used in the automotive sector. To achieve this, Quality Management tools, such as Pareto Analysis and the Cause-and-Effect Diagram, along with Lean Manufacturing techniques, including Kaizen Blitz, were applied. These methods facilitated the identification and mitigation of key causes of unplanned downtime, improving process efficiency and reliability. The results demonstrated a significant reduction in downtime, enhanced
Filho, William Manjud MalufRodrigues, Mateus FerreiraCarriero, Emily AmaralYoshimura, Sofia LucasMarini, Vinicius KasterSiqueira, GonçaloAlves, Marcelo Augusto Leal
There is a growing demand for new materials that meet mechanical and structural performance requirements, with specific properties, especially in the automotive industry. From a context of innovation and global needs to be met, there is the appreciation of composite materials, specifically applied in the automotive sector, since these can be obtained from the combination of two or more different materials, obtaining certain properties from the individual characteristics of its phases, expanding the availability of materials to be used in this sector. In recent years the use of natural fibers in composite materials for automotive applications has gained relevance due to factors such as sustainability, low weight and good mechanical properties. The attempt to combine innovation and environmental preservation make such applications promising, aiming to obtain ecological solutions, considering that natural fibers of vegetable origin such as sisal, jute and flax are biodegradable and
Dias, Roberto Yuri CostaSantos Borges, Larissa dosBrandao, Leonardo William MacedoMendonca Maia, Pedro Victor deSilva de Mendonça, Alian Gomes daFujiyama, Roberto Tetsuo
In this study, an intelligent monitoring system for electric vehicle seats based on flexible pressure sensor array is proposed. Through the design of multi-layer composite film structure and the collaborative development of STM32 embedded platform, high-precision sensing (error<5%) and rapid response (<200ms) of pressure distribution are realized. The experimental results show that the linearity of the sensor array is ± 1.5% FS in the range of 0-100kpa, and the dynamic response time is 3.6 times higher than that of the traditional sensor; By establishing a three-level adjustment algorithm (fuzzy PID+LSTM prediction+genetic optimization), the seat comfort is improved by 20.5%, and the system energy consumption is reduced by 33.5%. The research provides theoretical and technical support for the transformation of intelligent seats from “passive support” to “active interaction”.
Huang, YifengRong, DaozhiLin, GuoyongHuang, ZhenguiWang, RuliangTao, Chengxi
This specification covers the requirements for a manganese phosphate coating on ferrous alloys.
AMS B Finishes Processes and Fluids Committee
As demand for microcomponents has escalated in diverse areas of automotive, medicine, communications, electronics, optics, biotechnology, and avionics industries, there is a need for hybrid manufacturing techniques that can effectively micromachine hard and brittle materials. Electrochemical discharge machining (ECDM) is an advanced manufacturing process for machining difficult-to-cut materials. With a need for precision and accuracy, tool kinematics is a potential research area in ECDM for achieving geometrical dimensioning and tolerances (GD&T). Therefore, the present study reviews the ultrasonic vibration–assisted ECDM (UA-ECDM) hybrid process and the performance of its process parameters (voltage, electrolyte type and its concentration, electrode material, pulse duration, and amplitude) on the material removal rate (MRR), tool electrode wear (TEW), surface integrity, and difficult-to-cut materials. Also, the present work mentions current problems (debris and bubbles trapped
Prajapati, Mehul S.Lalwani, Devdas I.
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
This specification covers engineering requirements for applying tungsten carbide thermal spray coatings to ultrahigh-strength steels (220 ksi and above) utilizing high-velocity oxygen fuel (HVOF) combustion-driven processes and the properties for such coatings. The processes and procedures herein apply only to the properties of the as-deposited coating.
