Browse Topic: Refrigerants
This SAE Standard applies to refrigerant identification equipment used for identifying an acceptable level of R-1234yf purity in a refrigerant tank or vehicle MAC system labeled as containing R-1234yf, and not misidentify other refrigerants, per 5.7
This SAE Standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non-refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf
The oil circulation rate (OCR) is a deciding factor for the performance of automotive air conditioning systems at both the system and component levels. OCR is defined as the percentage by mass of oil present in a representative sample of oil-refrigerant mixture drawn from the system at steady state. In recent years, many industries are opting for low-OCR compressors, and so the OCR values are getting smaller, making it even more important to be able to accurately measure the OCR in the system. All the different OCR measurement techniques rely on the ASHRAE Standard 41.4 for proper calibration. This standard describes OCR measurement using a sampling technique which involves connecting an evacuated sampling cylinder at the liquid line of the system at steady state to draw a sample containing the liquid mixture of refrigerant and oil. However, several factors such as orientation of sampling cylinder and valve opening speed can affect the OCR results. The flow entering the sampling
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This SAE Standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape
To provide a procedure to inspect a refrigerant cylinder used in equipment servicing mobile air-conditioning (A/C) systems. This includes the pressure cylinder used for refrigerant recovery/recycling and charging equipment
This SAE Standard covers equipment used to remove contaminated R-134a and/or R-1234yf refrigerant from mobile air conditioning (MAC) systems
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model. The
The purpose of this SAE Standard is to provide minimum performance and operating feature requirements for the recovery of HFC-134a (R-134a) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate AHRI 700 Standard or allow for on-site recycling of the recovered refrigerant to SAE J2788 specifications by using SAE J2788 or SAE J3030 -certified equipment. It is not acceptable that the refrigerant removed from a mobile air-conditioning (A/C) system with this equipment be directly returned to a mobile A/C system. An identifier certified to SAE J2912 is to be used to identify the contents of the system prior to recovery of the refrigerant
Mobile air conditioning (MAC) systems used in passenger cars and light duty trucks are covered by these SAE Standards when servicing the refrigerant system. Technician training is required to ensure that recommended procedures are used for service and repair of MAC systems using R-12, R-134a, R-1234yf, R-744, and R-152a refrigerants. Unique requirements for each refrigerant are detailed within this standard. Technicians may be trained in any or all refrigerants. The technician shall be trained to recognize which refrigerant is being handled and how to handle it safely, and be equipped with the essential information, proper equipment, and tools which are unique to these refrigerants. This standard outlines minimum content requirements for such training programs. Training programs designed in accordance with this standard are not intended to ensure or assess the technical skills of technicians regarding the diagnosis and repair of motor vehicle air conditioners. Rather, the goal of such
Mobile Vehicle Air Conditioning (MVAC) systems are a substantial source of greenhouse gas (GHG) emissions. The use of high-GWP R-134a in MVAC systems contributes a lot to the inflated climate footprint of the segment. In recent years, with the Kigali Amendment in 2016, there has been an increasing push from the regulators in the US and EU to make a shift from R-134a to more climate friendly refrigerants such as olefins (R-1234yf), low-GWP HFCs (R-152a) and carbon dioxide (CO2). In terms of development and demonstration, these alternative technologies have come a long way in the last few years and are almost ready to be implemented. However, barring a few instances, the uptake and deployment-at-scale of these technologies have not really taken place till now in India, and in other parts of the world despite the regulatory push. In this context, this paper will take stock of the challenges in deploying and implementing these technologies at scale, particularly with an eye to domestic
The scope of SAE J2064 covers coupled hose assemblies intended for containing and circulating lubricant, liquid, and gaseous R-134a, R-152a, and/or R-1234yf refrigerant in automotive air-conditioning systems. Historically, requirements for the hose used in coupled automotive refrigerant air conditioning assemblies was included in SAE J2064. SAE J2064 has been changed to establish the requirements for factory and field coupled hose assemblies. SAE J3062 has been issued to define requirements for the hose used in these assemblies into its own standard. SAE J2064 also provides the necessary values used in SAE J2727. The certified coupling of MAC hose assemblies is required in meeting certain regulatory requirements. A hose which has met the requirements of SAE J3062 and certified in SAE J2911 shall be used as part of the coupled assembly. A hose which meets the requirements of SAE J3062 does not ensure the assembly will meet the requirements of SAE J2064. It is the hose assembly
This SAE Recommended Practice applies to the use, by automotive service technicians, of generally available leak detection methods to service motor vehicle passenger compartment air conditioning systems
