Browse Topic: Composite materials
Rubber components are an important part of the suspension system of high-speed trains, and the complex nonlinear characteristics of rubber parts have a significant impact on the vehicle dynamic performance. This paper establishes a nonlinear dynamics model of the liquid composite swivel arm positioning node, which can reflect the dynamic stiffness and dynamic damping characteristics of the rubber components that change nonlinearly with the frequency and amplitude, and also has a fast calculation speed. The vehicle dynamics simulation model considering the longitudinal stiffness nonlinear characteristics of the arm node is established, and the influence of the stiffness nonlinearity of the liquid composite arm positioning node on the dynamic performance of the vehicle, such as straight-line stability and curve passing ability, is studied in depth through numerical simulation.
The intent of this specification is for the procurement of carbon fiber and fiberglass epoxy prepreg products with 350 °F (177 °C) cure for aerospace applications; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the production quality assurance section (4.3) of this base specification, AMS6891.
The intent of this specification is for the procurement of the material listed on the QPL; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the Quality Assurance section of the base specification, AMS6891.
NASA has developed a novel approach for macroscale biomaterial production by combining synthetic biology with 3D printing. Cells are biologically engineered to deposit desired materials, such as proteins or metals, derived from locally available resources. The bioengineered cells build different materials in a specified 3D pattern to produce novel microstructures with precise molecular composition, thickness, print pattern, and shape. Scaffolds and reagents can be used for further control over material product. This innovation provides modern design and fabrication techniques for custom-designed organic or organic-inorganic composite biomaterials produced from limited resources.
Yamaha Motor Engineering Co., Ltd. provides plastic processing technology based on fuel tank press forming technology, and is developing various plastic processing methods, including forging, and developing mold equipment to realize them. This time, the core parts of the YECVT unit mounted on Yamaha Motor Co., Ltd.'s small premium scooter "NMAX" were not made by welding individual parts to each other, but by integrally forming them from a single thick plate using the cold forming method, resulting in lightweight, compact, high-strength, high-precision parts. By incorporating a composite plastic processing method that takes advantage of the characteristics of the material while making full use of analysis technology and mold technology, we were able to develop a composite plastic processing method (plate forging method) that creates new added value and mass produce it. In addition,this development has made it possible to achieve a thickness increase of 1.7 times the standard material
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Type IV composite pressure (CP) vessels composed of a plastic liner and composite layers require special design attention to the dome region. The cylindrical portion of the composite cylinder is wrapped with composite layers consisting of the 900 hoop layers and low-angle helical layers, whereas the dome surface carries helical layers only. The winding angle of the helical layers being a constant over the cylindrical portion starts to vary from the cylinder-dome junction toward the boss at the top continuously. Along with the winding angle, the composite thickness also varies continuously resulting in a maximum thickness at the top crown region. The complete analysis and layer-wise stress prediction of Type IV composite cylinders for service pressures up to 70 MPa was analyzed by the Classical Lamination theory (CLT)-based MATLAB program. The MATLAB program developed in this work for the dome initially performs the dome profile generation through the numerical integration of the dome
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance.
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance. The company was officially founded in Aachen, Germany, in 2020, however its core founding team first began developing new approaches to the use of materials that make commercial and military vehicles invisible to radar as back as 2014. FibreCoat is known for inventing a novel technology to coat metals and plastics onto fibers, thus combining the properties of the fibers and the coating material, during the fiber-spinning process.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Innovators at the NASA Glenn Research Center have developed a toughened hybrid reinforcement material made from carbon fiber and carbon nanotube (CNT) yarn for use in polymer matrix composites (PMCs). The new material improves toughness and damping properties of PMCs, enhancing impact resistance, fatigue life, as well as structural longevity.
Climate-neutral aviation requires resource-efficient composite manufacturing technologies and solutions for the reuse of carbon fibers (CF). In this context, thermoplastic composites (TPC) can make a strong contribution. Thermoforming of TPC is an efficient and established process for aerospace components. Its efficiency could be further increased by integration of joining processes, which would otherwise be separate processes requiring additional time and equipment. In this work, an integrative two-step thermoforming process for hollow box structures is presented. The starting point are two organosheets, i.e. fiber-reinforced thermoplastic sheets. First, one of the organosheets, intended for the bottom skin of the uplift structure, is thermoformed. After cooling, the press opens, the organosheet remains in the press and an infrared heater is pivoted in, to locally heat up just the joining area. Meanwhile, a second organosheet, intended for the top skin, is heated and thermoformed and
Composite materials are created by combining two or more different materials, such as a filler or fibrous reinforcement dispersed in a polymer matrix. The primary goal of developing composites is to improve properties while reducing weight, making them ideal for the sustainable development of the automotive industry. Poly(lactic acid) (PLA) has emerged as a promising polymer matrix for composites due to its ecological and biodegradable nature, as well as its good mechanical properties (tensile strength and modulus of elasticity), though it remains limited when compared to engineering polymers such as acrylonitrile butadiene styrene (ABS) and acrylonitrile styrene acrylate (ASA). Cotton fibers have gained visibility in recent years as reinforcement in various matrices due to their low cost, renewable origin, and relative abundance. Incorporating cotton fibers into PLA can improve its mechanical properties, enhancing attributes such as tensile strength and stiffness, which makes the
Alpha Engineered Composites’ thin profile textile composite heat shields provide thermal protection through several thermodynamic mechanisms including: radiation reflection; heat spreading; and finally heat transfer resistance. Typical under the hood automotive applications require heat shield average operational temperature up to 225°C, but newer internal combustion engines are being designed for higher operational temperatures to: increase efficiency through higher compression cycle ratios and lean burning; boost power through turbocharging; increase energy density; and support advanced emissions controls like EGR that can increase average operational temperature up to 300°C. Unfortunately, thermo-oxidative degradation mechanisms negatively impact the polymer structural adhesive within a heat shield textile composite and degrade thermal protection mechanisms. High average operational temperature degradation of traditional versus next generation textile composite heat shields is
Items per page:
50
1 – 50 of 4067