AMS B Finishes Processes and Fluids Committee
In complex manufacturing processes, reliable & efficient simulation tools are essential to supplement expensive prototyping and physical testing, optimizing the design stage efficiently. The manufacturing industry seeks solutions for e-coating, which involves optimizing design painting process parameters like tank dimensions, part trajectory, line speed, and geometrical part design details. New generation CFD tools, such as Creo Flow Analysis (CFA), which is integrated in PTC (Cre-o) offer high accuracy, efficient workflows, and short computational times. The goal is to gain insights into how design parameters affect the process and optimize them. CFA provides powerful Volume of Fraction (VOF) multiphase simulation techniques along with body motions in a user-friendly process, enabling quick verification of painting processes or part designs. Surface coating protects industrial products from corrosion and other environmental influences. Electrophoretic coating (e-coating) is a surface
Rao, Pooja DhavalTirumala, BhaskarSoni, Tanushree
Imagine a user opening a technical manual, eager to troubleshoot an issue, only to find a mix of stark black-and-white illustrations alongside a few color images. This inconsistency not only detracts from the user experience but also complicates understanding. For technicians relying on these documents, grayscale graphics hinder quick interpretation of diagrams, extending diagnostics time and impacting overall productivity. Producing high-quality color graphics typically requires significant investment in time and resources, often necessitating a dedicated graphics team. Our innovative pipeline addresses this challenge by automating the colorization and classification of colored graphics. This approach delivers consistent, visually engaging content without the extensive investment in specialized teams, enhancing the visual appeal of materials and streamlining the diagnostic process for technicians. With clearer, more vibrant graphics, technicians can complete tasks more efficiently
Khalid, MaazAkarte, AnuragKale, AniketRajmane, GayatriNalawade, Komal
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
Highway tunnel lighting has a key impact on traffic safety and lowcarbon energy saving. Under the same lighting conditions, the brightness and uniformity of the road surface are closely related to the reflection characteristics of the road surface. In this paper, firstly, the brightness of asphalt concrete specimens made of different materials was tested by indoor experiments, and the reflective parameters of asphalt concrete of different colors were compared, and then the images of colored pavement of different colors were collected at the tunnel site, and the brightness and uniformity indexes of the colored pavement and the conventional asphalt pavement were analyzed and compared by using graphic image analysis technology. The results show that when the lighting conditions are the same, the luminance of yellow asphalt concrete is about 2.3 times that of black asphalt concrete, and the luminance of red asphalt concrete is about 1.5 times that of black asphalt concrete, and the use of
Si, JialaiWang, ZijianWang, LuhaiMa, FeiHan, LuluZhang, Zhongbin
NiCoCrAlY powders were thermally sprayed by combustion flame spray (CFS) and high-velocity oxygen fuel (HVOF) processes on IN 718 alloy substrates. Experimental parameters were fixed to manufacture coatings with a thickness about 200 μm. Microscopy and X-ray diffraction analyses were performed to reveal microstructural characteristics of both developed CFS and HVOF coatings, and it was observed that they were formed by a lamellar morphology composed of β and γ phases. The analyses also revealed lower porosity in the coatings produced by HVOF process while was compared with CFS process. While a microstructure composed of like-deformed powder was developed in HVOF process, in the case of CFS a building layer-by-layer was characteristic. Vickers hardness tests were also performed, and it was found that coating developed by HVOF process showed quite higher hardness values compared with those measured on the coatings developed with the CFS process, nonetheless this difference was small
Juarez-Lopez, FernandoMendoza, Melquisedec VicenteMeléndez, Rubén CuamatziRamírez, Ángel de Jesús Morales
In recent years, there has been a trend towards lower engine speeds and downsizing of diesel engines to improve fuel efficiency. This has the advantage of reducing frictional losses in the hydrodynamic lubrication condition but causes severe lubrication in the mixed lubrication condition. In order to reduce friction losses without the risk of abnormal wear or seizure, pattern coatings of the piston skirt area have been proposed. In this study, the oil film thickness between piston and cylinder was measured to investigate the effect of pattern coating on the oil film thickness. The oil film thickness between the piston and cylinder were measured by the laser-induced fluorescence method using the optical fibers embedded in the cylinder. The oil film thickness on the piston skirt was successfully measured under the engine operating conditions for the medium duty Direct Injection (DI) diesel engine. The oil film thickness for the pattern coatings was compared with that for the solid
Tanimoto, KeisukeIto, AkemiSumoto, Masayuki
AE-8C2 Terminating Devices and Tooling Committee
The intent of the SAE Aerospace Recommended Practice (ARP) is to provide a process for users to identify the part number of AS7928 terminal lugs installed in civilian or military applications, although it can also be used to identify terminals that have been stored incorrectly. This ARP is subject to change to keep pace with experience and technical advances of AS7928 terminals. A current set of tables are provided to list and identify current AS7928 terminal lug configurations per the associated specification detail sheet and terminal lug configuration. Specific configuration details, graphic, size, and marking information for each individual terminal lug is provided to assist the product user with accurate selection for replacement or identification.
AE-8C2 Terminating Devices and Tooling Committee
Scientists have produced a new, powerful electricity-conducting material that could improve wearable technologies, including medical devices. The new technique uses hyaluronic acid applied directly to a gold-plated surface to create a thinner, more durable film, or polymer, used to conduct electricity in devices like biosensors. It could lead to major improvements in the function, cost, and usability of devices like touchscreens and wearable biosensors.
Image sensors built into every smartphone and digital camera, distinguish colors like the human eye. In our retinas, individual cone cells recognize red, green and blue (RGB). In image sensors, individual pixels absorb the corresponding wavelengths and convert them into electrical signals.
