Browse Topic: Lightweight materials
Durability validation of full vehicle structures is crucial to ensure long-term performance and structural integrity under real-world loading conditions. Physical test strain and finite element (FE) strain correlation is vital for accurate fatigue damage predictions. During torture track testing of the prototype vehicle, wheel center loads were measured using wheel force transducers (WFTs). In same prototype strain time histories were recorded at critical structural locations using strain gauges. Preliminary FE analysis was carried out to find out critical stress locations, which provided the basis for placement of strain gauges. Measured loads at wheel centers were then used in Multi Body Dynamics (MBD) simulations to calculate the loads at all suspension mount points on BIW. Using the loads at hard points transient analyses were performed to find out structural stress response. Strain outputs from the FE model were compared with physical measurements. Insights gained from these
Winners of the 13th edition of the Altair Enlighten Awards, presented in association with the Center for Automotive Research, were recognized during a ceremony at the CAR Management Briefing Seminars in Detroit. The awards not only acknowledged the automotive and commercial vehicle industries' best initiatives to reduce vehicle weight and meet emissions targets, but also considered other parameters such as cost reduction, part count reduction and applicability to other vehicle programs. “Starting in the 2000s, the automotive industry wasn't really that interested in optimization. Weight was an outcome of achieving performance. Seeing the rise of these digital technologies over two decades has been such a thrill,” Royston Jones, CTO of Altair Product Design and senior VP for automotive, said to kick off the event. “I'd say now we're really through the gate, particularly over the last five years where globally there's such pressure to develop products quickly. AI has really helped with
Letter from the Guest Editors
In commercial aerospace, the application areas for motors are wide and varied, each with their own unique requirements. From electric vehicle take-off and landing (eVTOL) air taxis to business jets to long-haul commercial transport aircraft, DC motors must endure various environmental conditions like extreme temperatures, shock and vibration, atmospheric pressures and signal interference, to name just a few. These applications may also demand motors that provide a fast response, high power or torque density. In addition to these requirements, the aerospace industry perpetually calls for lightweight materials and smaller installation spaces. Taken together, it can be very difficult to specify and buy a reliable motor for mission-critical equipment. This article will present common commercial aerospace applications that pose performance and environmental challenges for DC motors along with a summary of the stringent aerospace industry standards that the motors must satisfy. It will also
Working on the nanoscale gives researchers a lot of insight and control when fabricating and characterizing materials. In larger scale manufacturing, as well as in nature, many materials have the capacity for flaws and impurities that can disrupt their complex structure. This creates several weak points that can easily break under stress. This is common with most glass, which is why it is thought of as such a delicate material.
Most motor mounts, even for EV applications, are made of metal alloys. It makes intuitive sense: It's a vibration-intensive mounting application that demands durability that matches the life of the vehicle itself. But there is another way. Now, a composite nylon-based motor mount on the Cadillac Lyriq has won the Society for Automotive Analysts' Innovation in Lightweighting Award. The mount is a collaboration between GM, anti-vibration parts maker DN Automotive and chemical company Celanese. It is made with Zytel PA NVH Gen 2, a new polyamide (PA 66). The results not only showed up in development data, but in the end product, which has reviewers raving about how quiet the Lyriq's cabin is - “crypt quiet,” according to Automotive News.
Historically, patch antennas have been used for SmallSat communications. While new antenna technologies are in development, some are not optimized for size, mass, and performance — especially beyond low-Earth orbit (LEO). Engineers at NASA’s Marshall Space Flight Center identified the need for a small form factor antenna to provide high data rate communications for such missions.
In the era of rapidly increasing of EV/AVs, there are more electronic Modules/sensors & bigger battery packs added to EV (Electric Vehicles) vehicles, which has resulted in added mass penalty thereby impacting the range of EV vehicles. Range anxiety remains one of the biggest obstacles to widespread electric-car adoption, which drives the necessity of mass optimization to improve EV range. Multi-material design is a trend to lightweight automotive structures. The automotive industry is looking to make use of carbon fibers in their subsystem design. The challenge in current unidirectional carbon fiber design is difficulty to tailor stiffness/ strength across the fiber direction & orienting plies to system / vehicle load path. Optimization of ply angle for unidirectional composite provides constant fiber angle across the ply which does not address multiple load paths of all component /system. This drives for an opportunity to get the fiber angles tailor made to specific load path
Items per page:
50
1 – 50 of 322