Browse Topic: Semiconductors

Items (636)
ABSTRACT The M109A7 Self-Propelled Howitzer (SPH) developed by BAE Systems is groundbreaking for its utilization of 610 Vdc high-voltage (HV) electrical power generation and distribution. When the vehicle entered development ten years ago, silicon based power conversion devices were a proven and effective technology to provide the demanding power needs of the new military platform. Since then, technological advances in Silicon Carbide (SiC) semiconductors have shown great promise in providing significant improvements to power density, efficiency, and operating temperature. When GE Aviation developed a prototype Silicon Carbide power converter which debuted at the 2014 GVSET Symposium, both TARDEC and BAE Systems, P&S recognized the benefit to evaluating and demonstrating the technology on the M109A7. In August 2016, the plan came to fruition when the joint TARDEC, BAE Systems P&S, and GE Aviation team successfully completed a series of demonstration tests showing that the technology
Miller, Mark R.Brinton, GordonRoden, GareyHamilton, GeorgeJochum, EricEddins, RichardMilford, ChristineShiver, Richard
ABSTRACT Several power converters are presently under development for the US Army TARDEC using all Silicon Carbide (SiC) devices for the power switches. Power modules have recently become available which incorporate multiple SiC devices for both the active and passive switches. Modules fabricated by 2 different vendors (Powerex and MS Kennedy) in a standard half H-Bridge configuration using the same type and number of devices internally (Cree 1200 Volt/20 A DMOSFETs and 1200 Volt/10A SBD) have been obtained and tested. This paper will summarize the main test results including the comparison of the conduction losses, switching losses, switching capability, thermal characteristics, gate drive approach, and physical characteristics (mass/dimensions). As expected, most of the characteristics were very similar between the 2 modules and had reasonable scaling from the individual device characteristics. The differences in the internal connections for the modules result in some differences
Kajs, JohnCastagno, ScottSchupbach, MarceloMitchell, Gavin
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
Residual thermal energy, a by-product of automobiles, contributes notably to climate change and global warming. This energy is produced as exhaust gases in vehicles with internal combustion engines and as heat from batteries and fuel cells in eco-friendly vehicles. A thermo-electric generator (TEG) can transform this waste heat into useful electrical energy. The efficiency of the TEG is influenced by several factors, including the properties of the materials used, the geometrical design (form factor), and the conditions under which it operates. In this study, we examine how the choice of materials for the semiconductors, electrodes, ceramics, and joining components influences the overall performance of the TEG. We evaluate the TEG’s performance based on output power, and efficiency. The findings from these measurements allow us to determine which material and its properties significantly impact the TEG’s performance. For optimal TEG performance, seek materials with high Seebeck
Ponangi, Babu RaoMutagi, MeghaBali, Gaurav
Active cooling integration into substrates can be utilized to significantly improve power density per unit volume, reduce weight, and improve overall heat dissipation for power semiconductors. The principal limitation for semiconductor device reliability has been identified as device operating temperature for decades. Electronic systems that are required to operate in extreme environmental conditions require direct and highly efficient thermal management materials and solutions. This investigation compares traditional power semiconductor packaging and thermal management incorporating multiple thermal resistances to a novel substrate with integrated active cooling, utilizing proven and established materials introducing active cooling directly under the die
Vethake, ThiloRazavi, RezaHodapp, GuidoDenham, CraigSaums, David
Scientists at the University of Florida have pioneered a method for using semiconductor technology to manufacture processors that significantly enhance the efficiency of transmitting vast amounts of data across the globe. The innovation, featured on the current cover of the journal Nature Electronics, is poised to transform the landscape of wireless communication at a time when advances in AI are dramatically increasing demand
After announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a University of Michigan team has demonstrated a reconfigurable transistor using that material. The study is featured in Applied Physics Letters
The ForgeStar® program, from U.K.-based Space Forge, aims to harness the unique environment of space to create ultra-pure materials that cannot be replicated on Earth. The key opportunities lie in producing high-performance semiconductors and super-alloys with fewer defects and superior properties, thanks to the low-gravity and vacuum conditions of space. Space Forge's ForgeStar satellites will be used to produce advanced materials such as alloys, proteins and semiconductors in the ultra-vacuum and microgravity conditions of space. Manufacturing in low Earth orbit (LEO) has huge potential across sectors from medicine to advanced electronics. Two examples - high frequency amplifiers and super alloys - that Space Forge is focused are described in the next two paragraphs
