Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 150

Recent Books

Browse All 967

Recently Published

Browse All
Transportation contributes 27% of the greenhouse gas emissions in the US. Governments worldwide are developing new programs to hasten the adoption of electric vehicles (EVs) in the transition to zero-emission vehicles. However, the success of EV adoption generally depends on user preferences. This study explores what we can find out about consumer preferences while accounting for unobserved heterogeneity. Consumer choices for EVs, including plug-in EVs (PEVs) and fuel-cell EVs (FCEVs), are analyzed using the California Vehicle Survey (2019) data. Several factors are examined, including the availability of clean source energy (installed solar panels) at home, preferable location for recharging PEVs, past driving experience with EVs, availability of public charging infrastructure, and sociodemographic factors. A mixed multinomial (random parameter) logit model is estimated, exploring the associations between the selected variables and EV consumer preferences while accounting for
Moradloo, NastaranMahdinia, ImanKhattak, Asad
This research study investigates the influence of undercover design on three critical aspects of vehicle performance: water entering into air intake filter, Aerodynamic performance, thermal performance on vehicle engine room components (Condenser, Radiator and Air Intake System). Undercover serves the purpose of protecting Engine, underhood components and also improves aerodynamics of the vehicle. Through CFD simulations, various undercover design configurations: Full Undercover, no undercover and half undercover cases are evaluated to assess their effectiveness in mitigating the water ingress into the air intake system. Additionally, we explore the implications of these design alterations on the thermal performance and aerodynamic drag. By systematically exploring these interactions, results provided valuable insights on the effect of three undercover configurations related to vehicle performance which can help automotive engineers to develop the undercovers that strike a balance
Padakandla, Kishore KumarNagendra, K. YallaBisoyi, Ram Prasad
Electric Vehicles and Battery-Fuel_Cell hybrid vehicles are increasingly becoming popular in the market, especially in the commercial vehicle segment. Range estimation and control is of paramount importance as it is the main cause of anxiety among the vehicle owners. This paper discusses application of Reinforcement Learning (RL) to achieve range control. In RL, the learning agent choses actions dependent on the state of the environment and gets a reward in return. Ultimately the agent will learn the policy of choosing the actions for each state such that his long-term reward is maximized. The technique of RL has been applied for various scenarios where in a look up table (between the states of a system and actions to be taken) needs to be developed for optimal performance. In this paper, we use RL to manipulate other energy sources and sinks like Fuel Cell and HVAC (in addition to the battery which is the main energy source) for range control, and thereby achieve the optimal
Changavar, Ganesh
Effective thermal management is crucial for vehicles, impacting both passenger comfort and safety, as well as overall energy efficiency. Electric vehicles (EVs) are particularly sensitive to thermal considerations, as customers often experience range anxiety. Improving efficiency not only benefits customers by extending vehicle range and reducing operational costs but also provides manufacturers with a competitive edge and potential revenue growth. Additionally, efficient thermal management contributes to minimizing the environmental impact of the vehicle throughout its lifespan. Digital twins have gained prominence across various industries due to their ability to accelerate development while minimizing testing costs. Some applications have transitioned to comprehensive three-dimensional models, while others employ model reduction techniques or hybrid approaches that combine different modeling methods. The discovery of unknown working mechanisms, more efficient and effective control
Palacio Torralba, JavierKapoor, SangeetJaybhay, SambhajiLocks, OlafKulkarni, Shridhar DilipraoShah, Geet
In recent times, indoor air quality has become an important concern as it affects people’s health and comfort. According to WHO report, air pollution causes 7 million deaths every year. PM2.5 has been identified as a key pollutant which impacts human health causing diseases like stroke, heart diseases, breathing issues, cancer and so on [1]. In today's time, we travel by personal vehicle every day, commuting for hours. It is an extension to our homes. Unfortunately, due to frequent door and windows opening, the cabin air gets exposed to outside pollution, and we end up breathing pollutants. To mitigate the problem, air purifiers are added in the automobile. As people are becoming more aware and conscious about good air quality, there is a growing demand for cabin interior air quality solutions for automobiles. A popular approach is to add an air purifier inside cars like ones being used in our homes to bring down the PM2.5 levels. The air purifier consists of a filter, blower system
