Search
Advanced Search
of the following are true
(
)

Results

Items (212,979)
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as “stop & go” ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
Advanced Driver Assistance Systems (ADAS) Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This SAE Standard establishes the minimum circuit identification and requirements for Multi-Voltage Power Distribution Systems (MVPDS) for use on trucks and buses. A Multi-Voltage Power Distribution System is one that distributes two or three voltages, up to 60 VDC, to power the controls, instruments, and devices.
Truck and Bus Electrical Systems Committee
Various gas systems are classified in a broad sense, component operation is described in moderate detail, pertinent design parameters are discussed, and possible modes for system operation are listed.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Information Report (AIR) considers the following major areas: 1 major components and their ratings; 2 selection criteria for optimum design balance for electrical systems; 3 effects of operating conditions and environment on both maintenance and life of components; 4 trouble signals - their diagnosis and cure.
AGE-3 Aircraft Ground Support Equipment Committee
This specification establishes process controls for the repeatable production of preforms by Wire Fed Plasma Arc Directed Energy Deposition (PA-DED). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Recommended Practice (ARP) provides guidelines for specifying Linear Variable Differential Transformers (LVDTs) and Rotary Variable Differential Transformers (RVDTs). Information on the application, operation, design, and construction of LVDTs and RVDTs is also provided.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Recommended Practice (ARP) describes the design conditions under which tests should be conducted to demonstrate satisfactory performance of a flight critical servo-actuator under the maximum allowable particulate contamination in the associated airplane hydraulic system. Additionally, this document also describes the recommended tests and the required acceptance criteria.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Information Report provides a list of those SAE steels which, because of decreased usage, have been deleted from the standard SAE Handbook listings. Included are alloy steels from SAE J778 deleted since 1936, carbon steels from SAE J118 deleted since 1952, and all EX-steels deleted from SAE J1081. Information concerning SAE steels prior to these dates may be obtained from the SAE office on request. With the issuance of this report, SAE J778, Formerly Standard SAE Alloy Steels, and SAE J118, Formerly Standard SAE Carbon Steels, will be retired since they are now combined in SAE J1249. In the future, new assignments to SAE J1081, Chemical Compositions of SAE Experimental Steels, will be given “PS” (Potential Standard) numbers rather than “EX” numbers. The steels listed in Tables 1 and 2 are no longer considered as standard steels. Producers should be contacted concerning availability. Steel grades can be reinstated based on usage according to the critieria indicated in SAE J403
Metals Technical Committee
Gas, for the purpose of this ARP, shall be defined as the gaseous product(s) resulting from the decomposition, dissociation, or combustion of liquid or solid mono or bi-propellants. Where other gases such as heated N2, H2, H2O (steam), etc., which may have similar physical and/or chemical properties as the defined "gas", are used to effect testing economics, they may he considered as being included in this ARP.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Recommended Practice (ARP) provides definitions and background information regarding the physical performance and testing of electrohydraulic flow control and pressure control servovalves. This ARP also provides extensive guidance for the preparation of procurement specifications and for functional testing. NOTE: An example of a procurement specification is provided as Appendix A.
A-6B1 Hydraulic Servo Actuation Committee
This specification covers two methods for determining the percentage of delta ferrite in steels and other iron alloys. When applicable, this specification will be invoked by the material specification.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Aerospace Recommended Practice (ARP) is a guide for defining the requirements for aerospace piston hydraulic accumulators, including details pertinent to the design, fabrication, performance and testing of the accumulator. This type of accumulator contains a piston which separates pressurized gas and fluid.
A-6C4 Power Sources Committee
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
AS-1A Avionic Networks Committee
This specification covers a carbon steel in the form of bars up through 3.000 inches (76.20 mm) and forgings and forging stock of any size.
AMS E Carbon and Low Alloy Steels Committee
This SAE Information Report is provided as an advisory guide and is not intended to be made a procurement requirement. Individual application discretion is recommended. The content has been presented as accurately as possible, but responsibility for its application lies with the user. The document covers a number of the variables in the torque-tension relationship: friction, materials, temperature, humidity, fastener and mating part finishes, surfaces, and the kind of tightening tools or equipment used. With an understanding of the variables to be considered, several methods to determine and tighten fasteners using the torque-tension relationship are identified. This guide is limited in application to fasteners with ISO-metric or UN series threads. Other thread types, such as self-tapping or thread forming, may apply to some aspects of this standard but are not specifically covered. The procedures described in this document are based on general factors for the determination of the
Fasteners Committee
This specification covers a titanium alloy in the form of bars, wire, forgings up to 4.000 inches (101.60 mm), inclusive, and forging stock.