Thermal runaway in electric vehicle (EV) batteries is rare, but it can happen, producing smoke, fire, and explosions. This uncontrollable, self-heating state can transfer intense heat to adjacent cells and cause pressure buildups that exceed the mechanical limits of cell casings. Since the gases that can form inside a battery cell are flammable, a spark or other ignition source could propagate fire or lead to an explosion and cause the violent venting of shrapnel or particulates, putting vehicle occupants and emergency responders at risk. To support EV safety, silicone thermal management materials are placed between battery cells and between battery modules. For battery pack enclosures, however, mica sheets traditionally have been used as protective barriers. Mica provides thermal and electrical insulation, but sheets made of this mineral are limited in terms of thermal performance, mechanical durability, processability, and sustainable sourcing. To address these challenges, advanced
This SAE Aerospace Recommended Practice (ARP) covers procedures or methods to be used for fabricating, handling, testing, and installation of oxygen lines in an aircraft oxygen system.
A-10 Aircraft Oxygen Equipment Committee
This study investigates the correlation between moisture behavior and corrosion stiction mechanisms in NAO friction materials. While previous studies on corrosion stiction have primarily focused on electrochemical approaches, this study aims to elucidate the mechanism by examining moisture behavior within the friction material. Although recent research has investigated changes in pad properties in humid environments, most studies have primarily focused on variations in pad stiffness and the friction coefficient. To date, no studies have investigated the behavior of moisture within pads using Fick’s Second Law and its impact on corrosion stiction. In this study, Fick’s Second Law was applied to model moisture behavior in friction materials. The diffusion coefficient and maximum moisture content were quantified, revealing that moisture behavior in the friction material can be divided into two distinct stages: one following Fick’s Second Law and the other not. For NAO friction materials
Choi, NakcheonJu, JoungsuYoun, Deokki
This research focuses on the thermal analysis of internal combustion engine pistons, evaluating the effects of high-temperature exposure during operation. A three-dimensional numerical study is conducted using OpenFOAM, modifying the software’s governing equations to analyze temperature distribution in different piston geometries. The study aims to assess the spatial temperature variation within the entire volume of the piston, providing a detailed understanding of heat transfer mechanisms. A multilayer approach is implemented, considering various configurations of ceramic coatings with distinct thermal and optical properties. The investigation incorporates an internal heat source model, where the heat absorption characteristics of the coating material influence the thermal behavior of the system. By evaluating aluminum- and titanium-based ceramic coatings, the study examines how semitransparency and heat radiation absorbance affect heat accumulation and transfer. The results highlight
Gutierrez, MarcosTaco, DianaBösenhofer, Markus
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance. The company was officially founded in Aachen, Germany, in 2020, however its core founding team first began developing new approaches to the use of materials that make commercial and military vehicles invisible to radar as back as 2014. FibreCoat is known for inventing a novel technology to coat metals and plastics onto fibers, thus combining the properties of the fibers and the coating material, during the fiber-spinning process.
Innovators at NASA Johnson Space Center have developed a thin film sensor that measures temperatures up to 1200 °F, and whose prototype successor may achieve measurements up to ~3000 °F — which was the surface temperature of the Space Shuttle during its atmospheric reentry.
San Francisco startup Canvas has developed a robotic system handling one of the most labor-intensive trades in construction: drywall finishing. Leveraging robotic arms from Universal Robots, Canvas has built a machine that reduces the usual five to seven days of spraying and sanding the drywall to just around two days for both Level 4 and Level 5 finishes.
Battery performance suffers over time, like when a phone needs to be charged more frequently after years of use. A thin film that forms on the metal anode when the battery is charging and discharging plays a part in that issue. This film has benefits, but its roughness gradually wears the battery down.
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
A spacecraft power system that combines the technological know-how of engineers and scientists at the University of Leicester and NASA Glenn has passed its first test with flying colors.
A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies.
The mobility industry is rapidly advancing towards more autonomous modes of transportation with the adoption of sophisticated self-driving technologies. However, a critical challenge, being the lack of standardized norms for defining, measuring, and ensuring vehicle visibility across various dynamic traffic environments, remains. This lack of awareness of visibility is hindering the development of new regulations for vehicle visibility and the controlled transition to a fully-integrated autonomous future. While current efforts focus on improving sensing technologies like computer vision, LiDAR systems, and sensor fusion development, two key issues remain unresolved: 1 The absence of a representative and realistic three-dimensional color visibility model for measuring and comparing the visibility of complex shapes with large but varying color coated three-dimensional surface areas. 2 The need for enhanced visibility solutions that improve visibility and vehicle detectability for all
Mijnen, Paul W.Moerenburg, Joost H.
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys using gold-nickel alloy filler metal.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
AMS G8 Aerospace Organic Coatings Committee
This specification establishes the requirements for a waterborne, corrosion-inhibiting, chemical- and solvent-resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
AMS G8 Aerospace Organic Coatings Committee
Items per page:
1 – 50 of 5219