Browse Topic: Polymers

Items (8,671)
Car bumpers are protective structures for the occupants of a vehicle during a collision, absorbing impact energy, such a structure is located at the front and rear of the vehicle. Metals were used to manufacture the first bumpers, and it was subsequently assessed that using a different material would reduce their weight, for example plastic, resulting in increased fuel economy and impact absorption. Also, the use of polymers reinforced by glass fibers offer good mechanical strength. This work evaluates the replacement of conventional materials by an ecologically more viable alternative, natural fibers as plastic reinforcement, reducing costs, without considerable loss in the material mechanical properties. Specimens of reinforced composite material were produced with jute fiber. The fibers, obtained through fabrics, were standardized in length of 5.0 mm and 15.0 mm. The matrix phase applied was the unsaturated and pre-accelerated terephthalic polyester resin manufactured by Royal
Soares, Rafael VilhenaDias, Roberto Yuri Costade Mendonca Maia, Pedro VictorJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
Polypropylene has been the plastic traditionally used in the manufacture of bumpers. Composite materials have been presented as an alternative due to lightness and sustainability. This article presents a composite of polyester resin and jute fiber fabric as an innovative alternative to be studied for the manufacture of automotive bumpers. Composite material was manufactured for characterization. It was used as matrix the terephthalic polyester resin, unsaturated and pre-accelerated, and the catalyst MEK V388 for curing the composite. The chosen reinforcement was the jute fiber fabric. Silicone molds with dimensions according to ASTM 3039 were used to manufacture specimens, and subsequent tensile strength test to determine properties and compare with literature data. The composite with jute fiber reinforcement with alignment 0°/0°/0° was evaluated as viable for the application in car bumpers, having its value of tensile strength surpassed that of the composite reinforced by jute fiber
Dias, Roberto Yuri CostaSoares, Rafael Vilhenade Mendonca Maia, Pedro Victordos Santos, Jose Emilio MedeirosMiranda, Igor Ramon SinimbúJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
Radiation has garnered the most attention in the research that has been conducted on polyethylene sheets. According to the calculations, there were 145892.35 kGy in total radiation doses administered. An ultraviolet visible spectrophotometer was used to examine the impact that electron beam irradiation had on the optical constants. Two of the most crucial variables taken into account when calculating the optical constants and the absorption coefficient are the reflectance and transmittance of polyurethane sheets. Reduced light transmission through the sheet achieves these characteristics, which are related to the transmittance and reflectance of the Fresnel interface. Cross linking makes it more challenging for the polyurethane molecular chains to become fixed. Both the refractive index and the dispersion properties have been altered as a direct result of this. Despite the fact that the doses of electron irradiation were getting lower, it eventually rose to 105 kGy. Contrary to the
Kaushik, NitishSandeep, ChSrinivasan, V. P.Prakash, B. VijayaKalaiarasan, S.Arunkumar, S.
This study investigates the efficiency of a compression ignition (CI) engine powered by biodiesel derived from rubber seed oil (RSO) and its various blends. This research aims to assess the feasibility of using RSO biodiesel as a substitute fuel in CI engines to reduce harmful emissions and the depletion of fossil fuels. Initially, the process of obtaining rubber seed oil was preceded by transesterification. After transesterification, the same was blended in different proportions with conventional diesel in B20, B40, B60, B80, and B100. Results show that brake thermal efficiency (BTE) decreased with rising concentration of biodiesel, particularly at higher blends. B100 had a 20-25% lower BTE in every load condition than conventional diesel. The brake specific fuel consumption (BSFC) generally decreased with increasing biodiesel content, particularly at lower loads applied to the engine. B100 portrayed a perceptible improvement of 25.6% in BSFC compared diesel at 1 kg load. This
Jayabal, RavikumarLionus Leo, G. M.Madhu, S.
