Browse Topic: Materials properties

Items (31,300)
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
Different types of gaskets are being used in the engine. Each gasket plays a unique role for the application. In general gaskets are used to prevent leakage and fill the space between the mating surfaces under compression loads. Cylinder head cover gasket is being used in all engines. Engine gasket plays a major role in arresting and protecting the leakage of oil and external dust entry into the system. In this study new cost-effective material were identified, tested, and evaluated as per the applicable standards for the gasket application. The existing material is well known grade as VAMAC—ethylene acrylate monomer (AEM) material and the alternate material introduced is high temperature alkyl acrylate copolymer (HT ACM). In general, with AEM material have its own advantages and also challenges. Even though AEM material have some advantages with respect to temperature and mechanical properties the challenges and struggle come into picture on cost volatility and availability of raw
Deepalakshmi, R.Koorella, KrishnaSivakumar, G.K.
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
In electrified drivetrains, lubricants are commonly in contact with the motor and other electrical components as well as the gears and bearings. Copper, present in these electrical components, is susceptible to corrosion by fluids containing active sulfur, which can lead to catastrophic failure of the unit. Lubricating fluids for electric vehicles (referred to as e-fluids) must not cause corrosion and must maintain high performance while having suitable electrical conductivity, material compatibility, and heat transfer properties. We describe a new formulation without active sulfur that has recently entered the market, which can protect against copper corrosion. We show that this e-fluid can provide suitable wear protection under field trial conditions, and that the e-fluid provides improved wear protection in bearing (FE-8) tests compared to a traditional extreme pressure axle fluid (API GL-4). Surface analysis (X-ray photoelectron spectroscopy) measurements of the component surfaces
Hopper, Elizabeth R.Williams, Megan S.Gahagan, Michael
Composite materials are increasingly utilized in industries such as automotive and aerospace due to their lightweight nature and high strength-to-weight ratio. Understanding how strain rate affects the mechanical and crashworthiness properties of CFRP composites is essential for accurate impact simulations and improved safety performance. This study examines the strain rate sensitivity of CFRP composites through mechanical testing and finite element analysis (FEA). Experimental results confirm that compressive strength increases by 100%–200% under dynamic loading, while stiffness decreases by up to 22% at a strain rate of 50 s−1, consistent with trends observed in previous studies. A sled test simulation using LS-Dyna demonstrated that the CFRP crash box sustained an average strain rate of 46.5 s−1, aligning with realistic impact conditions. Incorporating strain rate–dependent material properties into the FEA model significantly improved correlation with experimental crashworthiness
Badri, HesamJayasree, Nithin AmirthLoukodimou, VasilikiOmairey, SadikBradbury, AidanLidgett, MarkPage, ChrisKazilas, Mihalis
The world of plastic products has been growing due to its versatile properties and has become an intrinsic and fundamental part of engineering for new products. The most important aspects contributing to this spectacular growth are the design and assembly, making sure that plastic parts are designed optimally. The safety requirements have been increased due to the safety ratings and thus interior parts must provide more absorption and protection to occupants. The main connection types used in the plastic parts are heat stakes and snap fits. The purpose of a good snap fit is not only to have a high retention effort but also to present ergonomic characteristics with optimal insertion and extraction effort because each part requires a different function. With the time-dependent loading, the material will redistribute its internal energy thereby performing a time-related flow leading to reduced pretension thus decreasing stiffness. This paper presents an analytical and numerical method for
Michael Stephan, Navin Estac RajaC M, MithunMohammed, RiyazuddinR, Prasath
