Browse Topic: Composite materials

Items (4,032)
In an attempt to improve its mechanical characteristics in the as-fasted conditions, the AZ31 Mg alloy was investigated herein from being reinforced with diverse SiC weight percentages (3, 6, and 9 wt.%). To develop lightweight AZ31-SiC composites, a simple and inexpensive technique, the stir casting process, was used. Microstructural analysis of the as-cast samples showed that the SiC particles were distributed rather uniformly, were firmly bonded to the matrix, and had very little porosity. The substantial improvement in tensile, compressive, and hardness characteristics was caused by fragmentation and spreading of the Mg17Al12 phase, while the addition of SiC had only a slight effect on the microstructure in the as-cast state. Surfaces of AZ31-SiC composites were analyzed using scanning electron microscopy. A study identified the AZ31-SiC composite as a unique material for applications involving a high compressive strength, such as those found in the aviation and automobile
Thillikkani, S.Kumar, N. MathanFrancis Luther King, M.Soundararajan, R.Kannan, S.
The objective of this research is to present a novel variant of an Unmanned Aerial Vehicle (UAV) with an advanced flying wing configuration capable of detecting and rescuing individuals affected by avalanches. This leads to testing of the UAV, to identify if it can operate efficiently at the intended temperature and atmospheric conditions. Typically, UAVs can operate in a broad spectrum of temperatures. Regions prone to avalanches would experience near-cryogenic temperatures. The notion is investigated and tested in this specific scenario. The chosen location is Siachen, where temperatures can become as low as -25 degree Celsius (°C). It has been proven that a thermal camera aids the UAV to detect the distinct body heat signatures of individuals who are trapped under snow. The selection of wing, propeller, and vertical stabilizer airfoils is guided by standard analytical calculations, while the overall model is developed using 3D EXPERIENCE. The computational tests are conducted using
Veeraperumal Senthil Nathan, Janani PriyadharshiniPisharam, Akhila AjithSourirajan, LaxanaBaskar, SundharVinayagam, GopinathStanislaus Arputharaj, BeenaL, NatrayanSakthivel, PradeshRaja, Vijayanandh
This study investigates the thermal buckling behavior of axially layered functionally graded material (FGM) thin beams with potential applications in automotive structures. The FGM beam is constructed from four axially stratified sections, with the proportional amount of metal and ceramic fluctuating through the thickness. The buckling analysis is carried out for three different support configurations: clamped-clamped, simply supported-simply supported, and clamped-simply supported. The primary objective is to identify the optimal thermal buckling temperature of the FGM thin beam using the Taguchi optimization method. Beam arrangements are established using a Taguchi L9 orthogonal array and analyzed using finite element software (ANSYS). Layers 1-4 of the axially layered beam are considered process parameters, while the thermal buckling temperature is the response parameter. Minitab software performs an Analysis of Variance (ANOVA) with a 95% confidence level to identify the most
Pawale, DeepakBhaskara Rao, Lokavarapu
This paper explores the augmentation of thermal conductivity in paraffin wax through the incorporation of aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles, leading to the development of composite phase change materials (PCMs). The objective is to enhance heat transfer rates, crucial for various energy storage applications including industrial waste heat recovery and solar thermal energy storage. Differential Scanning Calorimetry (DSC) testing was employed to experimentally investigate the thermal properties of the resulting nanocomposite PCM. The experimental results reveal that the nanocomposite PCM, composed of 96.14% paraffin wax, 2% aluminum oxide, and 1.6% copper oxide, exhibits 1.35 times increase in heat transfer rate compared to conventional paraffin wax. The integration of nanoparticles into the PCM matrix, facilitated by a magnetic stirrer at 50oC for 4 hours, results in uniform distribution and improved grain morphology, as evidenced by SEM images. Moreover, the
Tarigonda, HariprasadKumar, YB KishoreKala, Lakshmi KR L, Krupakaran
The usage of Electric Vehicles (EVs) and the annual production rate have increased significantly over the years. This is due to the development of rechargeable electrical energy storage system (battery pack), which is the main power source for EVs. Lithium-ion batteries (LIBs) pack is predominantly used across all major vehicle categories such as 2-wheelers, 3-wheelers and light commercial vehicle. LIB is one of the high energy-dense sources of volume. However, LIBs have a challenge to pose a risk of short circuits and battery pack explosions, when exposed to damage scenarios. In the present study, the controlled crash analysis is performed for various velocities ranging from 50 kmph to 72 kmph against an obstruction directly and at an offset from the wheel, so as to mimic the real-world crash of high-speed two-wheelers. The behavior of the battery enclosure is examined through evaluating the structural integrity of the battery enclosure used in a realistic two-wheeler after crash at