Northwestern University researchers have developed new devices based on a low-cost material to aid in the detection and identification of radioactive isotopes. Using cesium lead bromide in the form of perovskite crystals, the research team found that they were able to create highly efficient detectors in both small, portable devices for field researchers and in very large detectors. The results are more than a decade in the making
A new industry-first open platform for developing the software-defined vehicle (SDV) combines processing, vehicle networking and system power management with integrated software. NXP Semiconductors' new S32 CoreRide Platform was designed to run “multiple time-critical, safety-critical, security-critical applications in parallel,” Henri Ardevol, executive vice president and general manager of Automotive Embedded Systems for NXP Semiconductors, told SAE Media. NXP's new foundation platform for SDVs differs from the traditional approach of using multiple electronic control units (ECUs), each designed to handle specific vehicle system control tasks. Since each unit requires its own integration work, the integration workload exponentially increases with each additional ECU on a vehicle
Buchholz, Kami
Light is used in many ways in sensor technology for high precision applications. For example, white light technology can be used for confocal chromatic sensors and interferometers that can make extremely precise and accurate measurements of distance and thickness down to the sub-nanometer range. This makes them suitable for production monitoring in different industries, including semiconductor fabrication. However, even though both sensor types work with white light technology, the two measurement methods differ significantly, although they complement each other
A multi-institutional project led by a Penn State researcher is focused on developing an all-in-one semiconductor device that can both store data and perform computations. The project recently received $2 million in funding over three years as part of the new National Science Foundation Future of Semiconductors (FuSe) program, a $45.6 million investment to advance semiconductor technologies and manufacturing through 24 research and education projects across the United States
A significant contribution towards climate change and global warming is the residual thermal energy generated from automobiles as exhaust gases in IC engine-based vehicles and from batteries and fuel cell heating in green vehicles. This waste heat, also known as thermal energy, has the potential to be transformed into valuable electrical energy through the utilization of a thermo-electric generator (TEG). The performance of the TEG depends on various parameters such as material properties, geometries (form factor), and operating conditions. Current research focuses on the effect of the form factor, i.e., the semiconductor’s length, width, and height (thermocouple), on the overall performance of the TEG. Eleven cases are examined by varying the length, width, and height of the thermocouple. The TEG’s performance is measured using its internal resistance, open circuit voltage, maximum current, output power, and efficiency. Current work reveals that there is a significant impact on TEG’s
Bali, GauravMutagi, Megha DharnendraPonangi, Babu Rao
To further shrink electronic devices and to lower energy consumption, the semiconductor industry is interested in using 2D materials but manufacturers need a quick and accurate method for detecting defects in these materials to determine if the material is suitable for device manufacture. Researchers have developed a technique to quickly and sensitively characterize defects in 2D materials
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods. The
Kumar, YB KishoreYB, KiranTarigonda, HariprasadDoddipalli, Raghurami Reddy
To turn an ultra-small component on and off, one requires an actuator — a device that transmits an input, such as electricity, into physical motion. Actuators in small-scale technologies to date have critical limitations; for example, if it's difficult to integrate the actuator into semiconductor electronics, real-world applications of the technology will be limited. An actuator design that operates quickly, has precise on/off control, and is compatible with modern electronics would be immensely useful
With a new microscopy technique that uses blue light to measure electrons in semiconductors and other nanoscale materials, a team of Brown University researchers is opening a new realm of possibilities in the study of these critical components, which can help power devices like mobile phones and laptops
Low-dimensional materials are essential in optoelectronic, electrical, and contemporary photonics areas because of their specific properties with decreased dimensions. Low-dimensional materials are those with dimensions in the nanoscale range that are between 1 and 100 nm. Halide perovskites of low dimension can be produced inexpensively using solution-processable procedures, unlike usual semiconductor nanomaterials. Since halide perovskite in thin layers may be produced utilizing a variety of solution-based techniques like simple spin coating. It is possible to produce it with a variety of compositions using low-cost, simple, and large-scale procedures. Quantum dots, perovskite nanoplatelets, nanosheets, perovskite nanorods or nanowires, and other low-dimensional perovskites are all examples of such small-dimensional devices that have been created in a range of morphologies (two-dimensional). In this work, a 1D array of perovskite solar cells (methyl ammonium lead halide) is modeled
P, GeethaSudarmani, R.Venkataraman, C.Shubha, S.
