Browse Topic: Chemicals

Items (6,734)
ABSTRACT Advanced Cooling Technologies, Inc. (ACT) has been developing a Swiss-roll type, non-catalytic, thermal partial oxidation JP-8 reformer. The principle is using effective heat recirculation to increase the partial oxidation reaction temperature, which maximizes the H2 and CO yield without using catalyst. The gas phase reaction eliminates catalyst-associated issues, such as poisoning, coking, degradation, etc. Since the process uses only air and JP-8 fuel as the reactants, and is self-sustained (no external energy input), minimum balance-of-plant is required. One challenge of this reforming technology is the “out-of-center” reaction. Due to being highly preheated, the fuel and air mixture from the inlet is auto-ignited before entering the designed center reaction zone. The out-of-center reaction causes low reforming efficiency and potentially damages the inlet channel walls. In the previous study, direct injection of JP-8 fuel into the center reaction zone is able to avoid the
Chen, Chien-HuaCrawmer, JoelRichard, BradPearlman, HowardRonney, Paul
This equipment specification covers requirements for airfield liquid anti-icing/deicing equipment for airfield snow removal purposes. The unit shall include a combination of a carrier vehicle, liquid product tank, and dispensing system. This vehicle as a unit shall be an integrated chemical dispensing deicing/anti-icing application system. Primary application is for the liquid chemical application for cleaning of ice and snow from airfield operational areas such as runways, taxiways, and ramp aprons. The term “carrier vehicle” represents the various self-propelled prime movers that provide the motive power necessary to move snow and ice control equipment during winter operations. The airport operator may require this specified piece of equipment in order to maintain the airfield during large and small snow events. When necessary, the airfield liquid anti-icing/deicing chemical applicator (ALAD) shall be a central and critical element in the winter pavement maintenance fleet in the
G-15 Airport Snow and Ice Control Equipment Committee
The purpose of this document is to serve as a resource to aerospace designers who are planning to utilize Wavelength Division Multiplexed (WDM) interconnects and components. Many WDM commercial systems exist and they incorporate a number of existing, commercially supported, standards that define the critical parameters to guide the development of these systems. These standards ensure interoperability between the elements within these systems. The commercial industry is motivated to utilize these standards to minimize the amount of tailored development. However, since some of the aerospace parameters are not satisfied by the commercial devices, this document will also try to extend the commercial parameters to those that are necessary for aerospace systems. The document provides cross-references to existing or emerging optical component and subsystem standards. These parameter definitions, test methods, and procedures typically apply to telecommunications application and in some cases
AS-3 Fiber Optics and Applied Photonics Committee
ARP6366 defines a comprehensive and widely-accepted set of specification guidelines to be considered by those seeking to use or design fiber optic sensors for aerospace applications. Some of the most common applications for fiber optic sensing within aerospace include inertial guidance and navigation (gyros) and structural monitoring (temperature, strain, and vibration sensing). Common sensor infrastructure elements include: transmitting and receiving opto-electronics (e.g., sources and receivers); multiplexing and demultiplexing optics; optical cabling; and signal processing (both hardware and firmware/software
AS-3 Fiber Optics and Applied Photonics Committee
In physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds. Within this field, various techniques including transient absorption spectroscopy are used to study the mechanistic and kinetic details of chemical processes that occur within just a few picoseconds to a femtosecond — the equivalent of one millionth of one billionth of a second
University of Waterloo Chemical Engineering Researcher Dr. Elisabeth Prince teamed up with researchers from the University of Toronto and Duke University to design the synthetic material made using cellulose nanocrystals, which are derived from wood pulp. The material is engineered to replicate the fibrous nanostructures and properties of human tissues, thereby recreating its unique biomechanical properties