In the modern automotive industry, squeak and rattle issues are critical factors affecting vehicle perceived quality and customer satisfaction. Traditional approaches to predicting and mitigating these problems heavily rely on physical testing and simulation technologies, which can be time-consuming and resource-intensive, especially for larger models. In this study, a data-driven machine learning approach was proposed to mitigate rattle risks more efficiently. This study evaluated a floor console model using the traditional simulation-based E-line method to pinpoint high-risk areas. Data generation is performed by varying material properties, thickness, and flexible connection stiffness using the Hammersley sampling algorithm, creating a diverse and comprehensive dataset for generating a machine learning (ML) model. Utilizing the dataset, the top contributing variables were identified for training the ML models. Various machine-learning models were developed and evaluated, and the
Parmar, AzanRao, SohanReddy, Hari Krishna
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
This study focuses on the numerical analysis of weather-strip contact sealing performance with a variable cross-sectional design, addressing both static and dynamic behaviors, including the critical issue of stick-slip phenomena. By employing finite element modeling (FEM), the research simulates contact pressures and deformations under varying compression loads, DCE (Door Closing Efforts) requirements, typical in automotive applications. The analysis evaluates how changes in the cross-sectional shape of the weather-strip affect its ability to maintain a consistent sealing performance, especially under dynamic vehicle operations. The study also delves into stick-slip behavior, a known cause of noise and vibration issues, particularly improper/ loosened door-seal contact during dynamic driving condition. This study identifies key parameters influencing stick-slip events, such as friction coefficients, material stiffness, surface interactions, sliding velocity, wet/dry condition
Ganesan, KarthikeyanSeok, Sang HoSun, Hyang Sun
Powertrain mounts are vital for isolating vibrations and enhancing vehicle ride comfort and performance, making their dynamic behavior critical for effective design. This study provides a comprehensive analysis of powertrain mount decoupling by integrating virtual simulations, physical testing, and analytical calculations. In our approach, we first derived stiffness data through analytical calculations, which were validated through multi-body dynamics (MBD) simulations that modeled interactions within the powertrain mounts. By adjusting bush stiffness parameters within the MBD framework, we predicted decoupling frequencies and analyzed kinetic energy distribution. The iterated stiffness values from simulations were then confirmed through physical testing, ensuring consistency in decoupling frequencies and energy distribution. This alignment between virtual and experimental data enhances the reliability of our findings and helps identify overlapping frequencies across vehicle systems
Shende, KalyaniShingavi, ShreyasRane, VisheshHingade, Nikhil
This specification establishes requirements for coating systems having high durability for use as aircraft exterior surface finishes. These coating systems normally are comprised of a surface treatment, a primer, and a topcoat. Alternatively, a coating system may be comprised of a surface treatment and a unicoat. Testing includes use of a chemical stripper for removal and a cleaning compound for topcoat washing, but these components are not a part of the coating system.
AMS G8 Aerospace Organic Coatings Committee
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.008 to 1.000 inches (0.203 to 25.4 mm) supplied in the -T3/-T351 temper (see 8.5).
AMS D Nonferrous Alloys Committee
This specification establishes requirements for thermoset protective coatings in powder form.
AMS G8 Aerospace Organic Coatings Committee
This specification covers two methods for determining the percentage of delta ferrite in steels and other iron alloys. When applicable, this specification will be invoked by the material specification.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an arc-cast molybdenum alloy in the form of round bars 0.125 to 4.5 inches (3.00 to 112.50 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes from vacuum hot pressed powder.
AMS G Titanium and Refractory Metals Committee
This specification covers a copper-beryllium alloy in the form of sand, investment, or centrifugal castings (see 8.7).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of sheet 0.009 to 0.126 inch (0.23 to 3.20 mm), inclusive, in nominal thickness, alclad (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a synthetic rubber in the form of sheet, strip, tubing, molded shapes, and extrusions. This specification should not be used for molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications
AMS CE Elastomers Committee
This specification covers an aluminum alloy in the form of extruded wide panel profiles (shapes) and rod and bars 0.500 to 1.000 inch (12.7 to 25.4 mm), inclusive, in thickness produced with cross-sectional area of 14 to 30 square inches (90 to 194 cm2) from circumscribing circle diameters (see 2.4.1) of 14 to 22 inches (356 to 559 mm) (see 8.7).