Venkatesan Sr, AiyappanNelson, N RinoHariharan Nair, Adarsh
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Natural fiber composites (NFC’s) have considerable promise for a wide range of technological applications due to their exceptional features, which include notable weight reduction, high strength, and affordability. The aforementioned materials are also biodegradable and sustainable, which makes them appealing for use in sustainable engineering methods. This research focuses on evaluating the mechanical features of jute fiber and Al₂O₃ particle fortified polymer composites, exploring their potential for advanced engineering uses. The Taguchi technique is used with a L9 orthogonal array, integrating three-level, three-parameter approach, to systematically examine potential combinations of process variables in the manufacturing of these polymer composites. The primary goal is to optimize the mechanical attributes of the composites, which include tensile modulus, tensile stress, and weight percentage increase. Detailed investigations are conducted to interpret the effects of these process
Somsole, Lakshmi NarayanaNatarajan, ManikandanPasupuleti, ThejasreeKatta, Lakshmi NarasimhamuVivekananda, Soma
Polyaniline (PANI)-polymer based smart paints have emerged as a promising solution for enhancing the durability and performance of automobile surface coatings. These paint coatings offer a superior corrosion resistance, conductivity, and environmental stability, making it an ideal. Here novel copolymers of dodecylbenzene sulfonic acid(DBSA) aided poly (aniline-co-m-chloroaniline) nanocomposites of various compositions were prepared by oxidative method in micellar solution. These nanocomposites were analyzed by using UV-Vis and FT-IR spectroscopic methods. The crystalline nature of the polymer was evidenced through XRD patterns. SEM revealed the presence of particles with spherical morphology 100 nm in diameter. The electrical activity of the doped polymer was found to be content increasing from 3:1 to 3:3 x 10-2 S/cm to 5.64 x 10-7 S/cm with chloroaniline. These copolymers are added as additives in manufacturing of paint. These novel paints offer multiple protective mechanisms
Pachanoor, VijayanandMoorthi, Bharathiraja
The integration of carbon nanotubes (CNT) into composite materials has revolutionized various high-performance industries, including aerospace, marine, and defense, for their exceptional thermal, mechanical, and electrical properties. The critical nature of these applications demands precise control over the manufacturing process to ensure the optimal performance of the CNT-reinforced composites. This study employs the Taguchi approach to systematically investigate and determine the optimal proportion of CNT volume fraction, fiber volume fraction, and stacking sequence in composite materials to achieve the optimal fundamental frequency. The Taguchi method, known for its efficiency in optimizing design parameters with a minimal number of experiments, enables the identification of the most influential factors and their optimal levels for enhancing material properties. Our findings demonstrate that the proper arrangement and proportioning of these components significantly improve the
B, SrivatsanBalakrishna Sriganth, PranavBhaskara Rao, LokavarapuBiswas, Sayan
The incorporation of natural available material into synthetic materials to form a fiber within a single polymer matrix has been ignited since environment concerns become crucial nowadays. Composite materials embedded with two or more types of fibers makes a composite as hybrid. The study of hybridization of natural and synthetic fibers brings out superior mechanical and tribological properties. In our present studies, fabrication of jute & glass fiber reinforced epoxy-based polymer hybrid composites were carried out using resin infusion technique. For comparing the various properties, the composite made of pure jute fiber i.e 100% jute, pure glass fiber i.e 100% glass, the hybrid composite containing 75% jute and 25% glass fiber, 50% jute and 50% glass fiber, and 25% jute and 75% glass fiber were made and its functional behaviors were studied. The results revealed the hybrid composite containing 25% jute and 75% glass fiber possessed maximum tensile strength of 292±5.8 MPa, flexural
J, ChandradassT, ThirugnanasambandhamM, Amutha SurabiP, Baskara SethupathiRajendran, RMurugadoss, Palanivendhan
