Browse Topic: Fibers

Items (4,302)
-43-43-43
Hromatka, MatheusSalvaro, Diego B.Binder, CristianoMichelotti, Alvaro C.Berto, Lucas F.
This paper analyzes the potential of combining natural fibers with nanomaterials to develop advanced composites for automotive sector applications, providing a sustainable alternative to parts traditionally produced with metallic materials. The metallic alloy in the automotive industry is widely used in vehicle manufacturing, but faces significant challenges, such as high production costs, high weight, susceptibility to corrosion, and rigorous recycling processes. Natural fibers stand out for favorable mechanical properties, low cost, low weight, and eco-friendly material, making promising alternatives to metals and synthetic fibers. The combination of natural fibers and nanomaterials creates composites with improved mechanical and thermal, reducing any limitations inherent to natural fibers. Therefore, composites combined, called hybrid, have a high potential for use in various automotive components, such as in structural and non-structural applications. This study also analyzes the
Corrêa, KarythaCabral, GabrielSantiago, MarceloVeloso, VerônicaChaves, Matheus
There is a growing demand for new materials that meet mechanical and structural performance requirements, with specific properties, especially in the automotive industry. From a context of innovation and global needs to be met, there is the appreciation of composite materials, specifically applied in the automotive sector, since these can be obtained from the combination of two or more different materials, obtaining certain properties from the individual characteristics of its phases, expanding the availability of materials to be used in this sector. In recent years the use of natural fibers in composite materials for automotive applications has gained relevance due to factors such as sustainability, low weight and good mechanical properties. The attempt to combine innovation and environmental preservation make such applications promising, aiming to obtain ecological solutions, considering that natural fibers of vegetable origin such as sisal, jute and flax are biodegradable and
Dias, Roberto Yuri CostaSantos Borges, Larissa dosBrandao, Leonardo William MacedoMendonca Maia, Pedro Victor deSilva de Mendonça, Alian Gomes daFujiyama, Roberto Tetsuo
Musa sapientumSaccharum officinarum L
Santos Borges, LarissaDias, Roberto Yuri CostaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aircraft structures for weight reduction due to their high specific strength and modulus. However, their weak interlaminar properties lead to high sensitivity to out-of-plane loads such as impact, making them prone to delamination damage, which threatens flight safety. To enhance interlaminar performance, through-thickness reinforcement technologies, particularly Z-pinning and stitching, have become key research focuses. This paper systematically reviews the manufacturing processes, structural mechanical characteristics, and application progress in aerospace structures of these two mainstream through-thickness reinforcement technologies. Research shows that Z-pintechnology, by implanting metal or CFRP pins, and stitching technology, by sewing multiple fabric layers with fiber threads, both effectively bridge interlaminar cracks, significantly improving the impact resistance of composites. However, the implantation
Cui, BoZhang, YongjieZhang, ChuzheJin, Tao
The intent of this specification is for the procurement of carbon fiber and fiberglass epoxy prepreg products with 350 °F (177 °C) cure for aerospace applications; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the production quality assurance section (4.3) of this base specification, AMS6891.
AMS P17 Polymer Matrix Composites Committee
Aiming at the technical bottlenecks of electric vehicles (EVs) in terms of range, energy efficiency and thermal management, this paper proposes an innovative mechanical system design scheme that integrates lightweight materials, topology-optimised structure and mechatronic energy recovery. Through multi-physics simulation and experimental verification, the coupling mechanism between mechanical design and electrochemical performance is revealed, providing theoretical support for the development of energy-efficient electric vehicles. The research adopts a hybrid structure of carbon fiber reinforced polymer (CFRP) and aluminum alloy, and combines it with topology optimization technology to achieve lightweight (18% weight reduction) and improved impact resistance (40% improvement in energy absorption) of the battery box; the design of a bimodal energy recovery system integrating flywheel energy storage and magnetorheological damper, which can achieve an energy recovery efficiency of 82.7
Xu, NanxinSong, ZiyangHan, QiyuChen, XiaoxianMiao, ZhengchenSong, Jinlong
The intent of this specification is for the procurement of the material listed on the QPL; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the Quality Assurance section of the base specification, AMS6891.
AMS P17 Polymer Matrix Composites Committee
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
Gogula, Venkateswarlu
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Nylon, Teflon, Kevlar. These are just a few familiar polymers — large-molecule chemical compounds — that have changed the world. From Teflon-coated frying pans to 3D printing, polymers are vital to creating the systems that make the world function better.