Pimpalkar, AnkitPatel, AbhishekSonkar, SurabhiRajaur, DeepakJoshi, Rishi
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Mittal, SachinSaha, AniketKumar, MukeshUmbarkar, Shriganesh
India features diverse climatic zones, spanning from tropical in south to alpine in north. Since most of the regions are hot, vehicle cabin cooling analysis dominates over heating analysis, creating a notable technology gap that exists in cabin heating. Nonetheless, in colder regions of India and Europe, maintaining optimal cabin heating is crucial for human comfort. Furthermore, in climates prone to mist and frost formation, ensuring the accuracy and effectiveness of cabin heating mechanisms becomes crucial, as it directly correlates with safety considerations that comes prior to mere comfort requirements. To reduce the technology gap and physical testing in cold climatic conditions this work is proposed, which will enable us to predict cabin heating performance of vehicle on highway running as well as in stationary condition for Electric Vehicles (EV) and Internal Combustion Engine Vehicles (ICEV) in 1D Computer Aided Engineering (CAE) software. A detailed Transient Cabin Heating
Soni, RahulShah, GeetKulkarni, ShridharM, ChandruVangala, Sai KrishnaJaybhay, SambhajiNayakawadi, Uttam
Thermal management in electric vehicles plays a significant role, in keeping all the electronic components under the safe operating region for lower power dissipation, higher efficiency and this increases the component’s life. Based on the increase in range of e-vehicles, the power dissipation requirement had increased from OEMs. In addition, the compact size, weight, and limited cooling technique have increased the thermal management requirements in printed circuit boards (PCB). In a passive cooling technique, high thermally conductive metal with plastic overmould concept in PCB cover or housing will have a huge advantage in transferring the heat from e-components to keep within operating temperature conditions [1, 6]. The advantage of alumina or mica metal insert is that it has higher thermal conductivity and electrical resistivity, which helps to dissipate the heat at a higher level when it is locally in contact with hot spot regions of the PCB. This concept also helps to reduce the
Rajasekaran, Arun PrasadRajendran, RathinBadiger, Shashikanth
Electric Vehicles (EVs) have rapidly grown as a means for clean mobility, as they zero down tail pipe emission of greenhouse gases. Additionally, greenhouse gases such as Hydro-Fluoro-Carbon (HFCs) based refrigerants used in Mobile Air-Conditioning (MAC) are under global scrutiny for their high Global Warming Potential (GWP). To prevent earth environment to pass the climate tipping point that will be irreversible within human capacity, actions such as rapid phase down of high GWP rated HFCs under Kigali Amendment to Montreal Protocol are enacted. India being amongst signatory nations is now working to fast track phase-down use of high GWP refrigerant and transit to low GWP refrigerant options. Nearly half of national HFCs use and emissions are for manufacture and service MAC. Vehicle OEMs supplying to markets in developing countries (e.g. European nation and non-Article 5 Parties) have already phased out HFC-134a (GWP=1400) through alternate refrigerant solutions. The work presented
Maurya, AnuragVenu, SantoshKapoor, SangeetKhan, Farhan
The present study develops and analyses a novel thermal management system that utilizes a serpentine cooling plate with fluid flow channels to regulate the temperature of cylindrical lithium-ion batteries in an electric vehicle battery module. The research investigates the impact of many variables affecting the cooling efficiency during discharge processes, including C-rate, number of cooling channels in the cooling plate, inlet fluid velocity and aluminium nanoparticle concentration in the fluid. The study includes 49 lithium-ion batteries with a capacity of 4.9 Ah each using NMC chemistry and a form factor of 21700 connected in series and parallel. A coolant made of water-glycol combination in 70:30 ratio is considered to disperse the thermal energy generated in the batteries. With the increase in the number of cooling channels, the maximum temperature of the batteries is reduced significantly. Increasing the cooling fluid's velocity reduces the batteries' maximum temperature
Yogeshwar, DasariRepaka, Ramjee