The sun has tremendous potential to address the world’s increasing energy needs, but the increased cost of employing lunar power is a considerable hurdle when equated to more conventional energy sources. The low energy density and low conversion efficiency of solar radiation, expensive raw materials, and labor-intensive manufacturing process all contribute to the high cost of a photovoltaic system. In the last ten years, advances in nano science and nanotechnology have opened up new possibilities for the creation of effective solar cells. Designing semiconductor, metal, and polymer nanostructure designs for solar cells has become possible. Understanding the methods involved in the photovoltaic energy conversion like optical and electrical process, has also benefited from theoretical and modelling studies. The high price and insufficient efficiency of current solar cells prevent the widespread usage of solar energy. One-dimensional (1-D) nanomaterials have particularly opened up new
P, GeethaSudarmani, R.Venkataraman, C.Shubha, S.
The process of bringing new materials to solar panels can be full of repetitive tasks, evaluations, and risk. It requires a researcher to prepare a sample and then go through multiple steps to test each sample using different instruments — a process that is both time consuming and requires a lot of electricity. Researchers at North Carolina State University have created RoboMapper, a robot capable of conducting experiments more efficiently and sustainably to develop a range of new semiconductor materials with desirable attributes
Research into the synthesis of new materials could lead to more sustainable and environmentally friendly items such as solar panels and light emitting diodes (LEDs). Researchers from Ames National Laboratory and Iowa State University have developed a colloidal synthesis method for alkaline earth chalcogenides. This method allows them to control the size of the nanocrystals in the material. They were also able to study the surface chemistry of the nanocrystals and assess the purity and optical properties of the materials involved
Rice University engineers are turning sunlight into hydrogen with record-breaking efficiency thanks to a device that combines next-generation halide perovskite semiconductors with electrocatalysts in a single, durable, cost-effective, and scalable device
Semiconductor chips, micropatterned surfaces, and electronics all rely on microprinting, the process of putting precise but minuscule patterns millionths to billionths of a meter wide onto surfaces to give them new properties. Traditionally, these tiny mazes of metals and other materials are printed on flat wafers of silicon. But as the possibilities for semiconductor chips and smart materials expand, these intricate, tiny patterns need to be printed on new, unconventional, non-flat surfaces
A battery intelligence pioneer will work with a venerable semiconductor yield-improvement firm in a partnership that promises to drastically accelerate the production ramp for the many new EV battery factories on the horizon. Voltaiq, the battery-analysis experts, and PDF Solutions announced the partnership in late March. Tal Sholklapper, Voltaiq's CEO and cofounder, said the EV battery industry is in sore need of help in reducing the manufacturing development cycle, which can take anywhere from four to 10 years from shovels in the ground to output of a consistent, quality product. “The automotive battery industry is really behind.” he said in an interview with SAE Media. “There is a lot of manual analysis and semi-empirical learning going on,” and that slows the discovery of future problems. He said the partnership had the potential to cut battery factory development time in half
Clonts, Chris
Toyota Motor Corporation has developed a new battery electric vehicle (BEV) on the dedicated e-TNGA platform for BEVs, which was designed to lower the center of gravity of the vehicle and increase body stiffness. In addition to a full-time 4WD system, another feature of this new BEV is its pleasurable driving experience. A new inverter drive unit was developed for this system. Unlike the previous inverter, the advantage of the new inverter is that it is small enough to be mounted inside the transaxle housing, thereby contributing to the availability of interior and luggage space. The temperature rise of the power semiconductors in the inverter was reduced considerably by the development of a new power semiconductor for BEVs. This enables a parallel layout of two power semiconductors instead of three. The components of the inverter were also downsized. A coreless current sensor was adopted, and capacitors were developed with significantly lower capacitance. The rear inverter adopts
Yuichi, ShimoKanzaki, TakaoYanagi, TakashiGoto, YukioKurihara, TakashiKobayashi, Masayoshi
