Results
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements specifically for road illumination devices using light emitting diode (LED) sources.
This SAE Recommended Practice covers minimum requirements for air brake hose assemblies made from reinforced elastomeric hose and suitable fittings for use in automotive air brake systems, including flexible connections from frame to axle, tractor to trailer, trailer to trailer, and other unshielded air lines with air pressures up to 1 MPa, that are exposed to potential pull or impact. This hose is not to be used where temperatures, external or internal, fall outside the range of -40 to +100 °C. Provisions for extreme low temperature performance testing to -54 °C are included in the document.
These general operator precautions apply to off-road work machines as defined in SAE J1116. These should not be considered as all-inclusive for all specific uses and unique features of each particular machine. Other more specific operator precautions not mentioned herein should be covered by users of this recommended practice for each particular machine application.
This SAE Information Report establishes a point system that encourages ease of maintenance actions on off-road machines. The point system minimizes subjectivity in evaluating maintainability as defined in ISO 8927.
This SAE Recommended Practice applies to functions of motor vehicle signaling and marking lighting devices which use light emitting diodes (LEDs) as light sources. This report provides test methods, requirements, and guidelines applicable to the special characteristics of LED lighting devices. This SAE Recommended Practice is in addition to those required for devices designed with incandescent light sources. This report is intended to be a guide to standard practice and is subject to change to reflect additional experience and technical advances.
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
This Aerospace Standard (AS) defines the requirements for a heavy duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in 400 °F 5000 psi, aircraft and missile hydraulic fluid systems.
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching devices.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing with a nominal diameter or least thickness (wall thickness of tubing) up to 5.000 inches (127 mm), inclusive (see 8.5).
This specification covers an aluminum alloy in the form of plate 3.001 to 9.000 inches (76 to 229 mm), inclusive, in nominal thickness (see 8.5).
This SAE Standard provides test procedures and performance requirements for off-highway vehicle headlamps.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is intended that all portions of the document be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
This specification defines the procedures and requirements for joining metals and alloys using the electron-beam welding process.
This data dictionary provides definitions for quantities, measurement units, reference systems, measurands, measurements, and quantity modalities commonly used in the command and control of cyber-physical systems. A cyber-physical system is an engineered system that is built from, and depends upon, the seamless integration of computational algorithms and physical components. Cyber-physical systems are often interconnected via data links and networks. The term encompasses intelligent vehicles and devices that operate in any environment, including robotic and autonomous systems.
This foundation specification (AMS1424T) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
Items per page:
50
1 – 50 of 212069