This study describes the Taguchi optimization process applied to optimize drilling parameters for glass fiber reinforced composite (GFRC) material. The machining process is analyzed in relation to process parameters using analysis of variance (ANOVA). The characteristics assessed for both the drilling and the specimen include speed, feed rate, drill size, and specimen thickness. The commercial software program MINITAB14 was used to collect and analyze the measured results. Cutting force and torque during drilling are examined in relation to these parameters using an orthogonal array and a signal-to-noise ratio. The primary goal is to identify the critical elements and combinations of elements that impact the machining process to achieve minimal cutting thrust and torque, based on the evaluation of the Taguchi technique
Raja, RosariJannet, SabithaKandavalli, Sumanth Ratna
Biodegradable natural fiber-embedded polymer composites offer distinct mechanical properties and are utilized for lightweight applications. However, composites made with untreated natural fibers lack adhesive behaviour, and increased moisture absorption leads to reduced mechanical qualities. To address this, hemp fibers are treated with a 5% sodium hydroxide (NaOH) solution to enhance adhesive strength. The treated fibers are then used to fabricate polypropylene composites through a hand layup process involving compression force. The synthesized composite samples contain 0%, 10%, 20%, and 30% weight (wt%) of hemp fiber and undergo X-ray diffraction (XRD) analysis, as well as tensile, flexural, and impact strength studies. XRD analysis shows a short peak for the hemp fiber and a large peak for the polypropylene matrix. Experimental results indicate that the polypropylene composite with 30 wt% NaOH-treated hemp fiber exhibits increased tensile strength (53 MPa), improved flexural
Venkatesh, R.Aravindan, N.Manivannan, S.Karthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
In the modern era, advanced hybrid polymer-based composites have the potential to replace conventional polymers and exhibit unique behaviour. This study focuses on low-density polyethylene (LDPE) hybrid composite made with jute fiber and enhanced with nano silicon carbide particles through the injection moulding process. The natural jute fiber undergoes chemical surface treatment to improve its adhesive behaviour. The study evaluates the effects of 10wt% chemically treated jute fiber and 1, 3, and 5wt% of SiC on the structural, impact, tensile, and flexural strength of the synthesized composites according to ASTM D7565, D3039, and D790 standards. The structural behaviour of LDPE composites is assessed through X-ray diffraction analysis, revealing improved crystalline structure and interaction. Among the five prepared composite samples, the composite containing 10wt% treated jute fiber and 5wt% SiC demonstrated enhanced impact, tensile, and flexural strength of 5.7 J/mm2, 43 MPa, and 56
Venkatesh, R.Kaliyaperumal, GopalManivannan, S.Karthikeyan, S.Aravindan, N.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
Hybrid reinforcement-made polypropylene (PP) composites are beneficial over monolithic PP and utilized for various engineering and non-engineering applications. The present investigation of PP hybrid composites is developed with 10 percentages of weight (wt%) of E-glass fiber embedded with 0–6 wt% of silicon carbide via compression technique associated with hot press. E-glass fiber and SiC influencing wear rate, tensile strength, and microhardness behavior of PP and its composites are experimentally investigated. The peak loading of SiC as 6 wt% into PP/10 wt% E-glass fiber is recorded as better wear resistance (0.021 mm3/m), maximum tensile strength value (54.9 MPa), and highest hardness (68 HV). Moreover, the investigation results of hybrid PP composite are better resistance to wear and hiked tensile and hardness behavior compared to monolithic PP. This PP/10 wt% E-glass fiber/6 wt% of SiC hybrid composite is adopted for high-strength to lightweight sports goods applications
Venkatesh, R.
