Browse Topic: Heat resistant materials

Items (5,821)
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This study investigates the thermal buckling behavior of axially layered functionally graded material (FGM) thin beams with potential applications in automotive structures. The FGM beam is constructed from four axially stratified sections, with the proportional amount of metal and ceramic fluctuating through the thickness. The buckling analysis is carried out for three different support configurations: clamped-clamped, simply supported-simply supported, and clamped-simply supported. The primary objective is to identify the optimal thermal buckling temperature of the FGM thin beam using the Taguchi optimization method. Beam arrangements are established using a Taguchi L9 orthogonal array and analyzed using finite element software (ANSYS). Layers 1-4 of the axially layered beam are considered process parameters, while the thermal buckling temperature is the response parameter. Minitab software performs an Analysis of Variance (ANOVA) with a 95% confidence level to identify the most
Pawale, DeepakBhaskara Rao, Lokavarapu
This research examines the thermal instability of slender beams composed of functionally graded materials (FGMs), with a specific focus on their suitability for engine hood components. The FGM combines the durability of aluminum with the heat tolerance of silicon nitride. The study aims to determine the maximum temperature the beam can withstand without buckling under various support conditions, simulating the uneven heat distribution experienced by engine hoods in actual use. The FGM structure comprises four longitudinally arranged layers, where the ceramic and metallic components gradually shift across the thickness. Finite element modeling software (ANSYS) is utilized to examine the buckling response under diverse temperature conditions. To enhance the thermal performance of the engine hood panel, the Taguchi L9 orthogonal array methodology is employed utilizing Minitab 19 software. The first four layers of the FGM beam are defined as process variables, while the critical buckling
Pawale, DeepakBhaskara Rao, Lokavarapu
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of strip up to 0.100-inch (2.54-mm) thick.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings 4.00 inches (101.6 mm) and under in diameter or least nominal cross-sectional dimension and stock of any size for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers requirements for a coating consisting of finely powdered molybdenum disulfide in a heat-resistant inorganic binder applied to parts.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant iron-nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings up to 4.00 inches (101.6 mm), exclusive, in least distance between parallel sides (thickness) or diameter, and stock of any size for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
AC-9 Aircraft Environmental Systems Committee
An MIT team uses computer models to measure atomic patterns in metals, essential for designing custom materials for use in aerospace, biomedicine, electronics, and more. Massachusetts Institute of Technology, Cambridge, MA The concept of short-range order (SRO) - the arrangement of atoms over small distances - in metallic alloys has been underexplored in materials science and engineering. But the past decade has seen renewed interest in quantifying it, since decoding SRO is a crucial step toward developing tailored high-performing alloys, such as stronger or heat-resistant materials. Understanding how atoms arrange themselves is no easy task and must be verified using intensive lab experiments or computer simulations based on imperfect models. These hurdles have made it difficult to fully explore SRO in metallic alloys.
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft quality, corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
The concept of short-range order (SRO) — the arrangement of atoms over small distances — in metallic alloys has been underexplored in materials science and engineering. But the past decade has seen renewed interest in quantifying it, since decoding SRO is a crucial step toward developing tailored high-performing alloys, such as stronger or heat-resistant materials.
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.000 inch (25.40 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a precision cold-rolled corrosion- and heat-resistant nickel alloy in the form of sheet and strip over 0.005 to 0.015 inch (0.13 to 0.38 mm), inclusive, in nominal thickness and foil up to 0.005 inch (0.13 mm), inclusive, in nominal thickness (see 8.4).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, wire, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and moderate heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.00 inch (25.4 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This procurement specification covers aircraft-quality solid rivets and tubular end rivets made from a corrosion-resistant steel of the type identified under the Unified Numbering System as UNS S34700.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, and forgings 7.0 inches (178 mm) and under in nominal diameter or least distance between parallel sides, and forging stock of any size.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of wire up to and including 0.563 inches (14.30 mm) in diameter.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.187 inch (4.75 mm) thick, inclusive, and plate up to 4.000 inches (101.6 mm) thick, inclusive.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant, work strengthened cobalt-nickel-chromium alloy in the form of bars 2 inches (50 mm) and under in nominal diameter).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.1874 inch (4.76 mm), inclusive, in thickness and plate up to 4.000 inches (101.6 mm), inclusive, in thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip 0.010 to 0.250 inch (0.25 to 6.25 mm), inclusive, in thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of seamless tubing.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings 10.0 inches (254 mm) and under in nominal diameter or distance between parallel sides, and stock of any size for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and foil 0.1874 inch (4.76 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant, work-strengthened, and aged cobalt-nickel-chromium alloy in the form of bars 2 inches (50 mm) and under in nominal diameter.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers procedures for identifying carbon and low-alloy steels, corrosion- and heat-resistant steels and alloys, maraging and other highly alloyed steels, and iron alloy sheet, strip, and plate, and aircraft tubing.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a precipitation hardenable, corrosion- and heat-resistant nickel alloy in the form of seamless tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This document covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made from a corrosion and heat resistant steel of the type identified under the Unified Numbering System as UNS S66286 and of 160 ksi tensile strength at room temperature, with maximum test temperature of parts at 1200 °F.
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers solid rivets and hollow end rivets made from a corrosion and heat resistant steel of the type identified under the Unified Numbering System as UNS S66286 and of 80 ksi single shear strength at room temperature.
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers retaining rings of the spiral wound type with uniform rectangular cross-section, made of a corrosion and heat resistant age hardenable iron base alloy of the type identified under the Unified Numbering System as UNS S66286, work strengthened and heat treated to a tensile strength of 185 to 240 ksi at room temperature.
E-25 General Standards for Aerospace and Propulsion Systems
Items per page:
1 – 50 of 5821