These days, aluminum and other material composites are indispensable for a wide range of engineering applications, including automotive-related ones. The machinability investigations of hybrid metal matrix composites (HMMC) made of Al 6061 are reported in this paper. Graphene nanoparticles (GNp) and boron carbide were used to reinforce Al6061 alloy for the experiment. Stir casting was used to create the hybrid composite under the right circumstances. Since HMMC is not easy to machine using conventional machining procedures, the advanced method of electrical discharge machining (EDM) was used. EDM machinability studies were carried out on stir-casted Al-B4C-GNP composite materials to examine the effects of wire EDM machining variables, including current, pulse on, and pulse off, on surface roughness and material removal rate. Taguchi based Desirability function Analysis was used to optimize the EDM process parameters for maximization of the material removal rate (MRR) and minimization
Kala, Lakshmi KMadhuri, KReddy, DamodaraTarigonda, HariprasadR L, KrupakaranTharehallimata, GurubasavarajuNaidu, B Vishnu Vardhana
The present study aims to assess the tensile properties of Caryota urens fibre reinforced polyester composites. Composites were fabricated with different fiber weight fractions starting from 5% to 35% with 5% increment. The mechanical testing of composite material was conducted using ASTM standards. The results indicated that the tensile, impact, and flexural properties of composite material were increased up to 25% fiber weight fraction; after that, they have been reduced due to some factors, like fiber distribution, which may not be uniform, and adhesion between fiber and matrix may be reduced. The optimal weight fraction of caryota urens fiber found from this study is 25%. The maximum tensile, impact, and flexural strength obtained for the composites were 36.22 MPa, 62.21 MPa, and 0.224 N/m, respectively. Water absorption characteristics show the increase of water intake behavior of composites due to their hydrophobic nature.
Santhanam, KRaja, K.Naveen, MSaranbala, MM, Naveenkumar
The research project focused on investigating the mechanical, thermal, and chemical properties of composite plates made from bamboo leaves and coconut leaves reinforced with epoxy resin that has received limited attention in previous studies. The bamboo and coconut leaves underwent alkaline treatment, were thoroughly washed with distilled water, and dried in sunlight for 24 hours. For the fabrication of three composite plates, Hand lay up method was employed according to the American Society for Testing and Materials (ASTM) standards. The compositions of the composite plates were varied as first Composition has 25 wt% bamboo leaves, 25 wt% coconut leaves and 50 wt% resin, the Second Composition has 30 wt% bamboo leaves, 30 wt% coconut leaves, and 40 wt% resin and the third composition has 35 wt% bamboo leaves, 35 wt% coconut leaves, and 30 wt% resin. Tensile test, shear and flexural tests helped determine the tensile strength, shear strength, and flexural strength of the composite
D R, RajkumarO, Vivin LeninR, SaktheevelS, Edwin Roshan
This research examines the thermal instability of slender beams composed of functionally graded materials (FGMs), with a specific focus on their suitability for engine hood components. The FGM combines the durability of aluminum with the heat tolerance of silicon nitride. The study aims to determine the maximum temperature the beam can withstand without buckling under various support conditions, simulating the uneven heat distribution experienced by engine hoods in actual use. The FGM structure comprises four longitudinally arranged layers, where the ceramic and metallic components gradually shift across the thickness. Finite element modeling software (ANSYS) is utilized to examine the buckling response under diverse temperature conditions. To enhance the thermal performance of the engine hood panel, the Taguchi L9 orthogonal array methodology is employed utilizing Minitab 19 software. The first four layers of the FGM beam are defined as process variables, while the critical buckling
Pawale, DeepakBhaskara Rao, Lokavarapu
This study investigates the frequency response characteristics of laminated composite rectangular plates, focusing on the influence of fiber orientation. The composite plates, composed of 12 layers of glass fiber reinforced polymer composites (GFRP), were chosen for their superior mechanical properties and broad applicability in engineering fields, including the automotive sector. In automotive engineering, these composites are valued for their lightweight properties and high strength, contributing to enhanced performance and fuel efficiency. The analysis employed a combination of finite element methods and Taguchi experimental design techniques to understand how fiber orientation affects the dynamic behavior of these plates. To systematically explore the impact of fiber orientation on the frequency response, the study utilized Taguchi's orthogonal array design. Specifically, the L9 (3^3) and L16 (4^4) orthogonal arrays were employed to structure the experimental runs effectively
N, SuhasC V, PrasshanthU, Anish KumarBhaskara Rao, Lokavarapu