Silicone elastomers have become a vital material in the medical device industry due to their unique properties, including biocompatibility, durability and chemical inertness. Silicone materials are categorized based on their unvulcanized consistency, which significantly affects their processability and their physical properties. This article compares high consistency silicone rubbers (HCRs), liquid silicone rubbers (LSRs), and low consistency elastomers (LCEs), analyzing their characteristics and the implications in selecting each during different phases in the development of silicone medical devices
Nylon, Teflon, Kevlar. These are just a few familiar polymers — large-molecule chemical compounds — that have changed the world. From Teflon-coated frying pans to 3D printing, polymers are vital to creating the systems that make the world function better
Recent years have demonstrated the fragility of both military and nonmilitary supply chains. Through biotechnology and biomanufacturing, the Department of Defense (DoD) can use readily available feedstocks to onshore manufacturing of chemicals and materials critical to defense needs and to create advanced materials with enhanced capabilities. Development of DoD’s biotechnology and biomanufacturing capabilities will help secure the defense supply chain and contribute to a force that is sustainable, resilient, survivable, agile, and responsive. To accelerate the advancement of biotechnology and biomanufactured products, the Department launched the Tri-Service Biotechnology for a Resilient Supply Chain (T-BRSC) program in Fiscal Year 2022. T-BRSC is creating a pipeline for advanced development and transition of biomanufactured materials to support defense supply chain resilience. The effort brings together Joint Service partners to leverage significant advances made over the last decade
Wolfson, Benjamin R.Knott, Steve K.Maul, Steve J.Pietsch, Hollie A.Podolan, Kyle S.Thomas, Nick H.Hung, Chia-SueiGupta, Maneesh K.Kelley-Loughnane, NancyMalanoski, Anthony P.Glaven, Sarah M.Gibbons, Henry S.
Researchers at Tufts School of Engineering have developed a method to detect bacteria, toxins, and dangerous chemicals in the environment with a biopolymer sensor that can be printed like ink on a wide range of materials — including wearables
The demand for enhanced safety and extended lifespan of brake systems prompts the investigation to increase the static mechanical properties and fatigue resistance of commercial vehicle brake spiders through the incorporation of niobium nanoparticles into a cast iron alloy. This study aims to improve the material structure as well as the static and dynamic mechanical properties of the component. Chemical, microscopic, and mechanical analyses were conducted in samples of the nanostructured alloy and in the spider. A durability test was performed using a structural bench called “Chuker” to assess the potential increase in fatigue life. The Chuker is capable of simulating a real-world brake system condition, including torque magnitudes up to 17.5 kNm, which are the highest to be withstand by the designed brake power. This torque replicates the brake system activation during a vehicle emergency braking. The spiders manufactured with the nanostructured alloy exhibited most uniform
Titton, Angelo PradellaTuzzin, MatheusLopes, Carlos H. R.Marcon, LucasBoaretto, JoelKlein, Aloísio N.Cruz, Robinson C. D.
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpoumpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals
A unique wristwatch contains multiple modules, including a sensor array, a microfluidic chip, signal processing, and a data display system to monitor chemicals in human sweat. It can continuously and accurately monitor the levels of potassium (K+), sodium (Na+), and calcium (Ca2+) ions
This specification covers a rust removing compound in the form of a solid, generally powdered, to be dissolved in water, and heated
AMS J Aircraft Maintenance Chemicals and Materials Committee
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid
Remember that party where you were swinging glow sticks above your head or wearing them as necklaces? Fun times, right? Science times, too. Turns out those fun party favors are now being used by a University of Houston researcher to identify emerging biothreats for the United States Navy
This study focused on the synthesis and characterization of monodisperse spherical TiO2 nanoparticles doped on the surface with Se (IV) in order to increase the mechanical properties of the bonded joint reinforcing. Work will begin with the synthesis of monodisperse quasi-spherical TiO2 nanoparticles with a modal diameter of less than 20 nm, using the sol-gel technique. Se (IV) selenium surface doping changed the specimen’s chemistry and physics. Different initial concentrations of the doping element will be tested. Next, a physicochemical characterization of the different solid systems will be carried out in order to determine the effect of the doping element on the properties of titanium dioxide. Their morphology and size will be studied through transmission electron microscope observations; volume chemical composition by X-ray diffraction analysis, EDX (energy-dispersive X-ray), and XRF (X-ray fluorescence). The careful selection of 4% and 6% concentrations produced the optimum
