Browse Topic: Composite materials

Items (4,074)
This study focuses on the vibration analysis of hybrid composite laminated plates fabricated from E-glass Fiber and areca Fiber reinforced with epoxy resin. The hybrid laminates were prepared using the Vacuum Assisted Resin Transfer Moulding (VARTM) process with different stacking sequences and Fiber ratios, where brake lining powder was also incorporated as a filler in selected configurations to enhance mechanical and damping properties. The fabricated plates (280 × 280 mm) were subjected to experimental modal analysis using an impact hammer and accelerometer setup, with data acquisition carried out through DEWESoft software. Natural frequencies and damping ratios were determined under three boundary conditions (C- C-C-C, C-F-C-F, and C-F-F-F). The results revealed that Plate 1, with E-glass outer layers, areca reinforcement, and filler addition, exhibited the best vibration performance, achieving a maximum natural frequency of 332.8 Hz under C-C-C-C condition, while Plate 2 showed a
D R, RajkumarO, Vivin LeninR, SaktheevelR G, Ajay KrishnaNg, Bhavan
This study provides an extensive analysis through finite element analysis (FEA) on the effects of fatigue crack growth in three different materials: Structural steel, Titanium alloy (Ti Grade 2), and printed circuit board (PCB) laminates based on epoxy/aramid. A simulation of the materials was created using ANSYS Workbench with static and cyclic loading to examine how the materials were expected to fail. The method was based on LEFM and made use of the Maximum Circumferential Stress Criterion to predict where cracks would happen and how they would progress. Normalizing SIFs while a crack was under mixed loading conditions was achieved using the EDI method [84]. We used Paris Law to model fatigue crack growth using constants (C and m) for the materials from previous studies and/or tests. For example, in the case of titanium Grade 2, we found Paris Law constants with C values from 1.8 × 10-10 to 7.9 × 10-12 m/cycle and m values from 2.4 to 4.3, which illustrate differing effects of their
T, LokeshBhaskara Rao, Lokavarapu
In the context of electro-mobility for commercial vehicles, the failure analysis of a connector panel in a DCDC converter is crucial, particularly regarding crack initiation at the interface of busbar and plastic component. This analysis requires a thorough understanding of thermo-mechanical behavior under thermal cyclic loads, necessitating kinematic hardening material modeling to account for the Bauschinger effect. As low cycle fatigue (LCF) test data is not available for glass fiber reinforced polyamide based thermoplastic composite (PA66GF), we have adopted a novel approach of determining non-linear Chaboche Non-Linear Kinematic Hardening (NLK) model parameters from monotonic uniaxial temperature dependent tensile test data of PA66GF. In this proposed work a detailed discussion has been presented on manual calibration and Genetic Algorithm (GA) based optimization of Chaboche parameters. Due to lack of fiber orientation dependent test data for PA66GF, here von Mises yield criteria
Basu, ParichaySrinivasappa, Naveen
This study investigates the tribological behaviour of Sesbania rostrata fiber (SRF) reinforced polycaprolactone (PCL) biocomposites using a pin-on-disc wear couple. The stationary SRF/PCL composite specimen interacted with a rotating EN31 steel disc (64 HRC), establishing the sliding wear interface in accordance with ASTM G99 standards. Composite laminates containing 10, 20, and 30 wt% SRF were evaluated at a sliding velocity of 1 m/s over a fixed distance of 1000 m under varying normal loads. The incorporation of SRF significantly enhanced the wear performance relative to neat PCL, with 20 wt% fiber loading achieving the lowest coefficient of friction and specific wear rate due to improved load transfer, stronger interfacial adhesion, and a more uniform laminate structure. In contrast, the 30 wt% composite exhibited fiber agglomeration, reduced homogeneity, and weakened fiber–matrix interactions, resulting in increased wear. SEM microstructural analysis confirmed the formation of a
Raja, K.Senthil Kumar, M.S.