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications
Automatic Transmission and Transaxle Committee
The market for battery-fitted electric cars continues to experience robust growth globally as well as in Indian market. During the charging process heat generation happen because of internal resistance of the battery cells and electrical connectors. Making an efficient battery cooling system is vital for all electric vehicles. One common cause of battery overheating is due to low cooling efficiency. So this research highlights the importance of scientifically designing coolant circuits and selecting appropriate coolant hose materials. Currently, EPDM (ethylene propylene diene monomer) material is widely used for battery cooling hoses due to its design Flexibility, Compatibility with a 50:50 glycol-water mixture and Resistance to thermal and ozone cracking [1]. This study benchmarks EPDM hose technical properties with leading EV battery cooling plastic hose materials, such as mono layer polyamide, mono layer TPVs (thermoplastic vulcanizates) and PA PP two layer hose. Comparative
Murugesan, Annarajan
A lightning strike during raining season causes significant risks to automobiles, especially modern vehicles mostly dependent on electronic systems. Lightning can cause severe damage to electronic control unit that control the vehicle functions such as engine management, electrical circuits with sensors, braking systems, and safety features. Therefore, this research work focused for developing new electrical polymers with better conductive properties that would create a path for lightning to travel without damaging it. In-situ chemical oxidative polymerization was used to develop a new series of functional electroactive nanocomposites based on silver nanoparticles embedded poly (aniline-co-3-chloroaniline) matrix. Here we would suggest these electroactive polymers can be widely used as additive in paint manufacturing as special coatings in automobiles industry. Because of the internal chemical bonds and internal structure of these materials acts as a semiconducting nature, hence they
Pachanoor, VijayanandMoorthi, Bharathiraja
Linear dynamics simulations are performed on engine components to ensure structural integrity under dynamic loading. The finite element model of the engine assembly must be prepared accurately to avoid under or over design of the engine components. Flexible hoses are present at pipe routings and modeling them in simulations is a challenge because the stiffness of the composite is not known. The hose under study in this paper is a rubber composite with a knitted reinforcement layer. A multiscale modelling approach is presented to characterize the hose stiffness. A representative volume element geometry i.e., unit cell representation of the composite, consisting of the knitted yarn and surrounding rubber is used to establish orthotropic elastic properties at microscale, by performing finite element homogenization using the ANSYS material designer module. The homogenized properties are assigned to the macroscale hose geometry to perform modal analysis simulation in free-free and fixed
Ashodiya, Jay VirendraJayachandran, JanarthananSanthosh, B
Electric vehicles (EVs) represent a pivotal shift in the automotive industry, offering a sustainable alternative to traditional gasoline-powered vehicles. Central to their operation are lithium-ion batteries, which are favoured for their high energy density and long lifespan. Ensuring thermal stability during battery pack operation is crucial for both safety and efficiency. To enhance heat transfer within the battery pack, various encapsulants are employed. This study utilizes simulation to investigate the thermal performance of a 3.072kWh, 51.2V, 60Ah battery pack composed of 6Ah 32700 LFP cells, encapsulated with commercially available materials such as polyurethane (PU) foam, silicone, and silicone-modified epoxy under 1C and 2C discharge conditions. The findings show that, at 1C and 2C discharge rates, respectively, the battery pack potted with silicone attains a maximum temperature that is 2.57°C and 3.84°C lower than the pack simulated with air. Additionally, silicone-modified
Somarajupalli, ShanmukhadevVedantam, SrikanthGupta, ShubhamJha, Kaushal Kumar
Since the inception of battery driven electric vehicles in the automotive world, there has been a constant challenge in maximizing the range of an electric vehicles through various means including battery technology, vehicle weight optimization, low drag coefficients etc. The tires being a viscoelastic composite material have now become a vital to the range performance of an EV. The rolling resistance of a tire is now become a hotter topic than ever. The rolling resistance coefficient (RRC) is the measure of energy loss during rolling due to viscoelastic dissipation in the tire. The viscous dissipation in tire arises due to hysteresis in the various components of a tire including tread, sidewall, inner liner, apex etc rubber compounds. The internal friction between layers of body ply, steel belts and tread crown ply also contribute to the internal heat generation. Therefore, the development of ultra-low RRC tires is a serious challenge for tire engineers. Nevertheless, the recent
Mishra, NitishSingh, Ram Krishnan
A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. The new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us
Kendall, John
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft
A-20B Exterior Lighting Committee
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523
AMS CE Elastomers Committee
ABSTRACT Barriers to the introduction of composite materials for ground vehicle applications include material property selection and cost effective material processing. Advancements in processing of thermoplastic composites for use in applications for semi structural and structural applications have created opportunities in “Out of Autoclave” processing utilizing preconsolidated unidirectional reinforced tapes. Traditional tooling for the bending formation of high temperature reinforced structural thermoplastic laminates typically involves matched metal tooling consisting of steel or aluminum and are costly and heavy. In this research, a comparative analysis was performed to evaluate the use of a large scale 3D printed forming tool in comparison to a traditional metallic mold. Material processing considerations included the development of a technique for localized laminate heating to achieve optimized energy input in the forming process. Considerations in tooling development included
Erb, DavidDwyer, BenjaminRoy, JonathanYori, WilliamLopez-Anido, Roberto A.Smail, AndrewHart, Robert
ABSTRACT A 3D printed battery bracket is strengthened via post-print thermal annealing, demonstrating a transitionable approach for additive manufacturing of robust, high performance thermoplastic components. Citation: E. D. Wetzel, R. Dunn, L. J. Holmes, K. Hart, J. Park, and M. Ludkey, “Thermally Annealed, High Strength 3D Printed Thermoplastic Battery Bracket for M998,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Wetzel, E. D.Dunn, R.Holmes, L. J.Shearrow, CaseyHart, K.Park, J.Ludkey, M.