Permanent magnet synchronous (PMS) motors are frequently used in electric vehicles because of their high power density, stable output torque and low noise. During the operation of an electric motor, some of the electrical energy is converted into heat. The rise in motor temperature hampers motor performance (power output, demagnetization, breakdown of winding insulation, efficiency and component lifespan). The losses occurring in electric motors during operation mainly include: stator loss, winding copper loss, rotor iron loss, eddy current loss in magnets and mechanical losses. The life and operating reliability of a motor depends on the thermal performance of the motor. This paper describes a detailed procedure for an indirect coupled analysis between Ansys Maxwell and Ansys Fluent, in order to predict critical thermal characteristics of the motor and cooling jacket. The main objective of this paper is to model the PMS motor with a cooling system based on input electrical and
Shandilya, AnandKumar, Vivek
With the advent of electric vehicles and advance trends in power train there is an increasing demand in improving the overall cabin comfort level. This is especially true when it comes to electric vehicles as the major source of sound other than the external flows would be from the HVAC systems for the vehicle. The noise source can be further divided on structural noise and flow induced noise; the paper would be focusing on prediction of flow induced noise levels. Flow induced noise by the HVAC’s would be critical since there are significant advancements in the cabin insulations/materials from externally generated noise sources. Automotive HVAC system consist of complex flow paths, blower, flaps, ducts, and vents which are the main source of noise generation in HVAC systems. With packaging space beneath the IP been premium, changes proposed to improve the noise levels are expensive and are understood at later level/phase of product development cycle. This paper puts forward an approach
Raut, Prashant MohanChakraborty, ArdhenduYadav, Rahul KumarArora, Maneesh
The study aims to develop a Battery Thermal Management System (BTMS) that incorporates phase change material (PCM) and various types and quantities of fins to reduce the battery surface temperature when discharging at varied C rates. A computational model is created to study an NMC Lithium-Ion Battery (LIB) having a form factor of 21700 and a capacity of 4900 mAh. The cylindrical battery's anisotropic thermal conductivity and specific heat capacity are used to develop a precise thermal model representing its temperature distribution. The battery is placed inside the aluminum cylindrical shell, and the fins are mounted on that shell. The gap between the shells is filled with the PCM. The investigation covers several situations, such as 1C and 2C battery discharge rates, the number of fins, and fin shapes. The fins act as a network of heat sources to disperse thermal energy evenly between the LIB and the PCM. Studying the impact of various fin shapes on the BTMS performance showed small
Yogeshwar, DasariRepaka, Ramjee
The proposed smart, efficient eco-cooling strategy leverages the AC system's efficiency sensitivity to the vehicle speed and the thermal storage of the cabin to coordinate the AC operation with the vehicle speed profile by actively shifting the AC thermal load toward the more efficient region at higher vehicle speeds. An investigation is now being conducted on vehicle cabin climate control systems to lower energy consumption and enhance battery electric vehicle range when in pure electric mode. OEMs of electric vehicles are always searching for novel concepts that will extend the driving range of their vehicles. Basically, an air conditioning system needs high-voltage power from high-voltage battery packs to keep the interior of the cabin in a comfortable temperature range during the summer. In order to meet these demands, the AC system in electric vehicles becomes an additional power consumer. This smart ECO AC system consists of the importance and impact of the various components of
Agalawe, KIRAN R.Nagarhalli, Prasanna VHAJGUDE, NIKHIL
The world over has resulted in severe pollution problems. They are classified as air and noise pollution. Air pollution is caused by dispersion of emittents from engine exhaust to the atmosphere at different concentration levels. Similarly, the emission of unwanted sound from engine structure, intake and exhaust are the principal source of noise pollution. In diesel engines structurally, radiated noises have numerous origins. The complexity arises from the fact that the whole engine structure is simultaneously excited by several forces of widely different characteristics. Primary exciting force which is a gas force in the cylinder resulting from the combustion. Secondary exciting forces of considerably different characteristics are generated by the operation slider crank mechanism but related to some primary gas force in some non-linear manner resulting in piston impact, impacts in bearing, impacts in timing gears etc. Force produced in accessories such as valve gear system, fuel