Hadjez, FayssalMaouche, HichemBoumediri, HaithemChorfi, SofianeBoukelia, Taqiy Eddine
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites
Muelaner, JodyRoye, Thorsten
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL). Further improvements were made to enhance the kinetic consistency
Zhang, KuiwenPuduppakkam, KarthikShelburn, Anthony
Robots and cameras of the future could be made of liquid crystals, thanks to a new discovery that significantly expands the potential of the chemicals already common in computer displays and digital watches. The findings are a simple and inexpensive way to manipulate the molecular properties of liquid crystals with light exposure
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have invented and patented a new cathode material that replaces lithium ions with sodium and would be significantly cheaper. The cathode is one of the main parts of any battery. It is the site of the chemical reaction that creates the flow of electricity that propels a vehicle
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades. Comprehensive and impartial studies were directed toward determining which of the many grades being specified were the ones in most
Metals Technical Committee
The aim of this study is to examine the effects of chemical treatments on the performance of composites that are reinforced with natural fibres. Natural fibres have several advantages, such as low density, low cost, and environmental friendliness, as they can be biodegraded or recycled. However, natural fibre composites also have some limitations, such as their poor compatibility with the matrix material and the reinforcement material. This leads to weak interfacial bonding and poor mechanical properties. Another problem with natural fibres is that they absorb more moisture than other materials, which can affect their dimensional stability and durability. Therefore, this research compares the compatibility of different chemical treatments that can modify the surface properties of natural fibres and improve their adhesion with the matrix and reinforcement
Jeffrin, J.R.Ganesamoorthy, R.Balaji, N.Parthiban, J.Padmavathi, K.R.
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens. With the increase in the
Ram Kumar, S.Armstrong, M.Sivaneswaran, M.Surya Prakash, V.Sathya Prasad, S.Vishnu Sankar, B.P.
Composites of polymers reinforced with synthetic/natural fibers are mainly used in engineering sectors such as automobiles, aerospace, and in household appliances due to their abrasion resistance, high toughness, strength, and high specific modulus. The purpose of this research is to provide an overview of fiber-matrix interfaces and interface mechanism that leads to enhanced properties. This article investigates how natural/synthetic fibers, mineral based-materials and additional allotropic materials work rapidly and effectively across interfaces. The objective of this work is to discuss different interfacial mechanisms (i.e., diffusion, chemical bonding, and mechanical crosslinking) of fiber reinforced polymers and to understand the mechanism of heat transfer in hybrid polymers by establishing the polymer morphology, chain structure, and interchain linkages to allow molecular interactions between the material phases and to determine the characteristics and thermal conductivity of
Senthilkumar, N.Ramu, S.Deepanraj, B.
A series of buzzing “loop-currents” could explain a recently discovered, never-before-seen phenomenon in a type of quantum material. The quantum material is known by the chemical formula Mn 3Si2Te6, but it’s safe to call it “honeycomb” because its manganese and tellurium atoms form a network of interlocking octahedra that resembles a beehive
In the quest for sustainable materials for automotive interior trim, jute fiber is gaining traction due to its characteristics, which align with other renowned natural fibers. This study aimed to assess the efficacy of sodium bicarbonate as a treatment for jute fibers in comparison to conventional alkaline treatments. Both treated and untreated fibers were examined. Results showed that alkali-processed fibers demonstrated enhanced crystallization, thermal resistance, and surface quality relative to untreated ones. Specifically, alkali-treated jute fibers exhibited a degradation onset at 261.23°C, while those treated with sodium bicarbonate began degrading at 246.32°C. Untreated fibers had a degradation onset at 239.25°C. Although both treatments improved the thermal stability of the fiber, sodium bicarbonate processing, while beneficial, was slightly less effective than the traditional alkaline method. Overall, the research underscores the potential of sodium bicarbonate as an
Malladi, AvinashKaliappan, SeeniappanNatrayan, L.Mahesh, V.