ABSTRACT Fiber reinforced thermoset composites are well known for delivering 50% or more weight savings when compared with steel components while also providing strength, stiffness, and toughness. Nanoparticle additives have been shown to significantly increase the mechanical properties of thermoplastic and thermoset polymer matrices over the base matrix values. Extensive testing and characterization of composites containing graphene nanoplatelets (GnP) has been conducted and reported by XG Sciences’ (XGS) collaborators at the Michigan State University (MSU) Composite Materials and Structures Center. In a recent program with U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), MSU investigated lightweight composites for blast and impact protection. High strain rate test facilities as well as high speed photography and non-destructive interferometry-based evaluation techniques were used to evaluate blast performance. The experimental results are presented
Privette, R.Fukushima, H.Drzal, L.T.Robinson, M.
ABSTRACT Tracked vehicles are known to provide excellent off-road mobility, but traditional steel tracks do come with some important compromises. The recent introduction of Composite Rubber Tracks (CRT) on the CV90 IFV (77,000 lb) has shown that this robust and operationally proven CRT technology significantly reduces the vehicle weight, fuel consumption, noise, and vibration levels. Inspired by this new enthusiasm for tracked vehicles, provided by CRT, armies and original vehicle manufacturers initiated a series of independent trials confirming the benefits and reliability of CRT. The author’s objective is to present the conclusions of these independent CRT trials, more specifically focusing on the Warrior IFV, providing substantiation data on how CRT technology enhances tracked vehicle performance
Marcotte, Tommy
ABSTRACT In this work, Abrams tank track system T-158LL backer pad elastomer self-heating and fatigue behavior was characterized experimentally, and the backer pad design was digitally twinned to show how complex in-service conditions can be evaluated virtually. The material characterization included measurement of the thermal properties and dissipative characteristics of the rubber compound, as well as its fatigue crack growth rate curve and crack precursor size. The analysis included 1) a structural finite element analysis of the backer pad in operation to obtain the load history, 2) a thermal finite element analysis to obtain steady-state operating temperature distribution within the backer pad, and 3) a thermo-mechanical fatigue analysis using the Endurica CL fatigue solver to estimate the expected service life and failure mode of the backer pad. As validation, experiments were conducted on the backer pad to measure operating temperature, fatigue life, and failure mode over a
Mars, William V.Castanier, MatthewOstberg, DavidBradford, William
ABSTRACT Militaries worldwide are increasing their Research and Development (R&D) into RAS. Within the next 10 – 15 years RAS will play an active part in operations as the future battlefield becomes more complex. CRT technology can significantly reduce platform weight, fuel consumption, noise and vibration levels[1][2][3]. Armies and vehicle manufacturers have initiated a series of independent trials that confirmed the benefits and reliability of CRT on a tracked military vehicle. With the increase in RAS technologies comes a desire to utilize the proven benefits identified from manned platforms. The author’s objective is to highlight the findings of these trials[1][2][3] and provide substantiated data on how CRT technology can benefit RAS in terms of weight saving, whilst reducing maintenance and vibration. Citation: Fabien Lagier, Ing. MBA, “Composite Rubber Track (CRT) for Robotic & Autonomous System (RAS)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology
Lagier, Fabien
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT This paper focuses on development of methods for manufacturing structural thermoplastic composite materials, characterizing the mechanical properties of such composites, and modeling the static and dynamic performance in relevant military vehicle modeling and simulation environments. A thermoplastic polyethylene terephthalate (PET) / fiberglass composite was selected for this study due to the high specific strength of e-glass fibers, the high toughness of the PET thermoplastic, and relatively low price point, all which make it an attractive candidate for structural lightweighting of vehicles. The raw materials were manufactured into composite laminates using a compression molding process and then the mechanical properties were characterized using experimental test methods. Properties like stiffness, strength, and strain-to-failure of the composite were characterized using standard ASTM methods, and the resulting properties were directly fed into a computational material model
Patton, Evan G.Hart, Robert J.