Goel, ArunkumarMeena, Avadhesh Kumar
Over the past few decades, there has been a notable increase in stakeholder’s attention on Earth's climate. The automotive industry, being a major contributor to this phenomenon, has been endeavoring to mitigate its impact through various measures. These efforts include reducing emissions in existing internal combustion engine (ICE) vehicles and promoting electric vehicles (EVs) as a feasible alternative for consumers. Despite these initiatives, there remains a persistent challenge in improving the fuel economy and driving range of vehicles. India, located along the Tropic of Cancer, experiences both tropical and subtropical climates. As a result, a substantial portion of the total heat absorbed is from solar radiation. The higher heat load necessitates extensive use of air conditioning (AC) systems, which significantly contributes to the overall power consumption of vehicles. Various measures are being implemented to mitigate this heat load and enhance the efficiency of AC operations
Kumar, SunnyVenu, SantoshRaj, ShivamKandekar, Ambadas
One of the major goals of the automotive industry is to improve vehicular fuel efficiency and performance with much lesser percentages of harmful tailpipe emissions. One of the major technologies includes fuel cell electric vehicles (FCEV). Fuel cell electric vehicle can positively affect the transportation industry with regards to increase in the greenhouse gas emission, air pollution. A proton exchange membrane (PEM) fuel cell that is widely used in commercial vehicles takes hydrogen and oxygen to generate the electricity. Hydrogen stored either in liquid or compressed gas, is supplied from anode end and oxygen from atmosphere is supplied from cathode end. The atmospheric air, which enters fuel cell, also contains pollutants such as nitrogen oxides (NOx), Sulphur oxides (SOx), carbon monoxides and dioxides (CO, CO2), methane, ammonia etc. Operation of fuel cell in a geographic region, where the concentration of pollutants mentioned is significant leads to adsorption on the catalysts
Bhat, AdithyaShah, SaurabhChoubey, AyushBarik, MadhusmitaMallappanavar, BabuPrasad P, Shilpa
Tracking of energy consumption has become more difficult as demand and value for energy have increased. In such a case, energy consumption should be monitored regularly, and the power consumption want to be reduced to ensure that the needy receive power promptly. Our objective is to identify the energy consumption of an electric vehicle from battery and track the daily usage of it. We have to send the data to both the user and provider. We have to optimize the power usage by using anomaly detection technique by implementing deep learning algorithms. Here we are going to employ a LSTM auto-encoder algorithm to detect anomalies in this case. Estimating the power requirements of diverse locations and detecting harmful actions are critical in a smart grid. The work of identifying aberrant power consumption data is vital and it is hard to assure the smart meter’s efficiency. The LSTM auto-encoder neural network technique is used here for predicting power consumption and to detect anomalies
Deepan Kumar, SadhasivamArun Raj, VR, Vishnu Ramesh KumarManojkumar, R
Thermal management is paramount in electric vehicles (EVs) to ensure optimal performance, battery longevity, and overall safety. This paper presents a novel approach to improving the efficiency of cooling systems in automotive passenger vehicles, focusing specifically on battery circuits and e-motor cooling. Current systems employ separate pumps, degassing tanks, valves, and numerous mechanical components, resulting in complex layouts and increased assembly efforts. The primary challenge with the existing setup lies in its complexity and the associated drawbacks, including heat energy loss, increased weight, and space constraints. Moreover, the traditional approach necessitates a significant number of components, leading to higher system costs and maintenance requirements. To address these challenges, this paper proposes an integrated cooling system where the pump, degassing tank, and valves are consolidated into a single housing. This streamlined design reduces the component count by
Anandan, RamThiyagarajan, RajeshSharma, AkashVenkataraman, P