Between the 1920s and 1930s, aluminum started replacing wood as the primary material in aircraft construction and soon became the backbone of modern aviation. Its popularity stemmed from a combination of properties, high strength-to-weight ratio, corrosion resistance, and ease of forming that made it ideal for demanding aerospace applications. Throughout much of the 20th century, high-strength aluminum alloys dominated aircraft design, accounting for 70-80 percent of commercial airframes and more than half of many military aircraft. Even after the introduction of fiber-polymer composites in the early 2000s, aluminum has remained a critical material because it continues to offer the strength, lightness, and versatility needed for modern aviation. Industry forecasts predict that commercial air travel will double in the next 25 years, which means more pollution will be released into the atmosphere. One way to help reduce these emissions is by building airplane fuselages and wings with
Carbon fiber-reinforced polymers (CFRPs) have become essential in modern aerospace structures, from fuselage skins and wing components to nacelles, interior structures, and a growing range of primary load-bearing parts. Their high strength-to-weight ratio delivers major benefits in fuel efficiency, payload capacity, and fatigue performance. Yet achieving reliable adhesive bonds on CFRP surfaces remains a persistent engineering challenge. The low intrinsic surface energy of composites - particularly under thermal cycling, vibration, and moisture exposure - limits bond durability unless surfaces are properly prepared. Plasma surface treatment has emerged as a pivotal solution, offering a fast, controllable, and non-destructive way to increase surface energy, improve wettability, and enhance adhesion across complex geometries. This is especially important as the aerospace industry transitions from thermoset to thermoplastic composites (TPCs), which enable faster processing, lower
The global push for clean energy has made hydrogen a central element in decarbonizing transport, industrial processes, and energy systems. Effective hydrogen storage and distribution are critical to supporting this transition, and type IV Composite Overwrapped Pressure Vessels (COPVs) have emerged as the preferred solution due to their lightweight, high pressure capacity, hydrogen embrittlement and corrosion resistance. However, the cascade infrastructure used to house and transport these vessels has lagged behind in innovation. Steel-based cascades, while strong, are heavy prone to corrosion, and unsuitable for mobile deployment. This paper introduces a custom designed aluminium cascade system offering a 65% weight reduction while maintaining structural integrity and safety. Designed for mobile use, the system features modularity, better damping, and enhanced corrosion protection. The paper outlines design methodology, material selection, fabrication process, and comparative
Parasumanna, Ajeet BabuMuthusamy, HariprasadAmmu, Vnsu ViswanathKola, Immanuel Raju
Researchers combined mussel adhesive protein with decellularized extracellular matrix (dECM) to develop a composite hemostatic sponge that offers both strong tissue adhesion and biocompatible biodegradability.
Rubber components are an important part of the suspension system of high-speed trains, and the complex nonlinear characteristics of rubber parts have a significant impact on the vehicle dynamic performance. This paper establishes a nonlinear dynamics model of the liquid composite swivel arm positioning node, which can reflect the dynamic stiffness and dynamic damping characteristics of the rubber components that change nonlinearly with the frequency and amplitude, and also has a fast calculation speed. The vehicle dynamics simulation model considering the longitudinal stiffness nonlinear characteristics of the arm node is established, and the influence of the stiffness nonlinearity of the liquid composite arm positioning node on the dynamic performance of the vehicle, such as straight-line stability and curve passing ability, is studied in depth through numerical simulation.
Cheng, JunqiangYang, ChenLi, LongtaoCong, RilongHu, Tingzhou
The use of polymeric materials and polymer -based composites as alternatives to metals in conventional applications is a widely adopted strategy. These materials provide advantages in terms of processability, cost-effectiveness, and, most notably, weight reduction. This study aimed to develop and optimize the injection molding process for producing PA9T (Polyphthalamide 9T) components reinforced with varying amounts of glass fiber to achieve optimal mechanical and physical properties. To enhance mechanical performance, different glass fiber loadings were investigated. The study employed the Taguchi method with an L9 orthogonal array design. The selected variable parameters were material composition (PA9T reinforced with 30, 35, and 50 wt% glass fiber), injection pressure (1000, 1500, and 2000 bar), injection temperature (320, 330, and 340 °C), and injection speed (100, 125, and 150 mm/s). The Taguchi method was chosen because it allows for the identification of optimal process
Mendonça, Arthur S.Michelotti, Alvaro CantoBerto, Lucas F.Salvaro, Diego B.Binder, Cristiano
Materials science and engineering are essential for advancing energy-efficient mechanical systems through lightweight structures and friction reduction. Among engineering polymers, polyphthalamides (PPA) are widely used for their superior thermochemical and mechanical properties. This study investigates the influence of polytetrafluoroethylene (PTFE) on the mechanical and tribological performance of a commercial polymer matrix composite (PMC) reinforced with 30wt% glass fiber. Self-lubricating composites were manufactured by injection molding with PTFE contents ranging from 0-15 wt%. Density was measured using Archimedes’ method. Mechanical properties were measured through ISO 527 tensile testing, while tribological behavior was evaluated using ball-on-flat reciprocating tests under 189N (630 MPa), 2 H frequency, and 10 mm strokes for 60 minutes, employing a 10 mm diameter AISI 52100 steel sphere as counter-body. Friction coefficient (COF) was monitored throughout testing, and wear
Hromatka, MatheusSalvaro, Diego B.Binder, CristianoMichelotti, Alvaro C.Berto, Lucas F.