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance.
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance. The company was officially founded in Aachen, Germany, in 2020, however its core founding team first began developing new approaches to the use of materials that make commercial and military vehicles invisible to radar as back as 2014. FibreCoat is known for inventing a novel technology to coat metals and plastics onto fibers, thus combining the properties of the fibers and the coating material, during the fiber-spinning process.
A fiber sensor inspired by the shape of DNA, developed by researchers at Shinshu University, introduces a new design for more durable, flexible fiber sensors in wearables. Traditional fiber sensors have electrodes at both ends, which often fail under repeated movement when placed on body joints. The proposed double-helical design, however, places both electrodes on one end, allowing the sensor to endure repeated stretching and movement, effectively addressing a key limitation of conventional wearable sensors.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
What if the clothes you wear could care for your health? MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.
Innovators at the NASA Glenn Research Center have developed a toughened hybrid reinforcement material made from carbon fiber and carbon nanotube (CNT) yarn for use in polymer matrix composites (PMCs). The new material improves toughness and damping properties of PMCs, enhancing impact resistance, fatigue life, as well as structural longevity.
Composite materials are increasingly utilized in industries such as automotive and aerospace due to their lightweight nature and high strength-to-weight ratio. Understanding how strain rate affects the mechanical and crashworthiness properties of CFRP composites is essential for accurate impact simulations and improved safety performance. This study examines the strain rate sensitivity of CFRP composites through mechanical testing and finite element analysis (FEA). Experimental results confirm that compressive strength increases by 100%–200% under dynamic loading, while stiffness decreases by up to 22% at a strain rate of 50 s−1, consistent with trends observed in previous studies. A sled test simulation using LS-Dyna demonstrated that the CFRP crash box sustained an average strain rate of 46.5 s−1, aligning with realistic impact conditions. Incorporating strain rate–dependent material properties into the FEA model significantly improved correlation with experimental crashworthiness
Badri, HesamJayasree, Nithin AmirthLoukodimou, VasilikiOmairey, SadikBradbury, AidanLidgett, MarkPage, ChrisKazilas, Mihalis
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
Climate-neutral aviation requires resource-efficient composite manufacturing technologies and solutions for the reuse of carbon fibers (CF). In this context, thermoplastic composites (TPC) can make a strong contribution. Thermoforming of TPC is an efficient and established process for aerospace components. Its efficiency could be further increased by integration of joining processes, which would otherwise be separate processes requiring additional time and equipment. In this work, an integrative two-step thermoforming process for hollow box structures is presented. The starting point are two organosheets, i.e. fiber-reinforced thermoplastic sheets. First, one of the organosheets, intended for the bottom skin of the uplift structure, is thermoformed. After cooling, the press opens, the organosheet remains in the press and an infrared heater is pivoted in, to locally heat up just the joining area. Meanwhile, a second organosheet, intended for the top skin, is heated and thermoformed and
Vocke, RichardSeeßelberg, LorenzFocke, OliverDietrich, Jan YorrickJobke, KatrinAlbe, ChristopherMay, David
Thermoplastic fiber-reinforced polymer composites (TPC) are gaining relevance in aviation due to their high specific strength, stiffness, potential recyclability and the ability to be repaired thanks to their meltability. To maximize their potential, efficient repair methods are needed to maintain aircraft safety and structural integrity. This article introduces a novel repair technique for damaged TPC structures, involving the joining of a repair patch with induction welding using a susceptor material. The susceptor consists of a material with high electrical conductivity and magnetic permeability and therefore reacts stronger to the electromagnetic field than the composite, even if the composite is carbon fiber based. I. e. the thermal energy is specifically concentrated in the repair area. In this study, the susceptor was placed on the patch and also in the welding zone. The repair process begins by identifying and preparing the damaged area, followed by precise scarfing. Care is
Geiger, MarkusGlaap, AntonSchiebel, PatrickMay, David
The segment manipulator machine, a large custom-built apparatus, is used for assembling and disassembling heavy tooling, specifically carbon fiber forms. This complex yet slow-moving machine had been in service for nineteen years, with many control components becoming obsolete and difficult to replace. The customer engaged Electroimpact to upgrade the machine using the latest state-of-the-art controls, aiming to extend the system's operational life by at least another two decades. The program from the previous control system could not be reused, necessitating a complete overhaul.
