Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent EDGE Research Reports

Browse All 142

Recent Books

Browse All 936

Recently Published

Browse All
Fossil fuel usage causes environmental pollution, and fuel depletion, further affecting a country’s economy. Biofuels and diesel-blended fuels are practical alternatives to sustain fossil fuels. This experimental study analyses lemongrass oil’s performance, emissions, and combustion characteristics after blending with diesel. Lemongrass oil is mixed with diesel at 10 (B10), 15 (B15), and 25% (B25) and evaluated using a 5.20 kW direct injection diesel engine. B10 brake thermal efficiency is 36.47%, which is higher than other blends. The B10 displays an 8.73% decrease in brake-specific fuel consumption compared to diesel. An increase in exhaust gas temperature for B10 than diesel is 4.5%. It indicates that higher lemongrass oil blends decrease exhaust gas temperature. The decrease in average carbon monoxide emissions in B10 to diesel is 22.19%. The decrease in hydrocarbon emissions for B10 to diesel is 7.14%. Biodiesel with lemongrass oil increases nitrogen oxide (NOx) because of
Swami Punniakodi, Banumathi MunuswamyArumugam, ChelliahSuyambazhahan, SivalingamSenthil, RamalingamBalasubramanian, DhineshPapla Venugopal, InbanaathanNguyen, Van NhanhCao, Dao Nam
This article considers the application of a robust control technique for vehicle steer-by-wire (VSbW) system subjected to variations in parameters based on adaptive integral sliding mode control (AISMC). The AISMC has been designed to control the VSbW system to cope with the uncertainties in system parameters. The proposed adaptive control scheme provides the solution for perturbation boundedness, as there is no need to have a prior knowledge of perturbation bound in the uncertainty. In addition, the proposed adaptive control design can avoid overestimation of sliding gain under unknown prior knowledge of perturbations. Moreover, the inclusion of integral sliding mode control (ISMC) leads to elimination of the reaching phase in trajectory solution of controlled system. Computer simulations have been used to verify the effectiveness of proposed AISMC to show the superiority of the proposed control technique; in this regard, a comparison between AISMC and other control methods from the
Abbas, Saad JabbarHusain, Suha S.Al-Wais, SabaHumaidi, Amjad Jaleel
This specification covers a corrosion-resistant steel in the form of wire
AMS F Corrosion and Heat Resistant Alloys Committee
To provide specifications for lighting and marking of industrial wheeled equipment whenever such equipment is operated or traveling on a highway
OPTC3, Lighting and Sound Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars and forgings 1.50 inches or less in diameter or least distance between parallel sides (thickness
AMS E Carbon and Low Alloy Steels Committee
Air spring systems are challenging to mathematically model due to the complexity of their nonlinear dynamic characteristics. Numerous air spring mechanical and thermodynamic models have been proposed, but this study focused on the development and analysis of a new thermodynamic air spring model under a polytropic thermodynamic process that could accurately represent the force output in a multibody dynamics (MBD) virtual suspension subsystem. This model considered function inputs of sprung mass, un-sprung mass, and design height to efficiently generate updated air spring properties for new vehicle configurations, specifically for a self-propelled sprayer application. After this model was validated against physical ground-truth sensor data, it was utilized in a sensitivity study to experimentally test an alternative air spring component and to understand the resulting performance effect on an operator comfort key performance indicator
Adams, Bailey
This specification covers a corrosion- and heat-resistant steel in the form of seamless tubing
AMS F Corrosion and Heat Resistant Alloys Committee
The following terminology has been generated by the ATA/IATA/SAE Commercial Aircraft Composite Repair Committee (CACRC) and provides terminology for design, fabrication, and repair of composite and bonded metal structures
AMS CACRC Commercial Aircraft Composite Repair Committee
In the realm of transportation science, the advent of deep learning has propelled advancements in predicting longitudinal driving behavior. This study explores the application of deep neural network architectures, specifically long–short-term memory (LSTM) and convolutional neural networks (CNNs), recognized for their effectiveness in handling sequential data. Using a 3-s temporal window that includes past vehicle progress, speed, and acceleration, the proposed model, a hybrid LSTM–CNN architecture, predicts the vehicle’s speed and progress for the next 6 s. The approach achieves state-of-the-art performance, particularly within a 4 s horizon, but remains competitive even for longer-term predictions. This is achieved despite the simplicity of its input space, which does not include information about vehicles other than the target vehicle. As a result, while its performance may decrease slightly for longer-term predictions due to the lack of environmental information, it still offers
Lucente, GiovanniMaarssoe, Mikkel SkovKahl, IrisSchindler, Julian
This document has been prepared and issued to provide information and guidance on the application of AQAP 2110 when the Supplier adheres to the provisions of 9100. This document is published as AQAP 2009 Annex F and 9137. It was jointly developed by NATO and industry representatives for use by NATO and industry to facilitate the use and understanding of the relationship between the AQAP 2110 and 9100
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This SAE practice is intended for the sample preparation of test pieces for automotive wheels and wheel trim. The practice provides a consistent scribing method for use on test panels and or component parts with substrate chemical pretreatment and coating systems. Test specimens can then be subjected to various corrosion tests in order to evaluate performance without significant variations of the degree of exposure of the substrate. The scribing is used to create a break in the coating/finishing as can occur in the field through gravel and other damaging conditions. NOTE— Significant variability is attributed to surface contour, coating hardness/softness, operator reproducibility, and the scribing tool and it’s condition
Wheel Standards Committee
