Search
Advanced Search
of the following are true
(
)

Results

Items (210,291)
This SAE Standard describes alternator physical, performance, and application requirements for heavy-duty electrical charging systems for off-road work machines, including those defined in SAE J1116
CTTC C2, Electrical Components and Systems
This document proposes a method to demonstrate compliance to engine certification rules requiring tolerance of the control system to single failures leading to Loss of Power Control (LOPC) or Loss of Thrust Control (LOTC) for electric or hybrid engines. At issue 1, the document was developed to address only fully electric engine configurations targeting single engine CS/part 23 level 1 and 2 aircraft applications. The methodology proposed herein is based on an alternative definition of Loss of Power Control (LOPC) proposed by EASA, the FAA, TCCA, and ANAC in a joint Decision Document. It is therefore only applicable to projects which elect to implement this authority-proposed alternative definition. Other approaches for the demonstration of compliance of electric engines to control system single fault tolerance requirements, including approaches based on legacy practices applicable to piston engines, remain possible. They are, however, outside of the scope of this document. Future
E-40 Electrified Propulsion Committee
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This document establishes an industry standard checklist for the auditing of the methods and procedures used in aircraft deicing and anti-icing on the ground to support conformance with the industry global standards, AS6285, AS6286 and AS6332. The checklist covers the use of SAE AMS1424 and SAE AMS1428 qualified fluids (Types I, II, III, and IV) and non-fluid methods
G-12T Training and Quality Programs Committee
The purpose of this document is to serve as a resource to aerospace designers who are planning to utilize Wavelength Division Multiplexed (WDM) interconnects and components. Many WDM commercial systems exist and they incorporate a number of existing, commercially supported, standards that define the critical parameters to guide the development of these systems. These standards ensure interoperability between the elements within these systems. The commercial industry is motivated to utilize these standards to minimize the amount of tailored development. However, since some of the aerospace parameters are not satisfied by the commercial devices, this document will also try to extend the commercial parameters to those that are necessary for aerospace systems. The document provides cross-references to existing or emerging optical component and subsystem standards. These parameter definitions, test methods, and procedures typically apply to telecommunications application and in some cases
AS-3 Fiber Optics and Applied Photonics Committee
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget
AS-3 Fiber Optics and Applied Photonics Committee
It is the purpose of this document to present design recommendations that will provide a basis for satisfactory and safe electrical installations in transport aircraft. This document is not intended to be a complete electrical installation design handbook. However, the requirements for safety extend so thoroughly throughout the electric systems that few areas of the installation are untouched by the document. It is recognized that individual circumstances may alter the details of any design. It is, therefore, important that this document not be considered mandatory but be used as a guide to good electrical application and installation design. Transport aircraft electric systems have rapidly increased in importance over a number of years until they are now used for many functions necessary to the successful operation of the aircraft. An ever increasing number of these functions are critical to the safety of the aircraft and its occupants. The greatly increased power available in
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This ARP specifies the recommended methods of marking electrical wiring and harnesses to aid in the positioning/routing of electrical wiring, harnesses and cable assemblies
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is specifically intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies. The proper application of various calculation methods is provided to determine link loss power budget(s), that depend on differing requirements on aerospace programs. A list of parameters is provided as guidance for aerospace fiber optics applications along with a check list to help assure that appropriate parameters and
AS-3 Fiber Optics and Applied Photonics Committee
This SAE Aerospace Standard (AS) is intended for use by those involved in the design of aircraft, missile, or space systems, and their support equipment to define the various types of fastener torque
E-25 General Standards for Aerospace and Propulsion Systems
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an electric vehicle using a coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the electric vehicle inlet, supply equipment connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope
Truck and Bus Electrical Systems Committee
