Browse Topic: Materials properties

Items (31,360)
This specification covers an iron-nickel alloy in the form of strip 0.020 to 0.1874 inch (0.51 to 4.760 mm), inclusive, in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.250 to 4.000 inches (6.35 to 101.60 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers the procurement of granular heat-treating salts suitable for use in the molten state.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 6.000 inches (0.551 to 152.4 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bar up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
Glazing Materials Standards Committee
Non-exhaust particle emissions, particularly those generated by brake wear, are a significant source of fine particulate matter in urban environments. These emissions contribute to air pollution and pose serious health risks, particularly in densely populated areas. While vehicle exhaust emissions have been extensively studied and regulated, the contribution of non-exhaust sources, including brake wear, remains a critical factor in air quality management. This paper presents a novel methodology for fast-running, time-resolved simulation of non-exhaust particle emissions, specifically those from brake wear abrasion. A 3D CFD model computes the turbulent flow field around the disc brake. The resulting information on the convective air cooling is applied as boundary conditions on a 3D thermal model. This thermal simulation setup is compared and verified with experimental data from literature. The 3D numerical models produce data and boundary conditions for an efficient 1D numerical
Herkenrath, FerrisLückerath, MoritzGünther, MarcoPischinger, Stefan
Vibration control is most important in automotive applications, and generally, rubbers are used to dampen these vibrations due to their inherent nature and low-cost manufacturing methods. Now, to select a rubber material, Shore hardness is considered in engineering applications, but to additionally control the behaviour, we need to understand its static and dynamic stiffness. These values help to determine the vibration isolation obtained by these rubbers. In this paper, we will discuss methods to calculate the static and dynamic stiffness of rubber grommets using experimental methods and FEA modelling. As elastomers have non-linear material properties, various material modelling techniques in FEA are used to capture multiple phenomena like creep, fatigue, and dynamic conditions. Rubber compounding is used in order to improve the physical and chemical properties, which in turn would give desirable linear characteristics. Certain guidelines and thumb rules are used in the rubber
Khamkar, Prasad SubhashGaikwad, Vikrant Chandrakant
This study analyses the effect of external damping of roller bearings on the acoustic behaviour of gearboxes in electric powertrains. The growing use of electric vehicles has increased the importance of reducing gearbox noise, as the lack of noise masking from internal combustion engines and the higher operating speeds of electric motors exacerbate the acoustic challenges. Gearbox noise, which is primarily caused by tooth mesh excitation and its transmission through shafts and bearings, requires strategies to minimise its impact on vehicle comfort and performance. External damping is achieved through the integration of specific elements at the circumference of the outer bearing ring. These elements are utilised to modify the vibration transfer behaviour of the bearing assembly. This, in turn, can lead to a reduction in both structure-borne and airborne noise emissions at the gearbox housing. A test design was created to quantify the effects of different damping configurations. This
von Schulz, KaiLinde, TilmannJäger, Steffen
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inches, incl (19.05 to 38.10 mm, incl) in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification establishes the engineering requirements for producing an anodic coating on titanium and titanium alloys and the properties of the coating.
AMS B Finishes Processes and Fluids Committee
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a low expansion iron alloy in the form of sheet or strip 0.250 inch (6.35 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
CTTC C2, Electrical Components and Systems
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Friction stir surfacing is an advance surface modification technique, which is functionally evolved from the friction stir welding process. However, the fundamental reason behind the joining of Al/steel is difficult due to the formation of hard and brittle intermetallic compounds (IMC). To address the problem of IMC formation, the current study suggested an alternate production technique with solid-state friction surfacing deposition. In this work, the adhesion mechanism and metallurgical properties of solution-treated AA6061-T6 aluminum alloy cladding over a low-carbon steel IS2062 substrate were investigated. Impact procedural factors (axial frictional force, spindle speed, table traverse speed, consumable rod diameter, and substrate roughness) were examined. Push-off and hardness tests were used to inspect the mechanical properties of cladded samples. 67–77± HV hardness is observed at the interface of the cladded cross-section. A push-off strength of 9 kN was achieved, indicating
Badheka, Kedar HiteshkumarSharma, Daulat KumarBadheka, Vishvesh
This specification covers a corrosion-resistant steel in the form of sheet and strip.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers grease for use within an aircraft. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this specification.
AMS M Aerospace Greases Committee
This specification establishes the requirements for a waterborne, corrosion-inhibiting, chemical- and solvent-resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
AMS G8 Aerospace Organic Coatings Committee
This specification covers grease for use on aircraft wheel bearings. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a qualified products list (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this
AMS M Aerospace Greases Committee
The AMS1428 specification defines the technical requirements for Type II, III, and IV aircraft deicing/anti-icing fluids. These non-Newtonian thickened fluids are formulated to effectively remove frost, ice, and snow from aircraft surfaces while offering protection times longer than Type I fluids against refreezing or frozen contamination. The document outlines key performance criteria, such as freezing point, aerodynamic acceptance, and anti-icing performance, alongside environmental properties like biodegradability, aquatic toxicity, biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Operational considerations, including storage stability, materials compatibility, exposure to dry air, dry-out exposure to cold dry air, successive dry-out and rehydration, and physical properties like pH, refraction, and rheological properties (viscosity) are also specified. Additionally, the specification details the required testing methods to evaluate these properties and sets forth
G-12ADF Aircraft Deicing Fluids
Accurate prediction of the ultimate breakage pressure load for pyro-inflator housing is a critical aspect of inflator development. In this study, the tensile test of a specimen, from its initial shape to fracture, is simulated to verify the material properties of the inflator housing. The numerical results demonstrate high accuracy, with the tensile force–displacement curve, maximum tensile force, necking in the concentrated instability zone, fracture location, and inclined angle all closely matching the experimental data. Following material correlation, the ultimate breakage load of the inflator housing under hydrostatic burst test conditions is calculated using an explicit solver. A stress tensor state analysis method is proposed to define the ultimate load based on the onset of plastic instability in the thickness direction at the top center of the inflator. Compared to experimental results, the accuracy of the ultimate breakage pressure prediction using this method is 99.04%, while
Wang, Cheng
This research examined maraging steel (C300), which is widely used in the automotive industry. The study investigated how various 3D printing parameters—laser power (P), scanning speed (V), and layer spacing (H)—as well as post-processing heat treatment factors such as time (t) and temperature (T) affect the properties of C300 steel produced via selective laser melting (SLM). The primary properties assessed included relative density, porosity, hardness, and microstructure. The first part of the analysis focused on how processing parameters, time, and temperature influenced porosity types and manufacturing defects. Subsequently, ANOVA was employed to explore the sensitivity of relative density and microhardness to these parameters. The results revealed an optimal combination of parameters that improved both microstructural and mechanical properties. Additionally, the post-processing heat treatment was found to impact microhardness by modifying the microstructure and martensite lath size
Jaballah, OlaOmidi, NargesIltaf, AsimBarka, NoureddineEl Ouafi, Abderrazak
Items per page:
1 – 50 of 31360