Brazil is recognized for its vast biodiversity and abundance of natural resources, many of which are still underutilized. In an effort to promote sustainability and innovation, there is a growing movement to replace non-recyclable materials with ecological alternatives. Within this context, acai leaves (Euterpe oleracea Mart.) and coconut leaves (Cocos nucifera L.) appear as potential natural reinforcements in polymer composites. This study aims to evaluate the mechanical properties of composites formed by these sheets, using polyester resin as the matrix phase. Tensile strength tests were conducted on specimens, following the ASTM D 638M standard, to determine the mechanical properties of the composites. The results obtained were compared with data from the existing literature in order to validate the effectiveness of the composites produced. Additionally, fractures in the specimens were visually analyzed for a better understanding of the failure mechanisms.
Dias, Roberto Yuri CostaSantos Borges, LarissaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
Polymer composites with the addition of natural fibers have gained prominence as a sustainable and technically viable alternative to conventional synthetic materials, especially in applications that require a balance between mechanical performance and environmental responsibility. This study evaluated the mechanical behavior of composites produced with plant fibers from banana (Musa sapientum) and sugarcane (Saccharum officinarum L.), both sourced from the northern region of Brazil. The fibers, used in their natural state without chemical treatment, were cut to a uniform length of 5 mm for standardization. The polymer matrix used was unsaturated terephthalic polyester resin, pre-accelerated and catalyzed with methyl ethyl ketone peroxide (MEKP). The molding of test samples was performed manually in silicone molds, according to ASTM D638 specifications, to ensure repeatability and comparability of results. The mechanical tests revealed that the composites made with sugarcane fibers had
Santos Borges, LarissaDias, Roberto Yuri CostaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
As vehicles become increasingly connected and electrified, the demand for high-performance cables and electrical connectors is growing quickly. Electrical insulation materials play an essential role in protecting and insulating those critical components, ensuring reliability, safety and durability. The development of a more robust composite material is essential to promote sustainability and energy efficiency, in both component application and its manufacturing processes. This research explores the development of advanced nanocomposite material for automotive electrical applications. The nanocomposite material comprises low-density polyethylene (LDPE), ethylene-vinyl acetate (EVA), nanoclay (NC) and graphene oxide (GO), processed via melt mixing in a twin-screw extruder. A design of experiments (DOE) was performed using 23, factorial design two levels and three variables (wt.% of EVA, NC and GO), to evaluate the effect of each variable on the material performance. Mechanical tests
Horiuchi, Lucas NaoKerche, Eduardo FischerGonçalves, Everaldo CarlosPolkowski, Rodrigo
There is a growing demand for new materials that meet mechanical and structural performance requirements, with specific properties, especially in the automotive industry. From a context of innovation and global needs to be met, there is the appreciation of composite materials, specifically applied in the automotive sector, since these can be obtained from the combination of two or more different materials, obtaining certain properties from the individual characteristics of its phases, expanding the availability of materials to be used in this sector. In recent years the use of natural fibers in composite materials for automotive applications has gained relevance due to factors such as sustainability, low weight and good mechanical properties. The attempt to combine innovation and environmental preservation make such applications promising, aiming to obtain ecological solutions, considering that natural fibers of vegetable origin such as sisal, jute and flax are biodegradable and
Dias, Roberto Yuri CostaSantos Borges, Larissa dosBrandao, Leonardo William MacedoMendonca Maia, Pedro Victor deSilva de Mendonça, Alian Gomes daFujiyama, Roberto Tetsuo
This paper analyzes the potential of combining natural fibers with nanomaterials to develop advanced composites for automotive sector applications, providing a sustainable alternative to parts traditionally produced with metallic materials. The metallic alloy in the automotive industry is widely used in vehicle manufacturing, but faces significant challenges, such as high production costs, high weight, susceptibility to corrosion, and rigorous recycling processes. Natural fibers stand out for favorable mechanical properties, low cost, low weight, and eco-friendly material, making promising alternatives to metals and synthetic fibers. The combination of natural fibers and nanomaterials creates composites with improved mechanical and thermal, reducing any limitations inherent to natural fibers. Therefore, composites combined, called hybrid, have a high potential for use in various automotive components, such as in structural and non-structural applications. This study also analyzes the