Dynamic wireless charging (DWC) systems can make up electrified roads (eRoads) on which electricity from the grid is supplied to electric vehicles (EVs) wirelessly while the EVs travel along the roads. Electrification of roads contributes to decarbonizing the transport sector and offers a strong solution to high battery cost, range anxiety, and long charging times of EVs. However, the DWC eRoads infrastructure is costly. This article presents a model to minimize the infrastructure cost so that the deployment of eRoads can be economically more feasible. The investment for eRoad infrastructure consists of the costs of various components including inverters, road-embedded power transmitter devices, controllers, and grid connections. These costs depend on the traffic flow of EVs. The configuration and deployment strategy of the proposed eRoads in Southeastern Canada are designed with optimized charging power and DWC coverage ratio to attain the best cost-effectiveness. Well-designed
Qiu, KuanrongRibberink, HajoEntchev, Evgueniy
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design of flanges on temperature sensors intended for use in gas turbine engines. Three figures detail the configuration of standard size flange mounts with bolt holes, slotted flanges, and miniaturized flanges for small probes
E-32 Aerospace Propulsion Systems Health Management
This SAE Aerospace Recommended Practice (ARP) defines the nomenclature of temperature measuring devices. General temperature measurement related terms are defined first, followed by nomenclature specifice to temperature measuring devices, particularly thermocouples
E-32 Aerospace Propulsion Systems Health Management
Life cycle analyses suggest that electric vehicles are more efficient than gasoline internal combustion engine vehicles (ICEVs). Although the latest available data reveal that electric vehicle (EV) life cycle operational efficiency is only 17% (3 percentage points) higher than a gasoline ICEV, overall life cycle efficiencies including manufacturing for EVs are 2 percentage points lower than for ICEVs. Greenhouse gas (GHG) emissions of EVs are only 4% lower than ICEVs, but criteria emissions of NOx and PM are approaching or exceeding two times those of gasoline ICEVs. Significant reductions in electric grid emissions are required to realize EV’s anticipated emission benefits. In contrast, hybrid electric vehicles (HEVs) have over 70% higher efficiency and 28% lower GHG emissions than today’s EVs. For heavy-duty trucks using today’s gray hydrogen, produced by steam–methane reforming, overall life cycle efficiencies of ICEs and fuel cells are 63% higher than electric powertrains using
Wade, Wallace R.
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, ThomasKarrer, Rafael
With the electrification of the automotive industry, electric motors have emerged as pivotal components. A profound understanding of their vibrational behaviour stands as a cornerstone for guaranteeing not only the optimal performance and reliability of vehicles in terms of noise, vibration, and harshness (NVH), but also the overall driving experience. The use of conventional finite element analysis (FEA) techniques for identification of the natural frequencies characteristics of electric motors often imposes significant computational loads, particularly when accurate material and geometrical properties and wider frequency ranges are considered. On the other hand, traditional reduced order vibroacoustic methodologies utilising simplified 2D representations, introduce several assumptions regarding boundary conditions and properties, leading to sacrifices in the accuracy of the results. To address these limitations, this study presents a novel electric motor modal analysis approach by
Andreou, PanagiotisTheodossiades, StephanosHajjaj, Amal Z.Mohammadpour, MahdiRicardo Souza, Marcos
Nowadays, electrification is largely acknowledged as a crucial strategy to mitigate climate change, especially for the transportation sector through the transition from conventional vehicles to electric vehicles (EVs). As the demand for EVs continues to rise, the development of a robust and widespread charging infrastructure has become a top priority for governments and decision-makers. In this context, innovative approaches to energy management and sustainability, such as Vehicle-to-Grid (V2G), are gradually being employed, leading to new challenges, like grid service integration, charge scheduling and public acceptance. For instance, the planned use scenario, the user’s behavior, and the reachability of the geographical position influence the optimal energy management strategies both maintain user satisfaction and optimize grid impact. Firstly, this paper not only presents an extensive classification of charging infrastructure and possible planning activities related to different
Innocenti, EleonoraBerzi, LorenzoKociu, AljonDelogu, Massimo
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the total elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions. These systems combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium-ion batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost. This work presents a series/parallel hybrid electric powertrain derived from automotive applications (Honda i-MMD) tailored to
Donateo, TeresaSpada Chiodo, Ludovica
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct cargo capacities: 0%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads. The calibration suggested that the engine could operate in a selected
Iñiguez, ErasmoMarco-Gimeno, JavierMonsalve-Serrano, JavierGarcia, Antonio
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050, this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme, but this is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Applications demanding high power or long operational range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain. The current paper therefore introduces a serial HEV solution for a large wheel loader application of 12t tipping load, which is an example of a
Weber, JostSchatorje, JesperFrekers, YonaHerrmann, OlafGries, Rafael
A major issue of battery electric vehicles (BEV) is optimizing driving range and energy consumption. Under actual driving, transient thermal and electrical performance changes could deteriorate the battery cells and pack. These performances can be investigated and controlled efficiently with a thermal management system (TMS) via model-based development. A complete battery pack contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. However, such an early modeling stage requires detailed cell geometry and specifications to estimate the thermal and electrochemical energies of the cell, module, and pack. To capture the dynamic performance changes of the LIB pack under real driving cycles, the thermal energy flow between the pack and its TMS must be well predicted. This study presents a BTMS model development and validation method for a 75-kWh battery pack used in mass-production, mid-size battery SUV under WLTC. Eighty thermocouples, pressure, and
Sok, RatnakKishida, KentaroOtake, TomohiroNandagopal, KamaleshwarKusaka, JinMizushima, NorifumiNoyori, Takahiro