This specification covers one type of carpet cleaner in the form of a liquid
AMS J Aircraft Maintenance Chemicals and Materials Committee
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties. A large number of researches on rubber/graphene compounds preparation methods and applications can be found in literature and results are promising
Veloso, VerônicaPinto, EduardoSantiago, MarceloBortoli, BrunaRibeiro, WillianPolkowski, Rodrigo
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection. In addition to these categories, there are the smart coatings, defined as those capable of modifying their
Vanzetto, Andrielen BrazNeves, GuilhermeAlves, Tamires PereiraMoura, João Henriquede Bortoli, Bruna FariasSantana, Leande Oliveira Polkowski, Rodrigo Denizarte
This specification covers a procedure for revealing the macrostructure and microstructure of titanium alloys
AMS B Finishes Processes and Fluids Committee
Due to the limitations of current battery manufacturing processes, integration technology, and operating conditions, the large-scale application of lithium-ion batteries in the fields of energy storage and electric vehicles has led to an increasing number of fire accidents. When a lithium-ion battery undergoes thermal runaway, it undergoes complex and violent reactions, which can lead to combustion and explosion, accompanied by the production of a large amount of flammable and toxic gases. These flammable gases continue to undergo chemical reactions at high temperatures, producing complex secondary combustion products. This article systematically summarizes the gas generation characteristics of different types and states of batteries under different thermal runaway triggering conditions. And based on this, proposes the key research directions for the gas generation characteristics of lithium-ion batteries
Qi, ChuangLiu, ZhenyanLin, ChunjingHu, Yuanzhi
Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Here, we report the effect of gamma irradiation on the structural and optical properties of a monolayer of MoS2. Louisiana State University, Baton Rouge, Louisiana Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single
Cornell researchers have combined soft microactuators with high-energy-density chemical fuel to create an insect-scale quadrupedal robot that is powered by combustion and can outrace, outlift, outflex, and outleap its electric-driven competitors
Epoxy polymers are widely used in various industries, e.g., as coatings, adhesives, and for lightweight construction due to their unique properties such as high strength, chemical resistance, and adhesion to various surfaces. Therefore, one of the most prominent applications is their use as matrix material in fiber-reinforced composites, which are heavily employed in the aerospace sector. However, the disposal of epoxy polymers and composites thereof has become a significant concern due to their recalcitrant nature and the adverse environmental effects caused by traditional recycling methods
Composites are especially important for the development and implementation of sustainable technologies such as wind power, energy-efficient aircrafts, and electric cars. Despite their advantages, their non-biodegradability raises challenges for the recycling of polymer and composites in particular. University of Hamburg, Hamburg, Germany Epoxy polymers are widely used in various industries, e.g., as coatings, adhesives, and for lightweight construction due to their unique properties such as high strength, chemical resistance, and adhesion to various surfaces. Therefore, one of the most prominent applications is their use as matrix material in fiber-reinforced composites, which are heavily employed in the aerospace sector. However, the disposal of epoxy polymers and composites thereof has become a significant concern due to their recalcitrant nature and the adverse environmental effects caused by traditional recycling methods. In this context, the overall production of plastic waste is
Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single particle like neutron can create single event upset in electronic devices. Graphene can work as a radiation shielding material. Graphene-metal, graphene and epsilon near zero metamaterials structure can be used for electromagnetic wave absorbent
Precipitation Hardened Stainless Steel (PHSS) is one of the martensitic steels that possess exceptional strength and corrosion resistance. Because of its characteristics, this PHSS is exclusively adopted in numerous engineering uses such as nuclear, chemical and marine industries. Welding is one of the important methods of joining that helps to make weldments with better performance characteristics. Corrosion behaviour is one of the important characteristics that contribute hugely to marine and other corrosion-related environments and also this is the most common problem for most of the manufacturing industries. The goal of this study was to analyze the PHSS weldments’ corrosive behavior and compare it with that of the two commonly used welding processes, namely MIG and TIG. The corrosive properties of the weldments were evaluated using various mediums, such as nitric acid, ferric chloride, and Oxalic acid. The weight loss procedure was utilized to calculate the PHSS weldments