Corrêa, KarythaCabral, GabrielSantiago, MarceloVeloso, VerônicaChaves, Matheus
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aircraft structures for weight reduction due to their high specific strength and modulus. However, their weak interlaminar properties lead to high sensitivity to out-of-plane loads such as impact, making them prone to delamination damage, which threatens flight safety. To enhance interlaminar performance, through-thickness reinforcement technologies, particularly Z-pinning and stitching, have become key research focuses. This paper systematically reviews the manufacturing processes, structural mechanical characteristics, and application progress in aerospace structures of these two mainstream through-thickness reinforcement technologies. Research shows that Z-pintechnology, by implanting metal or CFRP pins, and stitching technology, by sewing multiple fabric layers with fiber threads, both effectively bridge interlaminar cracks, significantly improving the impact resistance of composites. However, the implantation
Cui, BoZhang, YongjieZhang, ChuzheJin, Tao
Aiming at the technical bottlenecks of electric vehicles (EVs) in terms of range, energy efficiency and thermal management, this paper proposes an innovative mechanical system design scheme that integrates lightweight materials, topology-optimised structure and mechatronic energy recovery. Through multi-physics simulation and experimental verification, the coupling mechanism between mechanical design and electrochemical performance is revealed, providing theoretical support for the development of energy-efficient electric vehicles. The research adopts a hybrid structure of carbon fiber reinforced polymer (CFRP) and aluminum alloy, and combines it with topology optimization technology to achieve lightweight (18% weight reduction) and improved impact resistance (40% improvement in energy absorption) of the battery box; the design of a bimodal energy recovery system integrating flywheel energy storage and magnetorheological damper, which can achieve an energy recovery efficiency of 82.7
Xu, NanxinSong, ZiyangHan, QiyuChen, XiaoxianMiao, ZhengchenSong, Jinlong
The intent of this specification is for the procurement of carbon fiber and fiberglass epoxy prepreg products with 350 °F (177 °C) cure for aerospace applications; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the production quality assurance section (4.3) of this base specification, AMS6891.
AMS P17 Polymer Matrix Composites Committee
As demand for microcomponents has escalated in diverse areas of automotive, medicine, communications, electronics, optics, biotechnology, and avionics industries, there is a need for hybrid manufacturing techniques that can effectively micromachine hard and brittle materials. Electrochemical discharge machining (ECDM) is an advanced manufacturing process for machining difficult-to-cut materials. With a need for precision and accuracy, tool kinematics is a potential research area in ECDM for achieving geometrical dimensioning and tolerances (GD&T). Therefore, the present study reviews the ultrasonic vibration–assisted ECDM (UA-ECDM) hybrid process and the performance of its process parameters (voltage, electrolyte type and its concentration, electrode material, pulse duration, and amplitude) on the material removal rate (MRR), tool electrode wear (TEW), surface integrity, and difficult-to-cut materials. Also, the present work mentions current problems (debris and bubbles trapped
Prajapati, Mehul S.Lalwani, Devdas I.
The intent of this specification is for the procurement of the material listed on the QPL; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the Quality Assurance section of the base specification, AMS6891.
AMS P17 Polymer Matrix Composites Committee
AFP can build complex, lightweight structures, but cost concerns keep its use in the automotive industry to a minimum. For now, anyway. Ramy Harik, a Fulbright alumnus and director of the Clemson Composites Center, is pushing the boundaries of manufacturing with his latest book, Automated Fiber Placement: Status, Challenges, and Evolution coauthored with Alex Brasington. The book, published by SAE in June of 2025, serves as a comprehensive guide to automated fiber placement (AFP), a cutting-edge technology crucial for building complex, lightweight structures in the aerospace and automotive industries. The book aims to offer a thorough understanding of AFP's transformative potential for students, engineers, and industry professionals. The book synthesizes a decade of research, explaining how AFP supports the rise of advanced air mobility and sustainable structures for commercial and defense aircraft, space habitats, and beyond.
Blanco, Sebastian
NASA has developed a novel approach for macroscale biomaterial production by combining synthetic biology with 3D printing. Cells are biologically engineered to deposit desired materials, such as proteins or metals, derived from locally available resources. The bioengineered cells build different materials in a specified 3D pattern to produce novel microstructures with precise molecular composition, thickness, print pattern, and shape. Scaffolds and reagents can be used for further control over material product. This innovation provides modern design and fabrication techniques for custom-designed organic or organic-inorganic composite biomaterials produced from limited resources.