This study investigates the forced vibration characteristics of a functionally graded material (FGM) beam possessing a square cross-section and featuring a V-shaped crack. The FGM beam exhibits a gradual transition in mechanical composition from a ceramic to a metallic surface. Employing finite element analysis software, a comprehensive numerical analysis is conducted to evaluate the frequencies and mode shapes of the cracked FGM beam under simply supported boundary conditions. The study meticulously explores the effects of various crack parameters, including crack opening width, depth, and location. The findings highlight the significant influence of the crack opening width on the frequencies, indicating that wider cracks result in decreased frequencies across all mode shapes. Conversely, the impact of crack depth and location on the dynamic behavior of the cracked FGM beam within the studied ranges appears relatively minor. These insights offer valuable perspectives into the
D, ManishC V, PrasshanthN, SuhasBhaskara Rao, Lokavarapu
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
C V, PrasshanthS, GurumoorthyBhaskara Rao, LokavarapuS, SridharS, Badri NarayananKumar, AjayBiswas, Sayan
In the highly demanding domain of advanced technologies, Wire Electro Discharge Machining (EDM) has distinguished itself as one of the most promising methods for the efficient machining of sophisticated composite materials. As a critical advanced machining process, EDM caters to the stringent requirements for intricate geometries and effective material removal. This study focuses on Al6063 Alloy Composites reinforced with Silicon Carbide and Fly Ash, materials celebrated for their high strength, exceptional oxidation-corrosion resistance, and high-temperature performance. These composites are widely applied across aerospace, marine, automotive industries, nuclear power, and oilfield sectors. The current research involves a rigorous experimental analysis and parametric optimization of the aluminum matrix composite utilizing EDM. The primary objective is to fine-tune the process parameters, including pulse-off time, current, and taper angle. The experiments were designed and conducted
Sivaram Kotha, M. N. V. S. A.Chinta, Anil KumarGuru Dattatreya, G.S.Lava Kumar, M.Surange, Vinod G.Seenivasan, Madhankumar
This study will explore the banana fibre-reinforced composites (BFRC) as a sustainable alternative to synthetic fibre composites using experimental testing and numerical models. Composites were made using compression moulding and hand lay-up techniques with varying the fibre’s orientations and contents. Mechanical testing was done in conformity with ASTM criteria, with a focus on tensile properties. Strong correlations were established between the prediction models developed by finite element analysis (FEA) using AUTODESK Fusion 360 and the experimental data were predicted by Using the Hirsch model, the tensile strength and modulus of the composites were computed the findings showed that adding more fibre improved the mechanical qualities, especially the tensile strength. The process of scanning electron microscopy (SEM), was used to find defects in the BFRC.
Omprakasam, S.Karthick, N.Althaf, Mohammed Kassim
The industrial world focuses on developing eco-friendly, natural fibres such as reinforcing lightweight, inexpensive compounds in modern days. Basalt, a rare phenomenon, derives its origins from molten volcanic rocks, which is essential for their cost-effectiveness and offers different glass fibre properties. High mechanical strength, outstanding wear resistance, and exceptional durability in a variety of environmental conditions are all displayed by basalt fibres. These fibres are ideal for reinforcing polymer composites because of their mechanical properties at high temperatures. Furthermore, basalt fibres are appropriate for long-term applications because they resist corrosion and degradation while maintaining structural integrity over time. This article provides a brief overview of basalt fibres as a substitute for glass fibres and as composite materials. Additionally, attempts are being made to draw attention to the expanding field of basalt fibre research. In the review, studies
Chidambaranathan, BibinRaghavan, SheejaSoundararajan, GopinathArunkumar, S.Ashok Kumar, R.Rajesh, K.
The article describes a two-step technique that involves making a masterbatch that is 3:1 [by weight] carboxylated nitrile rubber (XNBR) and nanoclay (NC), compounding on a two-roll mill, and moulding at 150°C and 20 MPa pressure. Tensile strength (TS), elongation at break (EB), and modulus (M100, M200 and M300) all rises with the amount of nanofiller present, peaked at 5 phr, then fell off. The NC demonstrated a tendency to aggregate at greater concentrations. The amount of reinforcement provided by the NC filler can be determined by comparing the modulus of filled compounds (M100f) to that of unfilled XNBR (M100u). This ratio rises with the amount of NC present, peaked at 5-7.5 phr, and subsequently fell. Using sorption isotherms, the swelling behaviour of the solvent through the nanocomposites was studied. With increasing NC concentration, the solvent absorption fell, reaching a minimum at 5 phr NC. When toluene sorption for diffusion via XNBR-NC composites was measured, the amount
Vishvanathperumal, S.Manimaran, K.Murali, M.Meera, C.Gopika, P.Arun, M.