The automobile industry is currently undergoing a huge transition from IC Engine based systems to electric based mobility systems. Battery technology based on Li ion has made interesting move towards popularization of electric vehicles (EVs) in world market. battery management system (BMS) forms one of the major constituents of this technology. Battery pack as a whole is the most sought-after component of EVs which needs intensive monitoring and control. Battery parameters such as State of Health (SOH) and State of Charge (SOC) needs precise measurement and calculation. Monitoring them directly is a difficult task. In the present work methodologies and approaches for estimating the batteries parameters using Artificial Intelligent methods were investigated. Six machine learning algorithms used for state estimation were critically reviewed. The employed methods are linear, random forest, gradient boost, light gradient boosting (light-GBM), extreme gradient boosting (XGB), and support
Vashist, DevendraRaj, RishiSharma, Deepanshu
Electric Trucks offer one of the most promising alternatives to vehicles in the field of transport of goods. In battery electric trucks, heat is generated by components present in the electric truck such as battery of the electric vehicle, electric drive system, Endurance Brake System etc. which require cooling and Thermal management system to control and monitor the cooling system. The thermal management system considered here includes two coolant tanks. The first coolant tank performs thermal management for the battery and Electric-Drive(e-Drive) components which can heat up to 600C and the second coolant tank performs thermal management for HPR circuit, and it is used to break the charging circuit to protect the battery getting charged beyond 100% using regenerative braking concept. HPR (High performance resistor) is the component which can heat up to ~950C and make sure the battery is not getting charged beyond the safe limits. Since HPR is a critical component and operates at high
Pekala, Sagar MohanaZacharias, NevinKulkarni, Krathika
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
The essential aspect of an automobile is its braking system. Brakes absorb the kinetic energy of the rotating parts, i.e., wheels, and dissipate this energy into the surroundings in the form of heat. This entire process is quite complex, and the brake disc is subjected to extreme thermal and structural stresses along with deformation, which might damage the disc. This paper presents a structural and thermal analysis of an Audi Q3 brake disc using an ANSYS 2021-R1. The present brake disc is designed using SOLIDWORKS software. Composite materials are added in the ansys material library by adding their respective characteristics. The thermal analysis mainly focused on temperature variation and directional heat flux. The structural study was conducted to understand the stresses developed during braking and the deformations observed. Along with a comprehensive structural and thermal analysis, this work has also estimated the life of the brake disc, the factor of safety, and the real-time
Bahulekar, AtharvShiralkar, ShaunakJomde, AmitShamkuwar, SonalPatane, PrashantShinde, TarangDandin, Shahbaz
Residual thermal energy, a by-product of automobiles, contributes notably to climate change and global warming. This energy is produced as exhaust gases in vehicles with internal combustion engines and as heat from batteries and fuel cells in eco-friendly vehicles. A thermo-electric generator (TEG) can transform this waste heat into useful electrical energy. The efficiency of the TEG is influenced by several factors, including the properties of the materials used, the geometrical design (form factor), and the conditions under which it operates. In this study, we examine how the choice of materials for the semiconductors, electrodes, ceramics, and joining components influences the overall performance of the TEG. We evaluate the TEG’s performance based on output power, and efficiency. The findings from these measurements allow us to determine which material and its properties significantly impact the TEG’s performance. For optimal TEG performance, seek materials with high Seebeck
Ponangi, Babu RaoMutagi, MeghaBali, Gaurav
In light of global warming and power issues, reducing carbon emissions through the use of renewable energy sources has become a global concern. A ubiquitous mechanical motion in daily life is vibration, and one of the hot topics in this field of study is how to capture vibrational vitality and transform it to electrical power. Vibration dynamism can be captured by utilizing tribo-electric nano generators, which operate on the principles of electrostatic induction electrification due to contacts. COMSOL software is used to simulate the interaction between the voltage between the electrodes, the transferred charge, and the electrode moving distance of a triboelectric nanogenerator. A brief description of the simulation process is provided in this work, along with a theoretical interpretation of the simulation outcome. The experimental results revealed that increasing the rpm from 10 to 1000 per second led to substantial increase in Isc from 1.35nA to 225nA, cause enhanced triboelectric
P, GeethaJothiprashanth, R