Browse Topic: Magnetic materials
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
This specification covers a magnetic nickel-iron alloy in the form of sheet and strip.
This specification covers a magnetically soft nickel-iron alloy in the form of bars, rods, forgings, mechanical tubing, and forging stock.
This specification covers a magnetically soft nickel-iron alloy in the form of sheet and strip.
This specification covers one type of fluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless, inspection oil vehicle and packaged in aerosol cans.
Improvements in trace biological molecule detection can have significant impact on healthcare, food safety, and environmental safety industries. Detection of trace biological molecules can be critical to the diagnosis of early onset of diseases or infections. Researchers at NASA Ames Research Center developed an electrochemical, bead-based biological sensor based on Enzyme-Linked Immunosorbent Assay (ELISA) combining a magnetic concentration of signaling molecules and electrochemical amplification using wafer-scale fabrication of microelectrode arrays.
A Columbia Engineering team has published a paper in the journal Joule that details how nuclear magnetic resonance spectroscopy techniques can be leveraged to design the anode surface in lithium metal batteries. The researchers also present new data and interpretations for how this method can be used to gain unique insight into the structure of these surfaces.
MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.
A team of researchers at the University of Missouri have made a significant breakthrough in their ongoing development of an on-skin wearable bioelectronic device. Zheng Yan’s lab, which specializes in soft bioelectronics, recently added an important component to the team’s existing ultrasoft, breathable and stretchable material. The key feature: wireless charging — without batteries — through a magnetic connection.
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized. In this paper, a novel electrical steel lamination technique is developed, which takes the advantage of the inherent magnetic anisotropy of electrical steel sheets to
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor. High rotational speed of rotor introduces centrifugal loading on the magnets which can result in multiple failure modes such as the debonding of the magnet, and high radial
Focused on the permanent magnet synchronous motor (PMSM) used in electric, this paper proposes an online insulation testing method based on voltage injection under high-temperature and high-humidity conditions. The effect of constant humidity and temperature on the insulation performance has been also studied. Firstly, the high-voltage insulation structure and principle of PMSM are analyzed, while an electrical insulation testing method considered constant humidity and temperature is proposed. Finally, a temperature and humidity experimental cycling test is carried out on a certain prototype PMSM, taking heat conduction and radiation models, water vapor, and partial discharge into account. The results show that the electrical insulation performance of the motor under constant humidity and temperature operation environment exhibits a decreasing trend. This study can provide theoretical and practical references for the reliable durability design of PMSM.
Researchers at Universidad Carlos III de Madrid (UC3M) have created software and hardware for a 4D printer with applications in the biomedical field. In addition to 3D printing, this machine allows for controlling extra functions: programming the material’s response so that shape-changing occurs under external magnetic field, or changes in its electric properties develops under mechanical deformation.
“Soft robots,” medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism — thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.
This specification covers fluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle.
This SAE Aerospace Standard (AS) covers water conditioning agents used to facilitate aqueous wet-method magnetic particle inspection.
This specification covers fluorescent magnetic particles in the form of a dry powder.
Conventional magnetorheological dampers (CMRD) generate damping force through the flow of magnetorheological fluid in a narrow passage. However, due to the fixed geometry of the passage, the damping force is linearly proportional to the velocity. This structural limitation results in significant damping forces at high speeds, severely impacting the energy dissipation efficiency of the damper. This flaw poses a substantial threat to both occupants and mechanical structures. In response to this limitation, this research endeavors to engineer a novel impact-resistant MR damper (NMRD) by augmenting the traditional MR damper’s architecture with an innovative internal channel furnished with an embedded circular permanent magnet. During instances of high-velocity impacts, this specialized channel selectively opens to attenuate impact forces. This augmentation serves to significantly heighten the soft landing impact resistance of flying cars while concurrently enhancing passenger comfort. A
A research team has developed diamond quantum sensors that can be used to improve resolution in magnetic imaging. In order to test the method, the scientists placed a microchip with microscopic water-filled channels on the diamond quantum sensor. This allowed the researchers to simulate microstructures of a cell. They were able to successfully analyze the diffusion of water molecules within the microstructure.
MQ1 magnets are particularly suitable for demanding applications such as automotive accessories and home appliances. Isotropic bonded NdFeB magnets, colloquially termed MQ1, offer several unique advantages in various motor applications. These include being free of heavy rare-earth materials, providing high yield in near-net-shape magnet production, allowing tailored magnetization profiles for optimal magnet performance due to their isotropic nature and exhibiting high resistivity to eliminate eddy current loss in the magnet. MQ1 magnets also exhibit excellent thermal characteristics, maintaining their performance across a wide temperature range. These features make them particularly suitable for demanding applications such as automotive accessories and home appliances, where motors can either experience significant temperature fluctuations and/or require superior energy efficiency.
Engineering researchers have developed a next-generation miniature lab device that uses magnetic nano-beads to isolate minute bacterial particles that cause diseases.
Linear motors have redefined what’s possible in motion control with faster, more precise, and more reliable performance compared to traditional, rotary motor-driven linear actuators. A linear motor’s unique property is that the load is moved without mechanical power transmission components. Instead, the linear force generated by the magnetic field of the motor coil is directly coupled to the load. This eliminates mechanical devices that convert rotary motion to linear, thus enhancing the system’s life, precision, speed, and overall performance.
Calnetix Technologies Cerritos, CA
A new project at Aalto University is developing techniques that will enable immobilized patients to control devices using their brain activity. The project builds on the multi-locus transcranial magnetic stimulation (mTMS) technology developed at Aalto, adapting it into a brain–computer interface (BCI) that can help patients with neurological conditions.
On the near-atomic level, magnetism is made of many ever-shifting kingdoms — called magnetic domains — that create the magnetic properties of the material. While scientists know these domains exist, they are still looking for the reasons behind this behavior.
Magnets generate invisible fields that attract certain materials. A common example is fridge magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one — the language of computers.
Items per page:
50
1 – 50 of 1928