Luker, ZacharyDonahue, Michael
Modern communication networks rely on optical signals to transfer vast amounts of data. But just like a weak radio signal, these optical signals need to be amplified to travel long distances without losing information. The most common amplifiers, erbium-doped fiber amplifiers (EDFAs), have served this purpose for decades, enabling longer transmission distances without the need for frequent signal regeneration. However, they operate within a limited spectral bandwidth, restricting the expansion of optical networks.
Composite sandwich beams are widely favored for their high strength-to-weight ratio, so understanding their vibration characteristics is important for optimizing designs in critical industries. This study investigates, through experimental and statistical analyses, the impact of core geometry on the vibration characteristics of epoxy/carbon fiber composite sandwich beams featuring sinusoidal and trapezoidal cores. Modal tests were conducted to determine natural frequencies, damping ratios, and mode shapes. The height and angle of the cores were treated as key independent factors influencing the beams’ vibration characteristics. In both of the cores the damping ratio values increased about 25% and 35% with increasing the height and angle of the sinusoidal and trapezoidal cores, respectively. Additionally, response surface methodology (RSM) was used for statistical analysis of these input parameters’ effects on damping properties, and the optimal values of core’s geometries were
Alwan, Majeed A.Abbood, Ahmed Sh.Farhan, Arkan J.Azadi, Reza
Polymer composites, such as fiber-reinforced plastics (FRPs), are widely used in shipbuilding, aerospace, and automobile industries due to their lightweight and high strengths. In real-world conditions, ship hulls are exposed to harsh environmental factors, including variations in moisture and salinity. FRPs tend to absorb water and moisture, leading to an increase in weight and a reduction in strengths over time, which is undesirable for ship and aircraft structures. This study investigates the reduction in energy absorption and specific energy absorption of glass FRPs (GFRP) and aluminum honeycomb sandwich composites (AHSC) due to exposure to moisture and salinity. Experimental analysis was conducted by immersing the materials in saline and non-saline water. A comparative assessment of the percentage reduction in specific energy absorption (SEA) of GFRP and AHSC is presented. Additionally, the influence of honeycomb parameters such as cell size (CS), foil thickness (FT), and core
Rajput, ArunKumar, AshwinSunny, Mohhamed RabiusChavhan, Harikrishna
Modern aircraft, ships, and offshore structures are increasingly constructed using fiber-reinforced composite materials. However, when subjected to lightning strikes, these materials can suffer significant structural and functional damage due to their electrical and thermal properties. This study aims to develop a novel finite element (FE) model to minimize the error in estimating the thermal damage caused during lightning strikes. This will aid in design and optimization of lightning protection systems. The developed model introduces a simplified numerical approach to model the lightning arc interaction with CFRP laminate. The existing FE model includes idealized loading conditions, leading to high error in estimation of severe damage area and in-depth damage. The proposed methodology incorporates a more realistic lightning-induced loading pattern to improve accuracy. Several cases are analyzed using available FE methods and compared to the proposed model (case 6) to evaluate the
Sontakkey, AkshayKotambkar, MangeshKaware, Kiran
The advance of regulatory emission standards for light-duty vehicles, trucks and motorcycles, coupled with rising sustainability concerns, particularly United Nations' Sustainable Development Goal 12 (responsible consumption and production), has created an urgent need for lighter, stronger, and more ecological materials. Polylactic acid (PLA), a biodegradable polymer derived from plant sources, offers promising mechanical tensile strength and processability. Nanocomposites, a solution that combines a base matrix with a nanoreinforcing filler, provides a path toward developing sustainable materials with new properties. Cellulose nanofibrils (CNF) are a valuable nanofiller obtained through industrial waste or vegetal fibers, offer a promising avenue for strengthening PLA-based materials. Additive manufacturing (AM) has gained popularity due to its ability to create complex parts, prototyping designs, and to evaluate new nanocomposite materials such as PLA/CNF, showing significant
de Oliveira, ViníciusHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Andrade, MarinaPolkowski, Rodrigo
The flow resistivity is a critical parameter for evaluating the acoustic performance of the porous materials. Accurate determination of flow resistivity is essential for predicting the characteristic impedance and propagation constants of materials. In this paper, a method is proposed to calculate the flow resistivity of kapok fiber felt, aiming to accurately assess the flow resistivity of kapok fiber felt. Based on the dual-porosity equivalent model of kapok fiber felt, it is hypothesized that the flow resistivity is divided into two components. One part from the large pores between fibers, and the other part from the hollow structures within kapok fibers and the micropores on the fiber walls. The contribution of the large pores between fibers to the flow resistivity is calculated using the Tarnow_S model. Meanwhile, the hollow pores within the kapok fibers and the micropores on the fiber walls are represented as an equivalent pore. The slip effects are considered, and experimental