D, PalanisamyA, GnanarathinamPasupuleti, ThejasreeNatarajan, ManikandanKiruthika, JothiPolanki, Vamsinath
Energy demand climbs as a consequence of the inherent relationship between the rate of consumption of energy and the growth of the economy. In light of the depletion of fossil fuels, it is necessary to implement energy efficiency techniques and policies that support sustainable development. Globally, researchers show more interest in discovering fossil fuel alternatives, as a result of fuel crisis. This research elaborates on the production and experimental investigation of briquettes made from ideal municipal solid waste (MSW), such as food waste and garden waste, as a feasible choice for alternate fossil fuels. From Municipal, agricultural, and food waste, we can get biomass waste. Municipal solid and agricultural waste is extensively dispersed, but their potential for converting biomass into energy generation still needs to be explored. This study was carried out based on the information gathered from various studies published in the scientific literature. It also details the
G, SowndharyaV, Praveena
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods. The
Kumar, YB KishoreYB, KiranTarigonda, HariprasadDoddipalli, Raghurami Reddy
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables. They focused on three response factors namely the rate of material removal, deviation in the
Pasupuleti, ThejasreeNatarajan, ManikandanKumar, VKatta, Lakshmi NarasimhamuKiruthika, JothiSilambarasan, R
In today's world, there is an increasing emphasis on the responsible use of fiber reinforced materials in the automobile applications, construction of buildings, machinery, and appliances as these materials are effectively reused, recycled, or disposed with minimum impact on the environment. As such, it has become mandatory to incorporate sustainable, environmental friendly and green concepts in the development of new materials and processes. The primary objective of this study is to manufacture composites using fibers obtained from Thespesia Lampas plants, which are known for their soft, long fibers that are commonly used in various domestic products. The composites are made by combining these fibers with a general purpose polyisocyanurate resin, and their potential applications in both domestic and commercial products are explored. To evaluate the properties of these composites, tests are conducted for tensile strength, flexure, and water absorption. The laminates are fabricated
Somsole, Lakshmi NarayanaNatarajan, ManikandanPasupuleti, ThejasreeN, Anantha KrishnaKatta, Lakshmi Narasimhamu
Friction in tribological systems can lead to significant energy consumption and wear. While there are several dissipation mechanisms in the frictional boundary layer, the role of chemical processes is not fully understood. The aim of this study is to investigate the influence of chemical reactions on the tribological behavior of sliding friction pairs. In order to carry out initial analyses, minimal mixtures with a few simple components and epoxy resin as a binder are developed, produced and used. A series of experiments are performed on a pin-on-disc tribometer with different minimal mixtures. Temperature and friction coefficient are measured throughout the friction process, and the rubbed surface of the samples is measured in situ. Three types of chemically inert minimal mixtures are developed in the first phase of the experiment. In the second phase of the experiment, copper powder is added to all minimal mixtures to study the influence of copper oxidation as the main chemical
Fang, ChengyuanOstermeyer, Georg-PeterSchiefer, FrankSchilde, CarstenLehmann, ChristinaBräuer, Günter
Researchers developed a chemical sensing chip that could lead to handheld devices that detect trace chemicals — everything from illicit drugs to pollution — as quickly as a breathalyzer identifies alcohol. It also may have uses in food safety monitoring, anti-counterfeiting, and other fields where trace chemicals are analyzed
Post-oxidation has been used to enhance the chemical reactions in the exhaust gas pipes, leading to the activations of the turbocharger and catalyst at cold state. In this research, a detailed study of the various mechanisms for post-oxidation is performed. For the post-oxidation activation, the unburned gas species (CO, THC, H2) in the exhaust manifold must be produced by some methodologies, such as scavenging, lambda-split, and post-injection. The required amount of O2 concentration can be either supplied by the scavenging (valve overlap tuning) or the secondary air injection (SAI) system. Mixing the species is also an important key to promoting post- oxidation, and an internal bypass adapter with a modified exhaust adapter shape was developed and evaluated
Ishikawa, TeruakiKumar*, MadanMoriyoshi, YasuoKuboyama, Tatsuya
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors. The
Pach, MayteHittig, HenrikCouval, RomainKusar, HenrikEngvall, Klas
Items per page:
1 – 50 of 6734