This standard defines the requirements for the effective control of non-deliverable software. This standard can be used during the design, development, test, production, release, use, maintenance, and retirement of non-deliverable software. This can include non-deliverable software procured from external suppliers and utilized in the design, production, evaluation, test, acceptance, or calibration of a deliverable product. This standard focuses solely on the unique requirements of the operational processes that pertain to non-deliverable software as identified by clause 1.2. Operational processes not covered in this standard are addressed by the respective organization’s Quality Management System (QMS), based on the 9100-series (i.e., 9100, 9110, 9120) and/or ISO 9001 standards. If there is a conflict between the requirements of this standard, and customer or applicable statutory/regulatory requirements, the latter shall take precedence
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links
AS-3 Fiber Optics and Applied Photonics Committee
This document provides an orientation to fusion splicing technology for optical fibers and fiber optic cable. It is intended for managers, designers, installers, and repair and maintenance personnel who need to understand the process of fusion splicing. This technology is widely used in telecommunications and industrial applications, and is finding acceptance in aerospace applications
AS-3 Fiber Optics and Applied Photonics Committee
This specification specifies the engineering requirements for heat treatment, by part fabricators (users) or subcontractors, of parts made of wrought or additively manufactured nickel or cobalt alloys, of raw materials during fabrication, and of fabricated assemblies in which wrought nickel or cobalt alloys are the primary structural components
AMS F Corrosion and Heat Resistant Alloys Committee
This document covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a coupler, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts
Hybrid - EV Committee
This specification covers virgin, unfilled polytetrafluoroethylene (PTFE) in the form of sheet manufactured by compression molding and sintering
AMS P Polymeric Materials Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) with a maximum cross-sectional area of 25 square inches (161 cm2), a maximum circle size of 12 inches (305 mm), and a nominal thickness up to 3.250 inches (82.54 mm), inclusive (see 8.6
AMS D Nonferrous Alloys Committee
Wire and cable products progress through a series of handling or operational steps from the time they leave the manufacturer, and until a finished harness or assembly is ready for installation on a vehicle. Throughout these many steps, environmental or processing conditions may be present which can generate damage detrimental to the wire or cable and/or its intended application
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification provides processing and acceptance requirements for electrical discharge machining (EDM) when applied to the manufacturing of parts
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the development of aircraft and systems, taking into account aircraft functions and operating environment. It provides practices for ensuring the safety of the overall aircraft design, showing compliance with regulations, and assisting a company in developing and meeting its own internal standards. These practices include validation of requirements and verification of the design implementation for safety, certification, and product assurance. The guidelines in this document were developed in the context of U.S. Title 14 Code of Federal Regulations (14 CFR) Part 25 and European Union Aviation Safety Agency (EASA) Certification Specification (CS) CS-25. They may be applicable in the context of other regulations, such as 14 CFR Parts 23, 27, 29, 33, and 35, and CS-23, CS-27, CS-29, CS-E, and CS-P. This document addresses the development cycle for aircraft and systems that implement aircraft and system functions. It
S-18 Aircraft and Sys Dev and Safety Assessment Committee
The purpose of this SAE Aerospace Information Report (AIR) is to provide rotorcraft and engine designers with a better understanding of turboshaft engine idle power characteristics and objectives to be considered in the design and integration process. For the purpose of this document, idle is the lowest suitable steady-state power setting, most commonly corresponding to a gas generator speed setting or range. In general, a lower engine idle setting is desired by the airframer to reduce noise, fuel consumption, and main rotor downwash when on the ground and to reduce the size requirement of a rotor brake system. In contrast, the engine manufacturer generally prefers a higher engine idle setting, as operation further away from the engine design speed involves more challenges in operability and mechanical design. A variety of rotorcraft and engine factors are described for consideration. Some typical engine power and torque trends are presented for illustrative purposes. The information
S-12 Powered Lift Propulsion Committee
This document provides guidance for ECS design for UA primarily by reference to existing applicable SAE AC-9 documents with indication of how they would apply and how they may need to be adapted for UA. This document provides guidance related to environmental control for onboard equipment, cargo, animals, and passengers. This document cannot provide detail design guidance for all potential types of UA. Limited information is available for ECS requirements for UA that may carry passengers, but it should be expected that the same comfort and safety standards would be applied to UA as prescribed in current civil aviation authority rules and military specifications. Additional requirements unique to UA can be expected for totally autonomous UA operation with no provision for flight or ground crew monitoring and intervention in the event of ECS failures or malfunctions. This document does not pertain to the related ground stations that may be controlling the UA
