Browse Topic: Lightweight materials
ABSTRACT This paper addresses candidate technologies for attaching steels to selected lightweight materials. Materials of interest here include aluminum and titanium alloys. Metallurgical challenges for the aluminum-to-steel and titanium-to-steel combinations are first described, as well as paths to overcome these challenges. Specific joining approaches incorporating these paths are then outlined with examples for specific processes. For aluminum-to-steel joining, inertia, linear, and friction stir welding are investigated. Key elements of success included rapid thermal cycles and an appropriate topography on the steel surface. For titanium-to-steel joining, successful approaches incorporated thin refractory metal interlayers that prevented intimate contact of the parent metal species. Specific welding methods employed included resistance mash seam and upset welding. In both cases, the process provided both heat for joining and a relatively simple strain path that allowed significant
ABSTRACT For this particular effort, TARDEC Center for Systems Integration (CSI) was tasked to lead an effort to develop an underbody kit that would serve multiple functions. The underbody kit would provide an additional 1,200 lbs of net buoyancy to enhance water mobility per the LAV. This program is in the development and testing phase with a prototype expected to be produced June of 2015. This program is one of multiple efforts to ensure the FOLAV meet all system requirements to keep the vehicle viable to 2035. In addition, the TARDEC concept/prototype must meet the same mine blast protection provided by the underbody D-Kit that was produced for the fleet of vehicles in 2010. This is a unique challenge as a combination of buoyancy, mine blast, and structural requirement on a ground military vehicle is novel idea. Vehicle weight and survivability requirements are difficult challenges on combat vehicles, to include the LAV, so the TARDEC solution would have to reduce the weight of the
ABSTRACT For this particular effort, the U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC) Center for Systems Integration (CSI) was tasked to develop a buoyancy/survivability kit that would serve multiple functions. The underbody kit would meet or surpass current required protection levels. Plus the kit was to ensure that the LAV-25A2 (Light Armored Vehicle) continues to meet the swim requirement. However, the overarching objective is to meet the survivability, ground mobility, and water mobility requirements. Combining the accomplishments in the TARDEC & PM-LAV (Program Manager for the Light Armored Vehicle) survivability program in 2013-2014 with the TARDEC & PM-LAV buoyancy/survivability kit developed in 2015-2016, the overall weight is decreased, water mobility is improved, and survivability is significantly improved. This is a unique challenge as a combination of buoyancy, mine blast, and structural requirement on a ground military vehicle is novel
In commercial aerospace, the application areas for motors are wide and varied, each with their own unique requirements. From electric vehicle take-off and landing (eVTOL) air taxis to business jets to long-haul commercial transport aircraft, DC motors must endure various environmental conditions like extreme temperatures, shock and vibration, atmospheric pressures and signal interference, to name just a few. These applications may also demand motors that provide a fast response, high power or torque density. In addition to these requirements, the aerospace industry perpetually calls for lightweight materials and smaller installation spaces. Taken together, it can be very difficult to specify and buy a reliable motor for mission-critical equipment. This article will present common commercial aerospace applications that pose performance and environmental challenges for DC motors along with a summary of the stringent aerospace industry standards that the motors must satisfy. It will also
Most motor mounts, even for EV applications, are made of metal alloys. It makes intuitive sense: It's a vibration-intensive mounting application that demands durability that matches the life of the vehicle itself. But there is another way. Now, a composite nylon-based motor mount on the Cadillac Lyriq has won the Society for Automotive Analysts' Innovation in Lightweighting Award. The mount is a collaboration between GM, anti-vibration parts maker DN Automotive and chemical company Celanese. It is made with Zytel PA NVH Gen 2, a new polyamide (PA 66). The results not only showed up in development data, but in the end product, which has reviewers raving about how quiet the Lyriq's cabin is - “crypt quiet,” according to Automotive News
Working on the nanoscale gives researchers a lot of insight and control when fabricating and characterizing materials. In larger scale manufacturing, as well as in nature, many materials have the capacity for flaws and impurities that can disrupt their complex structure. This creates several weak points that can easily break under stress. This is common with most glass, which is why it is thought of as such a delicate material
Historically, patch antennas have been used for SmallSat communications. While new antenna technologies are in development, some are not optimized for size, mass, and performance — especially beyond low-Earth orbit (LEO). Engineers at NASA’s Marshall Space Flight Center identified the need for a small form factor antenna to provide high data rate communications for such missions
