Browse Topic: Polymers
This material type has resistance to hot air, but generally has poor resistance to fuels and lubricants, but usage is not limited to such applications. Each application should be considered separately. This material type has a typical service temperature range of -85 to 500 °F (-65 to 260 °C). The operating temperature range of the material is a general temperature range, but the presence of particular fluids and design parameters may modify this range. Recommendations on the material selection are based on available technical data and are offered as suggestions only. Each user should make his own tests to determine the suitability for his own particular use.
Fused Deposition Modeling (FDM), a form of Additive Manufacturing (AM), has emerged as a groundbreaking technology for the production of complex shapes from a variety of materials. Acrylonitrile Butadiene Styrene (ABS) is an opaque thermoplastic that is frequently employed in additive manufacturing (AM) due to its affordability and user-friendliness. The purpose of this investigation is to enhance the FDM parameters for ABS material and develop predictive models that anticipate printing performance by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS). Through experimental trials, an investigation was conducted to evaluate the influence of critical FDM parameters, including layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including mechanical properties, surface polish, and dimensional accuracy. The utilization of design of experiments (DOE) methodology facilitated a systematic examination of parameters. A predictive model was
Fused Deposition Modeling (FDM) is a highly adaptable additive manufacturing method that is extensively employed for creating intricate structures using a range of materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability, making it well-suited for use in industries such as footwear, automotive, and consumer goods. Hoses, gaskets, seals, external trim, and interior components are just a few of the many uses for thermoplastic polyurethanes (TPU) in the automobile industry. The objective of this study is to enhance the performance of Fused Deposition Modeling (FDM) by optimizing the parameters specifically for Thermoplastic Polyurethane (TPU) material. This will be achieved by employing a Taguchi-based Grey Relational Analysis (GRA) method. The researchers conducted experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
The present research explores the potential of high-performance thermoplastics, Polymethyl Methacrylate and Polyurethane, to enhance the passive safety of automotive instrument panels. The purpose is to evaluate and compare the passive safety of these two materials through the conduct of the Charpy Impact Test, Tensile Strength Test, and Crush Test —. For this, five samples were prepared in the case of each material via injection moulding, which enabled reliability, and consistency of the findings. As a result, it was found that in the case of the Charpy Impact Test, the average impact resistance varies with PMMA exhibiting a level of 15.08 kJ/m2 as opposed to the value of 12.16 kJ/m2 for PU. The Tensile Strength Test produced the average tensile strength of 50.16 for PMMA and 48.2 for PU, which implied superior structural integrity under tension for the first type of thermoplastic. Finally, the Crush Test showed that PMMA is more resistant to crushes on average than PU with the
Radiation has garnered the most attention in the research that has been conducted on polyethylene sheets. According to the calculations, there were 145892.35 kGy in total radiation doses administered. An ultraviolet visible spectrophotometer was used to examine the impact that electron beam irradiation had on the optical constants. Two of the most crucial variables taken into account when calculating the optical constants and the absorption coefficient are the reflectance and transmittance of polyurethane sheets. Reduced light transmission through the sheet achieves these characteristics, which are related to the transmittance and reflectance of the Fresnel interface. Cross linking makes it more challenging for the polyurethane molecular chains to become fixed. Both the refractive index and the dispersion properties have been altered as a direct result of this. Despite the fact that the doses of electron irradiation were getting lower, it eventually rose to 105 kGy. Contrary to the
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications.
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us.”
Items per page:
50
1 – 50 of 8679