Off-highway vehicles (OHVs) frequently operate in extreme environments—ranging from arid deserts and frozen tundras to dense forests and abrasive mining zones—where structural wear, impact damage, and environmental stress compromise their material integrity. Frequent repairs and component replacements increase operational costs, downtime, and environmental waste, making durability and sustainability key concerns for next-generation vehicle systems. This paper explores a novel class of self-healing biodegradable composites, inspired by biological systems, to address these challenges. The proposed materials combine bio-based resins, microencapsulated healing agents, and shape-memory polymers (SMPs) to autonomously repair microcracks and surface-level damage when triggered by thermal, UV, or mechanical stimuli. The design draws inspiration from natural self-healing systems such as tree bark and reptile skin, replicating their regenerative behavior to enhance structural resilience in OHVs
Vashisht, Shruti
Yamaha Motor Engineering Co., Ltd. provides plastic processing technology based on fuel tank press forming technology, and is developing various plastic processing methods, including forging, and developing mold equipment to realize them. This time, the core parts of the YECVT unit mounted on Yamaha Motor Co., Ltd.'s small premium scooter "NMAX" were not made by welding individual parts to each other, but by integrally forming them from a single thick plate using the cold forming method, resulting in lightweight, compact, high-strength, high-precision parts. By incorporating a composite plastic processing method that takes advantage of the characteristics of the material while making full use of analysis technology and mold technology, we were able to develop a composite plastic processing method (plate forging method) that creates new added value and mass produce it. In addition,this development has made it possible to achieve a thickness increase of 1.7 times the standard material
Hongo, HironariTamaru, ShogoUda, Shinnosuke
The growing demand for lightweight, durable, and high-performance materials in industries such as aerospace, automotive, and energy has driven the development and evaluation of thermoset and thermoplastic composites. Within this framework the static and fatigue mechanical behavior of one thermoset material and two thermoplastic composites are investigated in the (-30° +120°C) temperature range, to simulate extreme environmental conditions. The results from the tensile tests show the different mechanical behavior of the investigated materials, while the cyclic test results highlight the significant impact of temperature on structural properties, offering useful insights for their application in temperature-sensitive environments. This research is partially funded by the Italian Ministry of Enterprises and Made in Italy (MIMIT) within the project ”New Generation of Modular Intelligent Oleo-dynamic Pumps with Axial Flux Electric Motors,” submitted under the ”Accordi per l’Innovazione
Chiocca, AndreaSgamma, MicheleFranceschini, AlessandroVestri, Alessiomancini, SimoneBucchi, FrancescoFrendo, FrancescoSquarcini, Raffaele
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Type IV composite pressure (CP) vessels composed of a plastic liner and composite layers require special design attention to the dome region. The cylindrical portion of the composite cylinder is wrapped with composite layers consisting of the 900 hoop layers and low-angle helical layers, whereas the dome surface carries helical layers only. The winding angle of the helical layers being a constant over the cylindrical portion starts to vary from the cylinder-dome junction toward the boss at the top continuously. Along with the winding angle, the composite thickness also varies continuously resulting in a maximum thickness at the top crown region. The complete analysis and layer-wise stress prediction of Type IV composite cylinders for service pressures up to 70 MPa was analyzed by the Classical Lamination theory (CLT)-based MATLAB program. The MATLAB program developed in this work for the dome initially performs the dome profile generation through the numerical integration of the dome
R. S., NakandhrakumarTandi, RonakM, RamakrishnanRaja, SelvakumarElumalai, SangeethkumarVelmurugan, Ramanathan
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance.
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance. The company was officially founded in Aachen, Germany, in 2020, however its core founding team first began developing new approaches to the use of materials that make commercial and military vehicles invisible to radar as back as 2014. FibreCoat is known for inventing a novel technology to coat metals and plastics onto fibers, thus combining the properties of the fibers and the coating material, during the fiber-spinning process.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
In this work, the microstructure and mechanical behavior of AL7079 metal matrix composites (MMCs) mixed with zirconia and quarry dusts are analyzed. The high-strength Al7079 can be further improved by the addition of zirconia particulates and quarry dust particles, a cost-effective reinforcement. Composite samples with different weight fractions of zirconia (2%, 4%, and 6%) and quarry dust (2%) were produced via a stir-casting technique. Scanning electron microscope (SEM) was engaged to examine the microstructure of the composites, which showed that the reinforcements were well integrated and bonded perfectly to the matrix material. A simple mechanical test of hardness, tensile, and impact strength revealed enrichment in hardness and tensile strength in comparison to the Al7079 alone, whereas the impact strength decreased. Composite containing 6% zirconia and 2% quarry dust improved both the hardness (95 BHN) and tensile strength (186 MPa) by 7%, outperforming the remaining composition
Madan Kumar, K.N.Sathyanarayana, G.M.Kuldeep, B.Manu, S.S.Manjunath Yadav, S.Anand, H.R.