The “system emissions chart” contained herein is intended to serve as a means of estimating the annual refrigerant emission rate (grams per year) from new production A/C systems equipped with specified component technologies. It provides emission values for various component technologies that are currently available, and can be expanded as new technologies are commercialized. This document provides the information to develop an Excel file template “system emissions chart” for system emission analysis. The chart includes automotive compressor technologies for conventional mobile air conditioning systems, as well as those using semi-hermetic compressors. This standard can be considered a companion document to SAE J2763. SAE J2727 estimates system emissions, taking into account production assembly variation and accounts for components that are 100% helium leak tested prior to vehicle final assembly. The results from SAE J2064 are used to better represent permeation emissions from
The purpose of this SAE Standard is to establish the specific minimum equipment requirements for recovery/recycling/recharge equipment intended for use with both R-1234yf and R-134a in a common refrigerant circuit that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. This document does not apply to equipment used for R-1234yf and R-134a having a common enclosure with separate circuits for each refrigerant, although some amount of separate circuitry for each refrigerant could be used
The automotive application places very special demands on the air conditioning system. As is the case with any other process, system efficiency is very important and the automotive air-conditioning application is no exception. While the characteristics of all the major components in the air conditioning system like compressor, condenser, evaporator and blower contribute to overall system efficiency, localized inefficiencies do play a part and so must be kept to a minimum, especially in this day and age when extra emphasis is being laid on sustainability. One such phenomenon that contributes to the system inefficiency is heat pick-up in suction line. Since the temperature at the evaporator-outlet is quite lower than ambient and also its surroundings (steering system pipes and hoses, engine, air intake pipes and so on), the refrigerant picks up heat as it moves along the suction line up to the compressor inlet. This heat pick-up is detrimental to the overall system performance. Even
This SAE Standard describes methods to understand the risks associated with vehicle mobile air conditioning (MAC) systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation, and end of life. Information for input to the risk assessment is provided in the appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape
To document and provide access to information obtained by an industry survey
The purpose of this SAE Standard is to establish the specific minimum equipment performance requirements for recovery and recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. It also is intended to establish requirements for equipment used to recharge HFC-134a to an accuracy level that meets Section 9 of this document and SAE J2099. The requirements apply to the following types of service equipment and their specific applications. a Recovery/recycling equipment b Recovery/recycling-refrigerant charging c Refrigerant recharging equipment only
This Standard is restricted to refrigeration circuits that provide air-conditioning for the passenger compartments of passenger and commercial vehicles. This Standard includes analytical and physical test procedures to evaluate refrigerant concentration inside the passenger compartment. In the early phases of vehicle evaluation, usage of the analytical approach may be sufficient without performing physical tests. The physical test procedure involves releasing refrigerant from an external source to a location adjacent to the evaporator core (inside the HVAC module). An apparatus is used to provide a repeatable, calibrated leak rate. If the system has multiple evaporators, leakage could be simulated at any of the evaporator locations. This standard gives detail information on the techniques for measuring R-744 (CO2) and R-1234yf (HFO-1234yf), but the general techniques described here can be used for other refrigerants as well
This SAE Standard applies to equipment to be used with R-1234yf refrigerant only. It establishes requirements for equipment used to recharge R-1234yf to an accuracy level that meets Section 9 of this document and purity levels defined in SAE J2099. Refrigerant service equipment is required to ensure adequate refrigerant recovery to reduce emissions and provide for accurate recharging of mobile air conditioning systems. Equipment shall be certified to meet all performance requirements outlined in this document and international/regional construction and safety requirements as outlined in this document
The intent of this standard is to establish a framework to assure that all evaporators for R-744 and R-1234yf mobile air conditioning (MAC) systems shall meet appropriate testing and labeling requirements. SAE J639 requires an assement to be performed to minimize reasonable risks in MAC systems. The evaporator (as designed and manufactured) shall be part of that risk assessment, and it is the responsibility of the vehicle manufacturer to assure all relevant aspects of the evaporator are included. It is the responsibility of all vehicle or evaporator manufacturers to comply with the standards of this document at a minimum. (Substitution of specific test procedures by vehicle manufactures that correlate well to field return data is acceptable.) As appropriate, this standard can be used as a guide to support risk assessments. With regard to certification, most vehicle manufacturers have established formal production part approval processes (PPAP) where compliance certification is
Items per page:
50
1 – 50 of 449