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides additional information and the rationale used for certain elements of AS6413. This AIR is provided to assist persons performing the tests described in AS6413 with an understanding of certain aspects of the test apparatus and the test criteria, such as the volume of the test chamber, cell heating rate, and the pass/fail criteria. It will be updated concurrently with AS6413 to explain changes, provide rationales, and cover future cell/battery technologies as they arise
G-27 Lithium Battery Packaging Performance
This SAE Aerospace Standard (AS) specifies the testing requirements, including test equipment, to demonstrate a package of lithium-ion (UN3480) cylindrical cells of a format of 21700 or smaller intended for air transport contains the potential hazardous effects to the aircraft resulting from the failure of a cell within the package. The test described in this standard is intended to force a cylindrical lithium-ion cell into thermal runaway using thermal energy applied to the exterior of a cell. It is understood that, in the future, technology may be developed that will prevent cells from going into thermal runaway by this standard’s test protocol. The scope of this standard may be expanded as more technology and information become available
G-27 Lithium Battery Packaging Performance
This equipment specification covers requirements for airfield liquid anti-icing/deicing equipment for airfield snow removal purposes. The unit shall include a combination of a carrier vehicle, liquid product tank, and dispensing system. This vehicle as a unit shall be an integrated chemical dispensing deicing/anti-icing application system. Primary application is for the liquid chemical application for cleaning of ice and snow from airfield operational areas such as runways, taxiways, and ramp aprons. The term “carrier vehicle” represents the various self-propelled prime movers that provide the motive power necessary to move snow and ice control equipment during winter operations. The airport operator may require this specified piece of equipment in order to maintain the airfield during large and small snow events. When necessary, the airfield liquid anti-icing/deicing chemical applicator (ALAD) shall be a central and critical element in the winter pavement maintenance fleet in the
G-15 Airport Snow and Ice Control Equipment Committee
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 6000 rpm stepped power test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 6000 rpm and is intended as a standard procedure for common use by both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction material b Fluid c Reaction plates These three variables must be clearly identified when reporting the results of using this
Automatic Transmission and Transaxle Committee
The recommended practices of this document are intended for optical devices and associated optical cables and connectors installed inside transport category aircraft or environments of equivalent ignitability. This document covers optical radiation in the wavelength range from 380 nm to 10 μm. As explained in this document, wavelengths below this range are capable of igniting fuel-air mixtures through an ignition mechanism not considered at this issue of ARP7977. Use of wavelengths outside the range 380 nm to 10 μm should be discussed with the relevant Certification Authority
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
This standard includes ISO 9001:20152 quality management system requirements and specifies additional aviation, space, and defense industry requirements, definitions, and notes. It is emphasized that the requirements specified in this standard are complementary (not alternative) to customer and applicable statutory and regulatory requirements. If there is a conflict between the requirements of this standard and customer or applicable statutory or regulatory requirements, the latter shall take precedence. This International Standard specifies requirements for a quality management system when an organization: a needs to demonstrate its ability to consistently provide products and services that meet customer and applicable statutory and regulatory requirements, and b aims to enhance customer satisfaction through the effective application of the system, including processes for improvement of the system and the assurance of conformity to customer and applicable statutory and regulatory
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This standard establishes the requirements for performing and documenting FAI. It is emphasized the requirements specified in this standard are complementary (not alternative) to customer and applicable statutory and regulatory requirements
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This standard is applicable to AQMS COs listed in the Online Aerospace Supplier Information System (OASIS) database. This standard is intended for the management and resolution of AQMS CO’s major QMS nonconformities. This standard is not intended to address QMS nonconformities classified as minor or nonconformities related to the products or services provided by the CO
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
Items per page:
1 – 50 of 210291