ABSTRACT In this study, a styrene butadiene rubber, which is similar to the rubber used in road wheel backer pads of tracked vehicles, was investigated experimentally under monotonic and fatigue loading conditions. The monotonic loading response of the material was obtained under different stress states (compression and tension), strain rates (0.001/s to 3000/s), and temperatures (-5C to 50C). The experimental data showed that the material exhibited stress state, strain rate and temperature dependence. Fatigue loading behavior of the rubber was determined using a strain-life approach for R=0.5 loading conditions with varying strain amplitudes (25 to 43.75 percent) at a frequency of 2 Hz. Microstructural analysis of specimen fracture surfaces was performed using scanning electron microscopy and energy dispersive x-ray spectroscopy to determine the failure mechanisms of the material. The primary failure mechanisms for both loading conditions were found to be the debonding of particles on
Brown, H.R.Bouvard, J.L.Oglesby, D.Marin, E.Francis, D.Antonyraj, A.Toghiani, H.Wang, P.Horstemeyer, M.F.Castanier, M.P.
ABSTRACT Additions of both carbon fiber (CF) and carbon nano-tubes (CNTs) as reinforcements to polyurea (PUr) based adhesives are computationally investigated. Both CF and CNTs show an increase in stiffness. The effect of CF reinforcements on the PUr is more pronounced than the CNT’s but this due to CNT loading being dramatically lower. On percent basis the CNT effect on strength was greater than the CF. Increasing hard segment content of PUr also had a positive effect on the joint strength, but a negative effect on the shear joint displacement. Finally the addition of CF reinforcements moved the performance of a PUr formulation from a Group IV adhesive into the Group III category. This paper illustrates the potential for commonly available reinforcements to be used to tailor the strength elongation characteristic of a PUr adhesive system. Citation: Demetrios A. Tzelepis, Robert Hart, “Optimization of Nano-Enhanced Elastomeric Adhesives Through Combined Experimental and Computational
Tzelepis, Demetrios A.Hart, Robert
ABSTRACT The first part of this paper will outline the conception of the testing apparatus (Figure 1), along with its operation and preliminary results. The second part of the paper will discuss a new methodology used to correlate the dependence of crack growth rate for strain crystallizing natural rubbers in terms of tearing energy. The tearing energy which depends on the type of elastomer, geometry and stress strain behavior of a particular specimen demonstrates a direct correlation with the crack growth rate at different R-ratios (= min tearing energy/max tearing energy). Figure 1 Schematic of the testing apparatus
Kujawski, DanielDiStefano, DarenBradford, William
ABSTRACT Rubber is the main element of tires and the outside layer of tracks. Tire and track heating is caused by hysteresis effects due to the deformation of the rubber during operation. Tire temperatures can depend on many factors, including tire geometry, inflation pressure, vehicle load and speed, road type and temperature and environmental conditions. The focus of this study is to develop a finite element approach to computationally evaluate the temperature field of a steady-state rolling tire and track. The 3D thermal analysis software Radtherm was applied to calculate the average temperature of tread and sidewall, and the results of Radtherm agreed with ABAQUS results very well. The distributions of stress and strain energy density of the rolling tracks were investigated by ABAQUS as well. The future works were finally presented
Tang, TianJohnson, DanielLedbury, EmilyGoddette, ThomasFelicelli*, Sergio D.Smith, Robert E.