In the era of rapidly increasing of EV/AVs, there are more electronic Modules/sensors & bigger battery packs added to EV (Electric Vehicles) vehicles, which has resulted in added mass penalty thereby impacting the range of EV vehicles. Range anxiety remains one of the biggest obstacles to widespread electric-car adoption, which drives the necessity of mass optimization to improve EV range. Multi-material design is a trend to lightweight automotive structures. The automotive industry is looking to make use of carbon fibers in their subsystem design. The challenge in current unidirectional carbon fiber design is difficulty to tailor stiffness/ strength across the fiber direction & orienting plies to system / vehicle load path. Optimization of ply angle for unidirectional composite provides constant fiber angle across the ply which does not address multiple load paths of all component /system. This drives for an opportunity to get the fiber angles tailor made to specific load path
This SAE Aerospace Information Report (AIR5271) covers the basic attributes of a second-generation robust, reliable high-density fiber optic interconnect system for aerospace applications. The intent is to take advantage of recent commercial developments in materials, components and manufacturing methods to develop rugged high-density fiber optic interconnects optimized for aerospace and automotive applications, which can accommodate a variety of optical fiber waveguide types. These waveguide types include single mode and multi-mode glass/glass fibers and waveguides, plastic clad silica fibers and waveguides, and all polymer fibers and waveguides. This second generation interconnect system should represent a dramatic improvement over first generation. The cable should be extremely robust eliminating any concerns over cable damage or fiber breakage in an aerospace environment. A high-density fiber optic interconnect system provides the physical medium for optical data and control
Composite materials have time and again proven to be highly useful, especially in the aerospace industry with the increasing need for light-weight materials albeit with high stiffness to strength ratios. The Ceramic Particle Reinforced Composites can be effectively utilized in tuning the natural frequencies of components by varying the volume fractions up to 40% with the help of Representative Volume Element (RVE) / Unit Cell Models as explained in Reference [1]. The aim of this paper is to tune the natural frequencies of a typical blade used in a gas turbine engine by modifying the material properties without changing the design profile significantly. The design profiles of blades are arrived at after a lot of engineering iterations from aerodynamics stability point of view and are also finalized based on meeting key performance parameters. However, the structural analysis studies are carried out after the profile generation, which may sometime predict that the natural frequencies are
The transition from traditional gasoline-powered automobiles to electric vehicles has taken time. Two significant challenges of engine-powered vehicles are greenhouse gas emissions and fuel economy. Working with lightweight materials has emerged as a critical area for improvement in the automotive industry in today’s world. The most efficient method for increasing power output is to reduce the weight of vehicle components. Composite materials have significantly benefited from research and development because they are stronger, more recyclable, and easier to integrate into vehicles. The primary goal of this research is to design the body and chassis frame of a two-seater electric car. A computational fluid dynamics (CFD) analysis was performed to determine the body’s drag coefficient and structural analysis to obtain the frontal impact and torsional rigidity of the chassis to develop a practical electric car design. The design was carried out with the help of CATIA V5 software, while
Researchers have developed a lighter, yet more robust knee brace for the elderly who suffer from knee problems. Using 3D printing techniques, the team has managed to reduce the weight of a traditional exoskeleton knee brace (typically built using metal) by 30 percent, thanks to an innovative design that uses lightweight plastic and assistive springs
This document describes the initial development, evolution, and use of reticulated polyurethane foam as an explosion suppression material in fuel tanks and dry bays. It provides historical data, design practice guidelines, references, laboratory test data, and service data gained from past experience. The products discussed in this document may be referred to as "Safety Foam," "Reticulated Polyurethane Foam," "Baffle and Inerting Material," or "Electrostatic Suppression Material." These generic terms for the products discussed in this document are not meant to imply any safety warranty. Each individual design application should be thoroughly proof tested prior to production installation
When weight reduction is the primary goal, 3D-printed aluminum alloys are a frequent choice for aerospace and high-performance motorsports applications. Aluminum is much lighter than nickel alloys and has been particularly popular for laser powder-bed fusion (LPBF) because it’s good for prototyping and easy to post-process
Items per page:
50
1 – 50 of 309