The aim of this work is to present the overviewing results of the low friction coating technology for modern automotive application with the themes, e.g. electric vehicle (EV), R&D trends and bioethanol fuel application. According to Forbes, China, armed with EV, could have several companies among the top 10 global brands by sales in 2030. EV’s friction is more severe than traditional powertrain friction. For the protection of EV’s wear and friction, the coatings, diamond like carbon (DLC) and CrCuN, are compared in the literature. Global coating companies developed with the keywords: hybrid process, low-temperature coating process for polymer material. Last coating conferences showed R&D trends: coating for polymer materials, tetrahedral amorphous carbon (taC) coating, low-temperature coating process and multi-elements containing coatings. In Korea, research institutions, universities and Hyundai Motor Group have a long-term project for the development of ultralow friction coatings of
Cha, Sung ChulMoon, Kyoung IlKim, JongkukPark, Chang HoKim, Dong Sik
Innovators at the NASA Glenn Research Center have developed a toughened hybrid reinforcement material made from carbon fiber and carbon nanotube (CNT) yarn for use in polymer matrix composites (PMCs). The new material improves toughness and damping properties of PMCs, enhancing impact resistance, fatigue life, as well as structural longevity.
Composite materials are increasingly utilized in industries such as automotive and aerospace due to their lightweight nature and high strength-to-weight ratio. Understanding how strain rate affects the mechanical and crashworthiness properties of CFRP composites is essential for accurate impact simulations and improved safety performance. This study examines the strain rate sensitivity of CFRP composites through mechanical testing and finite element analysis (FEA). Experimental results confirm that compressive strength increases by 100%–200% under dynamic loading, while stiffness decreases by up to 22% at a strain rate of 50 s−1, consistent with trends observed in previous studies. A sled test simulation using LS-Dyna demonstrated that the CFRP crash box sustained an average strain rate of 46.5 s−1, aligning with realistic impact conditions. Incorporating strain rate–dependent material properties into the FEA model significantly improved correlation with experimental crashworthiness
Badri, HesamJayasree, Nithin AmirthLoukodimou, VasilikiOmairey, SadikBradbury, AidanLidgett, MarkPage, ChrisKazilas, Mihalis
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
Thermoplastic fiber-reinforced polymer composites (TPC) are gaining relevance in aviation due to their high specific strength, stiffness, potential recyclability and the ability to be repaired thanks to their meltability. To maximize their potential, efficient repair methods are needed to maintain aircraft safety and structural integrity. This article introduces a novel repair technique for damaged TPC structures, involving the joining of a repair patch with induction welding using a susceptor material. The susceptor consists of a material with high electrical conductivity and magnetic permeability and therefore reacts stronger to the electromagnetic field than the composite, even if the composite is carbon fiber based. I. e. the thermal energy is specifically concentrated in the repair area. In this study, the susceptor was placed on the patch and also in the welding zone. The repair process begins by identifying and preparing the damaged area, followed by precise scarfing. Care is
Geiger, MarkusGlaap, AntonSchiebel, PatrickMay, David
Climate-neutral aviation requires resource-efficient composite manufacturing technologies and solutions for the reuse of carbon fibers (CF). In this context, thermoplastic composites (TPC) can make a strong contribution. Thermoforming of TPC is an efficient and established process for aerospace components. Its efficiency could be further increased by integration of joining processes, which would otherwise be separate processes requiring additional time and equipment. In this work, an integrative two-step thermoforming process for hollow box structures is presented. The starting point are two organosheets, i.e. fiber-reinforced thermoplastic sheets. First, one of the organosheets, intended for the bottom skin of the uplift structure, is thermoformed. After cooling, the press opens, the organosheet remains in the press and an infrared heater is pivoted in, to locally heat up just the joining area. Meanwhile, a second organosheet, intended for the top skin, is heated and thermoformed and
Vocke, RichardSeeßelberg, LorenzFocke, OliverDietrich, Jan YorrickJobke, KatrinAlbe, ChristopherMay, David
Items per page:
1 – 50 of 4074