Lin, JiamanKang, YingziXie, XinxingZhang, QuYang, ShanmiaoShangguan, Wen-Bin
Plastic waste, in the past few years, has risen to be one of the most concerning and endangering pollutants to environment and life, making its effective management and reduction a major domain of focus among researchers and industrialists. This comparative study is an attempt to utilize recycled Polyethylene Terephthalate (rPET) fibres combined with Epoxy Resin in various combinations, to provide effective and low-cost insulation in moderate to low requirements. The above-mentioned components serve as viable insulators. Moisture resistance of both materials and temperature resistance of Epoxy resins ranging from 120°C to 150°C (depending upon the grade of Epoxy used) indicate a good stability in harsh external operating environment. While Epoxy resins are not inherently flame retardants, additives are introduced for this purpose in order to render the composite safer to use. Owing to the excellent adhesive properties of the Epoxy resin, the rPET fibres are allowed to bond together
Purihella, Sri Sai KrishnaPali, Harveer SinghKumar, PiyushSharma, Ved Prakash
As stepper motors become more and more widely used in engineering systems (vehicles, 3-D printers, manufacturing tools, and similar), the effects of their induced magnetic fields present a concern during the packing and orientation of components within the system. For applications requiring security, this is also a concern as the background electromagnetic radiation (EMF) can be captured at a distance and used to reproduce the motion of the motor during operation. One proposed alternative is to use customized non-magnetic plastic shields created using additive manufacturing. Some small studies have been completed which show some effectiveness of this approach but these studies have been small-scale and difficult to reproduce. To seek a more rigorous answer to this question and collect reproducible data, the present study used full factorial design of experiments with several replications. Three materials were used: Polylactide (PLA), PLA with 25% (weight) copper powder, and PLA with 15
Hu, HenryPatterson, Albert E.Karim, Muhammad FaeyzPorter, LoganKolluru, Pavan V.
Monocoque is a kind of integrated shell structure technology, which has gradually become the primary choice for various racing teams to make car bodies because of its advantages of small specific gravity and high specific strength. The unit of the monocoque is a carbon fiber composite sandwich structure, which is composed of two layers of carbon fiber skin inside and outside and core material between them. The inner and outer layers of the carbon fiber skin are stacked with carbon fiber composite materials of different directions and types.In this project, we plan to optimize the shape of the monocoque shell using the surface design software Alias, select core materials of different materials and structures, more advanced layups, and obtain feasible layup sequences and core material types through Ansys simulation and Matlab collaborative optimization, which will be verified by three-point bending experiments. Different from the previous lightweight work based a lot on experience, this
Cheng, Zhu H.Liu, JJ
Composite materials are created by combining two or more different materials, such as a filler or fibrous reinforcement dispersed in a polymer matrix. The primary goal of developing composites is to improve properties while reducing weight, making them ideal for the sustainable development of the automotive industry. Poly(lactic acid) (PLA) has emerged as a promising polymer matrix for composites due to its ecological and biodegradable nature, as well as its good mechanical properties (tensile strength and modulus of elasticity), though it remains limited when compared to engineering polymers such as acrylonitrile butadiene styrene (ABS) and acrylonitrile styrene acrylate (ASA). Cotton fibers have gained visibility in recent years as reinforcement in various matrices due to their low cost, renewable origin, and relative abundance. Incorporating cotton fibers into PLA can improve its mechanical properties, enhancing attributes such as tensile strength and stiffness, which makes the
De Andrade, MarinaPolkowski, RodrigoHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Oliveira, Vinícius
This study numerically analyzed the gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs). The GDL, composed of carbon fibers and binder, plays a critical role in facilitating electron, heat, gas, and water transport while cushioning under cell compression. Its microstructure significantly influences these properties, requiring precise design. Using simulations, this study explored GDL designs by varying fiber and binder parameters and calculated gas diffusivity under wet conditions. Unlike previous studies, a novel model treated carbon fibers as beam elements with elastic binder connections, closely replicating structural changes under compression. Key properties analyzed include permeability, electrical conductivity, and gas diffusion efficiency under wet conditions. The optimized designs enhanced these properties while balancing trade-offs between electrical conductivity and mass transport. These findings provide valuable guidelines for advancing PEMFC technology