Aluminum Matrix Composites (AMCs) are gaining traction in aerospace, automotive, and marine industries due to their superior mechanical properties. By integrating hard ceramic particles such as silicon carbide (SiC) and aluminum oxide (Al₂O₃) into aluminum matrices, these composites exhibit enhanced wear resistance and strength-to-weight ratios. This study explores the fabrication and characterization of 6061-T6 aluminum alloy matrix composites, reinforced individually with SiC and Al₂O₃ particles through the squeeze casting technique. The research includes a comprehensive analysis of microstructures and mechanical properties, focusing on compressive strength, Brinell hardness, and tribological behavior. Findings reveal that SiC and Al₂O₃ reinforcements boost compressive strength by up to 27% and 47%, respectively, and increase hardness by up to 29% and 20%, respectively, compared to unreinforced aluminum.
Thirumavalavan, R.Santhosh, V.Sugunarani, S.Regupathi, S.Sundaravignesh, S.
The objective of this study is to optimize and characterize an Al6061/Al2O3/MWCNT nanocomposite produced through stir casting. The investigation focused on various concentrations of 2%, 3%, and 5% by weight of Al2O3/MWCNT nanoparticles, with an average Al2O3 particle size of 40 nm. The Al6061 matrix exhibited a uniform distribution of these nanoparticles. Microstructural analysis of the nanocomposite was conducted using scanning electron microscopy. The study examined the tribological properties, including wear and coefficient of friction, as well as the tensile strength and hardness of the Al6061/Al2O3/MWCNT nanocomposites. The results indicated a significant enhancement in mechanical properties, with the ultimate tensile strength (UTS) increasing from 122 MPa to 157 MPa, and the yield tensile strength (YTS) rising from 52 MPa to 76 MPa. At a 5% concentration of Al2O3/MWCNT, the hardness test showed an increase from 28 BHN to 55 BHN. The improvement ratios for 2%, 3%, and 5
Haridass, R.Subramani, N.Viknesh, S.Mathan Kumar, M.Mownitharan, M. S.
This study investigates the wear and hardness properties of AA8011 hybrid metal matrix composites (MMCs) reinforced with silicon carbide (SiCp) and titanium diboride (TiB₂), addressing a significant gap in the existing literature regarding the optimization of reinforcement levels in AA8011. The goal is to enhance the material’s wear resistance and hardness for high-performance applications. While AA8011 is known for its excellent mechanical properties and corrosion resistance, limited research has focused on optimizing both wear behavior and surface hardness through the combination of TiB₂ and SiCp reinforcements. Using the pin-on-disk method, this study explores various compositions, showing that the composite containing 2% TiB₂ and 1% SiCp exhibited the best wear resistance, with a 25% improvement over the base alloy, and an increase in hardness by more than 115%. Developing AA8011-based composites with enhanced durability and hardness for use in demanding environments such as
Thirumavalavan, R.Mugendiran, V.Santhosh, V.Manoj, M.Sundaravignesh, S.
This research was conducted with the aim of exploring the usage of advanced lightweight materials such as aluminum matrix composite and aramid fiber reinforcement polymer for increased structural integrity of the hood of an automotive vehicle. The automotive sector is moving toward lightweight materials because of the need to enhance fuel efficiency, the importance of reducing environmental impact, and the need to ensure safety of new-generation automobiles. While traditional materials such as steel and aluminum might be very rigid and durable, they also add huge weight to the overall vehicle design. Consequently, these vehicles become more fuel inefficient, which could lead to higher emissions and pollution. The two materials chosen for this research are very promising, considering that both are characterized by high specific strength and impact resistance capabilities. The low weight of the materials is also an added bonus. While AMC is manufactured by consolidating aluminum with
Arvinda Pandian, C.K.Balaji, N.Seeniappan, KaliappanNatrayan, L.Maranan, RamyaRavi, D.
This AIR provides commonly used design considerations for using composite component parts as secondary structures in landing gear applications.