This report summarizes the main lines of effort for the Electro-Optics Materials Research (EOMR) program including its goals and major accomplishments, focusing on the past 5 years. This EOMR program was an effort within 601102A.31B.1 titled “Optoelectronic and Integrated Photonic Materials and Device Research” for FY16-FY19 and 611102A.AA8.1 titled “Photonic Materials and Device Research” for FY20-FY21. The focus of this EOMR for most of the program was to develop novel semiconductor optoelectronic devices to reduce the size, weight, power, and cost (SWaP-C) of chemical and biological detection and identification systems
One chip, multiple benefits. That's the claim made by U.S. semiconductor company Qualcomm Technologies Inc. about its new, scalable system-on-a-chip (SoC) product family, called Snapdragon Ride Flex. Unveiled at CES2023 and due to enter the market in early 2024, Snapdragon Flex is the auto industry's first scalable family of SoCs that can run a digital cockpit and ADAS features simultaneously, according to the company. Snapdragon Ride Flex is the latest member of the Snapdragon SoC family. Qualcomm's first-generation Ride Platforms are currently available in commercialized vehicles. Newer generations, which include the Ride Vision stack that can handle ADAS applications, are being tested by Tier 1s. They are expected to arrive on MY2025 vehicles from various OEMs, according to Qualcomm
Blanco, Sebastian
Army Research Laboratory, Adelphi, MD Developing single photon UV detection for compact chemical and biological sensors. This report summarizes the main lines of effort for the Electro-Optics Materials Research (EOMR) program including its goals and major accomplishments, focusing on the past 5 years. This EOMR program was an effort within 601102A.31B.1 titled “Optoelectronic and Integrated Photonic Materials and Device Research” for FY16-FY19 and 611102A.AA8.1 titled “Photonic Materials and Device Research” for FY20-FY21. The focus of this EOMR for most of the program was to develop novel semiconductor optoelectronic devices to reduce the size, weight, power, and cost (SWaP-C) of chemical and biological detection and identification systems. Specifically, the program addressed the need for high sensitivity photodetectors in the near-UV (NUV) spectrum between 300 and 350 nm for biological agent detection using light-induced fluorescence techniques employed by the Tactical Biological
Despite recent supply-chain disruptions, semiconductor buyers are increasingly spoiled for choice when it comes to chip manufacturers. From a chipmaker’s perspective competing for “sockets” in the next gadget — whether it be a mobile phone a VR headset, or an EV — is a game of speed. As a result, competition among producers continued to reduce product development and delivery times — once years to now a few short months
CuSbS2 is a promising compound semiconductor for the thin film heterojunction solar cell absorber layer. The chemical spray pyrolysis technique is adopted to fabricate CuSbS2 thin film solar cells. The aqueous solution is sprayed over the soda-lime glass substrates at a constant spray rate of 10 ml/min. The films are obtained at the optimum substrate temperature of 260 °C. The thin films' of XRD spectra reveal the polycrystalline nature of the chalcostibite structure of CuSbS2, with lattice parameters of a = 0.600 nm, b = 0.380 nm, and c = 1.445 nm respectively. Micro-Raman spectra also confirm the CuSbS2 crystal phase. The optical band gap of these films is found to be 1.44 eV, which is close to the optimum band gap for maximal conversion efficiency. The optical absorption coefficient of these films is ≥ 104 cm-1. These films are found to be p-type. Finally, work on fabricating a conventional thin film heterojunction solar cell is undertaken. CuSbS2 thin film solar cell is prepared in
kumar, Y.B. KishoreDoddipalli, Raghurami ReddyD, NagamalleswariTarigonda, Hariprasad
Silicon is one of the most abundant elements on Earth, and in its pure form the material has become the foundation of much of modern technology, from solar cells to computer chips. But silicon’s properties as a semiconductor are far from ideal
This standard applies to the aerospace and defense industries and their supply chain
E-1 Environmental Committee
The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly. Several real-time data such as performance graphs, time left, and other current information were sent back to the
Viswanath, ShreyaSiddharth, S.Subramanian, Jeyanthi
Whether it's on top of a self-driving car or embedded inside the latest gadget, Light Detection and Ranging (LiDAR) systems will likely play an important role in enabling vehicles to see in real time, phones to map three-dimensional images, and enhancing augmented reality in video games. The challenge is that these 3D imaging systems can be bulky, expensive, and hard to shrink down to the size needed for new applications
Engineers have created a deep-ultraviolet (UV) laser using semiconductor materials that show great promise for improving the use of UV light for sterilizing medical tools, among other applications. The aluminum gallium nitride-based device is capable of emitting a deep-UV laser at sought-after wavelengths and modal line widths. The team used molecular beam epitaxy, a crystal growth technique, to grow a high-quality crystal of aluminum nitride
Items per page:
1 – 50 of 636