Ota, YukiDobashi, ToshiyukiNomura, KumikoHattori, TakuyaMaekawa, Ryosuke
In Formula SAE , the primary function of the frame is to provide structural support for the different components and withstand the applied load. In recent years, most Formula Student teams worldwide to adopt monocoque made of carbon fiber composites, which are lighter and stronger. Enhancing the mechanical performance of carbon fiber laminates has been a key focus of research for these teams. In three-point bending tests, significant stress at the adhesive layer between the skin and the core material at both ends of the laminate, often lead to potential adhesive failure. Consequently, experimental boards often exhibit delamination between the outer skin and the core material, and premature core crushing, which compromises the mechanical performance of the laminate and fails to pass the Structural Equivalency Spreadsheet. Therefore, it is necessary to consider the influence of the bonding factor of toughened epoxy prepreg film on the mechanical properties of the laminated plate. This
Ning, Zicheng
This paper introduces an innovative in-wheel electric drive system designed for all-wheel drive Formula Student Electric racing cars. The system utilized AMK's DD5-14-10-POW-18600-B5 model as the driving motor, with a gearbox transmission ratio of 13.2 determined through Optimum Lap simulation. A two-stage gear reducer was integrated into a unified hub-spoke assembly, which connected directly to the ten-inch carbon fiber rim. In this paper, three conventional FSEC planetary gear reducer shafting designs are introduced, and a new shafting structure is proposed. Then the four structures are compared in multiple dimensions. Subsequently, we designed the shafting of the gear group, determined the size parameters of the shafting structure and the bearing type, and completed the verification. The planetary carriers were integrated with the wheel-edge suspension columns. Meanwhile, a special floating brake disc mounting method was employed, which increased the brake disc's heat capacity by
Guo, RuijieZeng, JunhaoYang, YuancaiHou, YijieZhu, ZhonghuiXiong, Jiaming
Lead-filled aprons are currently used for atomic number (Z)-grade radiation shielding in the medical industry to protect personnel from hazardous gamma radiation. These apron garments are made with lead-filled elastomeric sheets encased in polymeric fabrics and are both heavy and bulky to meet necessary shielding requirements. In addition, there are environmental safety concerns surrounding disposal of these garments due to their lead content. An innovator at NASA Langley Research Center has developed a novel method for making thin, lightweight radiation shielding that can be sprayed or melted onto common textiles used in clothing such as cotton, nylon, polyester, Nomex, and Kevlar.
What if the clothes you wear could care for your health?
This SAE Aerospace Recommended Practice (ARP) provides methods and guidelines for isolating dissimilar repair patch materials from carbon fiber reinforced plastic (herein also referred to as carbon composite) structure during a repair operation.
AMS G9 Aerospace Sealing Committee
Researchers have developed a multifunctional sensor based on semiconductor fibers that emulates the five human senses. Prof. Bonghoon Kim, department of robotics and mechatronics engineering of Daegu Gyeongbuk Institute of Science & Technology (DGIST), conducted the study in collaboration with Prof. Sangwook Kim at KAIST, Prof. Janghwan Kim at Ajou University, and Prof. Jiwoong Kim at Soongsil University. The technology developed in the study is expected to be utilized in fields such as wearables, Internet of Things (IoT), electronic devices, and soft robotics.
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
This study investigates the frequency response characteristics of laminated composite rectangular plates, focusing on the influence of fiber orientation. The composite plates, composed of 12 layers of glass fiber reinforced polymer composites (GFRP), were chosen for their superior mechanical properties and broad applicability in engineering fields, including the automotive sector. In automotive engineering, these composites are valued for their lightweight properties and high strength, contributing to enhanced performance and fuel efficiency. The analysis employed a combination of finite element methods and Taguchi experimental design techniques to understand how fiber orientation affects the dynamic behavior of these plates. To systematically explore the impact of fiber orientation on the frequency response, the study utilized Taguchi's orthogonal array design. Specifically, the L9 (3^3) and L16 (4^4) orthogonal arrays were employed to structure the experimental runs effectively
N, SuhasC V, PrasshanthU, Anish KumarBhaskara Rao, Lokavarapu
Items per page:
1 – 50 of 4302