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
Srivastava, KritiKumar, Yogesh
This specification covers a silicone (MQ/VMQ/PVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be designated for use in molded O-rings and molded O-ring cord, molded rings, compression seals, molded-in-place gaskets, and plate seals for aeronautical and aerospace applications
AMS CE Elastomers Committee
To gain high efficiencies and long lifetimes, polymer electrolyte membrane fuel cell systems require precise control of the relative humidity of the cathode supply air. This is usually achieved by the use of membrane humidifiers. These are passive components that transfer the product water of the cathode exhaust air to humidify the supply air. Due to the passive design, controllability is achieved via a bypass. It is possible to use map-based control strategies to avoid the use of humidity sensors. Such map-based control requires deep insights into the humidifier behavior in all possible thermodynamic operating states, including various water loads. This paper focuses on typical operating conditions of heavy-duty application at high load, specifically on the occurrence of liquid water in the cathode exhaust gas, which has not been sufficiently investigated in the literature yet. In order to simulate these conditions, we built a test rig with an optically accessible single-channel set
Mull, SophieWeiss, LukasWensing, Michael
A flexible and stretchable cell has been developed for wearable electronic devices that require a reliable and efficient energy source that can easily be integrated into the human body. Conductive material consisting of carbon nanotubes, crosslinked polymers, and enzymes joined by stretchable connectors, are directly printed onto the material through screenprinting
Inspired by the paper-folding art of origami, North Carolina State University engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors. The findings could pave the way for shape-shifting artificial systems that can take on multiple functions and even carry a load — like versatile robotic structures used in space, for example
Imagine if physicians could capture three-dimensional projections of medical scans, suspending them inside an acrylic cube to create a hand-held reproduction of a patient’s heart, brain, kidneys, or other organs. Then, when the visit is done, a quick blast of heat erases the projection, and the cube is ready for the next scan
In the future, power sockets used to recharge smartphones, tablets, and laptops could become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, clothing could soon function as solar collectors and thus as a mobile energy supply
Elastomeric bushings are common components in vehicles, used to reduce noise, vibration, and harshness. Rubber bushings are employed in suspension components such as control arm bushings, subframe bushings, and motor mount bushings, each with varying static and dynamic stiffness requirements depending on vehicle weight and ride and handling performance. Traditional rubber bush simulations typically use simple material models like hyperelastic or viscoelastic models. However, recent advancements have introduced more sophisticated material models to capture the nonlinear and time-dependent behavior of rubber materials. These advanced models may incorporate nonlinear viscoelasticity, strain rate dependency, and damage mechanics. Rubber bushings experience multiple physical phenomena simultaneously, such as mechanical loading, thermal effects, and fluid-structure interaction. New simulation techniques enable the coupling of different physics domains, allowing for a comprehensive analysis
Hazra, SandipMore, VishwasTangadpalliwar, Sonali
This specification covers two types of virgin, unfilled polytetrafluoroethylene (PTFE) in the form of molded rods, tubes, and shapes. This specification does not apply to product over 12 inches (305 mm) in length, rods under 0.750 inch (19.05 mm) in diameter, and tubes having wall thickness under 0.500 inch (12.70 mm
AMS P Polymeric Materials Committee
This specification covers virgin, unfilled polytetrafluoroethylene (PTFE) in the form of molded rods, tubes, and shapes. This specification does not apply to product over 12 inches (305 mm) in dimension parallel to the direction of applied molding pressure, rods under 0.750 inch (19.05 mm) in diameter, and tubes having wall thickness under 0.500 inch (12.70 mm
AMS P Polymeric Materials Committee
Items per page:
1 – 50 of 8671