AMS G Titanium and Refractory Metals Committee
This standard includes ISO 9001:20152 quality management system requirements and specifies additional aviation, space, and defense industry requirements, definitions, and notes. It is emphasized that the requirements specified in this standard are complementary (not alternative) to customer and applicable statutory and regulatory requirements. If there is a conflict between the requirements of this standard and customer or applicable statutory or regulatory requirements, the latter shall take precedence. This International Standard specifies requirements for a quality management system when an organization: a needs to demonstrate its ability to consistently provide products and services that meet customer and applicable statutory and regulatory requirements, and b aims to enhance customer satisfaction through the effective application of the system, including processes for improvement of the system and the assurance of conformity to customer and applicable statutory and regulatory
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This specification covers an alkaline rust remover compound in the form of a liquid concentrate or a water-soluble powder for dilution with water.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
A-5A Wheels, Brakes and Skid Controls Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
This SAE Recommended Practice (RP) covers the general guidelines for conductive power transfer of high voltage Direct Current (DC) between OEM commercial truck chassis electrical systems and electrically powered body accessory equipment. The OEM chassis can have an EV drive train or be a hybrid chassis with or without a connection for traditional mechanical Power Take-Off (PTO). The chassis can include use of range extension systems. Voltage levels are defined as greater than 60 VDC and include typical EV chassis voltage ranges up to and including 1500 VDC based on selected component capabilities. It also covers limited functional requirements for the connection systems, body builder communication modes, and suggested operational modes. The scope of the Electric Power Take-Off (ePTO) physical electrical connection will be limited to a recommendation of the interface concept, space claim, and service features and will leave connector features and design open for future definition
Truck and Bus Electrical Systems Committee
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, SAE appointed a committee to standardize terminology, test procedures, data recording, design symbols, and so forth in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Automatic Transmission and Transaxle Committee
This specification covers one type of a non-melting, heat-stable silicone compound, for use in high tension electrical connections, ignition systems, and electronics equipment, for application to unpainted mating threaded or non-threaded surfaces, and as a lubricant for components fabricated from elastomers. This compound is effective in the temperature range from -54 °C (-65 °F) to +204 °C (400 °F) for extended periods. This compound is identified by NATO symbol S-736 (see 6.5).
AMS M Aerospace Greases Committee
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
Truck and Bus Wheel Committee
This SAE Recommended Practice describes the test procedures for conducting frontal impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Recommended Practice (ARP) describes training and approval of personnel performing certain thermal processing and associated operations that could have a material impact on the properties of materials being processed. It also recommends that only approved personnel perform or monitor the functions listed in Table 1.
AMS B Finishes Processes and Fluids Committee
This SAE Recommended Practice is applicable to all liquid-to-air, liquid-to-liquid, air-to-liquid, and air-to-air heat exchangers used in vehicle and industrial cooling systems.
Cooling Systems Standards Committee
This specification covers a silicone-rubber-remover compound in the form of a liquid supplied as a ready-to-use product.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This SAE Aerospace Recommended Practice (ARP) describes terminology specific to unmanned systems (UMSs) and definitions for those terms. It focuses only on terms used exclusively for the development, testing, and other activities regarding UMSs. It further focuses on the autonomy and performance measures aspects of UMSs and is based on the participants’ earlier work, the Autonomy Levels for Unmanned Systems (ALFUS) Framework, published as NIST Special Publication 1011-I-2.0 and NIST Special Publication 1011-II-1.0. This Practice also reflects the collaboration results with AIR5665. Terms that are used in the community but can be understood with common dictionary definitions are not included in this document. Further efforts to expand the scope of the terminology are being planned.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
This SAE Aerospace Standard (AS) provides a harmonized process and documentation requirements for the establishment of CoCs used to attest the conformity of aviation, space, and defense products (e.g., assemblies, sub-assemblies, equipment and systems, parts, material, software) or services. It includes a CoC template and supporting instructions on how to complete it. When quoted by the customer in a contractual requirement, application of this document is mandatory. In other cases, its use is recommended, but if there is a conflict between the requirements of this standard and customer or applicable statutory/regulatory requirements, the latter shall take precedence. Requirements for the establishment of Authorized Release Certificates (ARCs)—e.g., European Union Aviation Safety Agency (EASA) Form 1, Federal Aviation Administration (FAA) 8130-3 tag, Civil Aviation Administration of China (CAAC) Form 038—by an external provider holding a production approval (for new aviation products
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This SAE Recommended Practice establishes uniform procedures for testing BEVs that are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests that will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal test procedure (FTP) using the urban dynamometer driving cycle (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedures. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on subsystems apart from the vehicle.
Light Duty Vehicle Performance and Economy Measure Committee
This recommended practice is intended as a guide for the specification of electrohydraulic mechanical feedback servoactuators used for position control. It provides performance definitions and capabilities that are specific to mechanical-feedback servoactuators and different from those applicable to electrical-feedback servoactuators.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Recommended Practice (ARP) provides guidance in the design, development, qualification test, process control and production acceptance test for flight critical control valve (FCCV) design used in military flight control servoactuators where loss of single valve control could cause a catastrophic failure resulting in death, permanent total disability, and/or financial loss exceeding a defined contractual limit. The FCCV, which is one element of a flight control actuator servo control loop, is a variable position control valve which modulates fluid into and out of the servoactuator power stage cylinders. The FCCV may be mechanically driven by either a mechanical flight control system as shown in FIGURE 1 or hydraulically driven from electro-hydraulic servo valve (EHSV) modulation control flow as shown in FIGURE 2. This type of control valve is not an EHSV or a direct drive valve (DDV). The FCCV is used in military hydraulic systems which conform to AS5440.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Information Report (AIR) defines the materials, strength and finishes utilized in current linear hydraulic flight control actuators. To keep the information at a relevant minimum, only cylinders (barrels), glands and pistons are listed. Also identified are the reasons for the material selection and any pertinent comments. All data were collected from the respective suppliers.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Aerospace Information Report (AIR) describes the means of assessing the damage zone of an electrical arcing event to determine appropriate separation/segregation requirements between a power-carrying wire harness and nearby components.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification covers a solvent-based compound in the form of a liquid.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers the requirements for adhesives in film form for bonding metal facings to metal cores and to metal components of sandwich panels which are intended for use in primary and secondary structural airframe parts that may be exposed to temperatures up to 500°F (260°C).
AMS P17 Polymer Matrix Composites Committee
Items per page:
1 – 50 of 212979