A-5B Gears, Struts and Couplings Committee
The advantages of magnesium alloy composites over traditional engineering materials include their high strength and lightweight for automotive applications. The proposed work is to compose the AZ61 alloy composite configured with 0–12% silicon nitride (Si3N4) via semisolid-state stir processing assisted with a (sulfur hexafluoride—SF6) inert environment. The prepared AZ61 alloy and AZ61/4% Si3N4, AZ61/8% Si3N4, and AZ61/12% Si3N4 are machined by electrical discharge machining (EDM) under varied source parameters such as pulse On/Off (Ton/Toff ) time (100–115/30–45 μs), and composition of composite. The impact of EDM source parameters on metal removal rate (MRR) and surface roughness (Ra) is measured. For finding the optimum source for higher MRR and good surface quality of EDM surface, the ANOVA optimization tool with L16 design is executed and analyzed via a general linear model approach. With the influence of ANOVA, the Ton/Toff and composite composition found 95.42%/1.27% and 0.36
Venkatesh, R.
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Nallasivam, J.D.Sundararaj, S.Kandavalli, Sumanth RatnaPradab, R.
Car bumpers are protective structures for the occupants of a vehicle during a collision, absorbing impact energy, such a structure is located at the front and rear of the vehicle. Metals were used to manufacture the first bumpers, and it was subsequently assessed that using a different material would reduce their weight, for example plastic, resulting in increased fuel economy and impact absorption. Also, the use of polymers reinforced by glass fibers offer good mechanical strength. This work evaluates the replacement of conventional materials by an ecologically more viable alternative, natural fibers as plastic reinforcement, reducing costs, without considerable loss in the material mechanical properties. Specimens of reinforced composite material were produced with jute fiber. The fibers, obtained through fabrics, were standardized in length of 5.0 mm and 15.0 mm. The matrix phase applied was the unsaturated and pre-accelerated terephthalic polyester resin manufactured by Royal
Soares, Rafael VilhenaDias, Roberto Yuri Costade Mendonca Maia, Pedro VictorJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
Polypropylene has been the plastic traditionally used in the manufacture of bumpers. Composite materials have been presented as an alternative due to lightness and sustainability. This article presents a composite of polyester resin and jute fiber fabric as an innovative alternative to be studied for the manufacture of automotive bumpers. Composite material was manufactured for characterization. It was used as matrix the terephthalic polyester resin, unsaturated and pre-accelerated, and the catalyst MEK V388 for curing the composite. The chosen reinforcement was the jute fiber fabric. Silicone molds with dimensions according to ASTM 3039 were used to manufacture specimens, and subsequent tensile strength test to determine properties and compare with literature data. The composite with jute fiber reinforcement with alignment 0°/0°/0° was evaluated as viable for the application in car bumpers, having its value of tensile strength surpassed that of the composite reinforced by jute fiber
Dias, Roberto Yuri CostaSoares, Rafael Vilhenade Mendonca Maia, Pedro Victordos Santos, Jose Emilio MedeirosMiranda, Igor Ramon SinimbúJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
This SAE Aerospace Information Report (AIR) provides guidelines for the design of portable Controlled Contamination Areas (CCAs) that can provide localized environmental control when processing a repair at the airplane or in a hangar environment. The use of a portable CCA may result in a better quality repair. The use of a portable CCA may assist in achieving the environmental requirements for bonded repairs specified in an approved repair procedure. This provides an option to accomplish a repair on nonremovable structure or difficult to remove components.
AMS CACRC Commercial Aircraft Composite Repair Committee
Safety concerns surrounding new energy vehicles have gained increasing national and social attention. Bottom impacts to power batteries are a leading cause of fires and explosions in new energy vehicles. Focusing on the safety of power battery bottom impacts, this article first proposes applying honeycomb panels to the battery’s bottom guard plate. Through the ball impact test, the effect of honeycomb panel surface material thickness on bottom protection is studied, and the mechanism of the honeycomb panel’s ball impact protection is explored. Second, the honeycomb panel and the aluminum alloy plate are structurally compounded to improve the ball impact protection ability. Finally, the optimized composite bottom guard plate is assembled on the lower box of the power battery, and the whole package ball impact experiment is successfully verified. This study serves as a reference for future research on power battery bottom impact protection and the industrial application of bottom guard
Hongguang, HuangYong, ZengWeiquan, Zeng
The main aim of this experimental study is to investigate the wear properties of a hybrid composite material composed of a banana fibre mat, rice husk powder, and an epoxy matrix polymer filled with multi-walled carbon nanotubes (MWCNT). This research emphasizes the assessment of the composite's characteristics and behaviour. The adjustment of various ratios of fibres and fillers within polymer matrix hybrid composites finds application in numerous engineering fields, particularly in the automotive and aerospace industries. The experimental evaluation is conducted using a pin-on-disk wear tester to analyze the specimens in terms of pin wear, friction coefficient, and friction force. Experimental trials were conducted using L9 orthogonal arrays following the Taguchi design of experiments, and the output response was optimized by implementing a hybrid approach of Gray relational analysis. It depends upon the suitability of the wear performance needs of the application to obtain the
Senthilkumar, N.Ramu, S.Yuvaperiyasamy, M.Sabari, K.
This study describes the Taguchi optimization process applied to optimize drilling parameters for glass fiber reinforced composite (GFRC) material. The machining process is analyzed in relation to process parameters using analysis of variance (ANOVA). The characteristics assessed for both the drilling and the specimen include speed, feed rate, drill size, and specimen thickness. The commercial software program MINITAB14 was used to collect and analyze the measured results. Cutting force and torque during drilling are examined in relation to these parameters using an orthogonal array and a signal-to-noise ratio. The primary goal is to identify the critical elements and combinations of elements that impact the machining process to achieve minimal cutting thrust and torque, based on the evaluation of the Taguchi technique.
Raja, RosariJannet, SabithaKandavalli, Sumanth Ratna
In this study, an investigation was conducted on friction stir spot-welded AA7075 aluminum alloy with mild steel. Fusion welding of these two materials presents challenges because of differences in melting points and metallurgical incompatibility. To overcome these challenges, friction stir spot welding was employed for joining these materials. Trial runs were conducted based on a central composite rotatable design matrix, which encompassed four factors at five levels: tool rotational speed, plunge rate, dwell time, and tool diameter ratio. Shear tests were conducted to evaluate the joint strength, and subsequently, an empirical equation was developed via analysis of variance. Notably, a joint fabricated under specific conditions demonstrated exceptional strength, with the highest fracture load of 9.56 kN. These optimal parameters included the tool rotational speed, plunge ratio, dwell time and diameter ratio of 1000 rpm, 4 mm/min, 5 sec and 3.0. This achievement underscores the
Salman, Riyam Abd AlrazaqMohammed, Khidhair JasimRajan, Rajthilak KrishnanSmaisim, Ghassan FadhilSiva Subramanian, R.
This Experimental study demonstrates the influence of titanium dioxide (TiO2) and boron carbide (B4C) reinforcements on the mechanical behaviour and microstructural characteristics of lightweight hybrid metal matrix composites (HMMCs) tailored for compact automobile applications. The Aluminium metal matrix composites were synthesized using stir casting technique to ensure uniform dispersion of titanium dioxide (TiO2) and boron carbide (B4C) reinforcements within the aluminium matrix. Characterization techniques such as scanning electron microscopy (SEM) and optical Microscopy, were employed to analyze the microstructural evolution and phase distribution. Mechanical properties such as hardness, tensile strength, and wear resistance were systematically evaluated. The results demonstrated significant enhancements in mechanical performance with 38% increase in tensile strength, 22% increase in impact strength which are attributed to the synergistic effects of TiO2 and B4C. These
Jaswin, M. ArockiaGeetha, R.Mathialagan, SaravananSuresh, S.
This study presents the mechanical characterization studies on 3 wt.% graphene (Gr) filled magnesium matrix composite reinforced with different weight fractions (4, 8, 12, 16, and 20 wt.%) of titanium carbide (TiC) particles. The matrix is AZ91 alloy, and the nano magnesium composite (NMC) is fabricated via a squeeze casting approach. The lightweight NMC is a potential solution for the automobile industry, as it reduces greenhouse gas emissions and contributes to environmental sustainability. Gr is added to enhance the composite's thermal endurance and mechanical strength. Mechanical and corrosion studies are performed as per the ASTM standards. The inclusion of Gr and 16 wt.% TiC tends to enhance the mechanical durability and corrosion resilience of the NMC when compared with other fabricated composites and cast alloys. The uniform dispersal of NC and TiC and better mould properties lead to better strength. Higher inclusion of TiC (20 wt.%) leads to brittleness, thereby decreasing the
Senthilkumar, N.
Items per page:
1 – 50 of 4032