AMS D Nonferrous Alloys Committee
This specification covers a free-machining, corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.4).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars and forgings in the solutioned, stabilized, and precipitation heat-treated condition. Stock for forging shall be in the condition ordered.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS E Carbon and Low Alloy Steels Committee
This specification covers beryllium in the form of sheet and plate produced by hot rolling beryllium with nominal thicknesses from 0.020 to 1.000 inches (0.51 to 25.4 mm), inclusive (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification covers a biodegradable deodorant in the form of a liquid concentrate, solid, or gel.
AMS J Aircraft Maintenance Chemicals and Materials Committee
Thermoplastic fiber-reinforced polymer composites (TPC) are gaining relevance in aviation due to their high specific strength, stiffness, potential recyclability and the ability to be repaired thanks to their meltability. To maximize their potential, efficient repair methods are needed to maintain aircraft safety and structural integrity. This article introduces a novel repair technique for damaged TPC structures, involving the joining of a repair patch with induction welding using a susceptor material. The susceptor consists of a material with high electrical conductivity and magnetic permeability and therefore reacts stronger to the electromagnetic field than the composite, even if the composite is carbon fiber based. I. e. the thermal energy is specifically concentrated in the repair area. In this study, the susceptor was placed on the patch and also in the welding zone. The repair process begins by identifying and preparing the damaged area, followed by precise scarfing. Care is
Geiger, MarkusGlaap, AntonSchiebel, PatrickMay, David
The goal of the development of an electric aircraft engine is to create an aircraft system that achieves ultimate efficiency using hydrogen fuel instead of fossil fuels. Therefore, it is necessary to focus on reducing weight as much as possible, and this paper describes the approach to such fuel cell-powered aircraft. The authors have adopted a superconducting coreless rotating electric machine with an integrated hydrogen tank and are pursuing a target of 70kg or less for the main components of a 2MW rotating electric machine. High-temperature superconducting cables have zero electrical resistance and can carry a very high current density, but the alternating current (AC) loss generated when used in AC has been an issue in their application to rotating electric machines. In 2023, The SCSC cable was developed to be a low-AC-loss, robust, and high current cable concept, in which copper-plated multifilament coated conductors are wound spirally on a core. In addition to using this
Oyori, HitoshiSakurai, ShoKusase, ShinYoshida, YukihiroYoshinaga, SeiichiroNose, HiroyukiAmemiya, Naoyuki
This SAE Aerospace Standard (AS) establishes minimum requirements for eddy current inspection of circular holes in nonferrous, metallic, low conductivity (less than 5% IACS) aircraft engine hardware with fasteners removed. The inspection is intended to be performed at maintenance and overhaul facilities on engine run hardware.
AMS K Non Destructive Methods and Processes Committee
Lee-Jeffs, AnnSafi, JoannaMuelaner, Jody EmlynBarkan, Terrance
This specification covers procedures for sampling and testing aircraft-quality, special aircraft-quality, and premium aircraft-quality steels requiring transverse tensile property testing.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a honeycomb core fabricated from a corrosion and heat-resistant steel.
AMS F Corrosion and Heat Resistant Alloys Committee
Alwan, Majeed A.Abbood, Ahmed Sh.Farhan, Arkan J.Azadi, Reza
Naveen Kumar, SubramaniBalasubramanian, V.Malarvizhi, S.Sonar, TusharHafeezur Rahman, A.Balaguru, V.
The study aims to evaluate the transient failure behavior of welding joints that are exposed to sudden tensile loading. The Mohr–Coulomb criterion’s fundamental theories are examined and evaluated. The failure function of Mohr’s envelope is first expanded into a polynomial in terms of the stress components (σp , τxy ) on the failure region up to the third order. Using ANSYS software, the transient failure response of welding joints was simulated. The Runge–Kutta fourth-order computational technique was employed to perform numerical analysis on transient failure response. Python software is used to develop a computer code for the time-dependent failure response of welding joints. The welded joint specimen is tested with the help of a UTM machine. The analytical results are compared with experimental results. A fractography study was carried out on the welded joint of the failure surface. In this context, the main focus is on SEM and EDS methods to determine the exact type of failure
Chavan, ShivajiRaut, D. N.
Modern aircraft, ships, and offshore structures are increasingly constructed using fiber-reinforced composite materials. However, when subjected to lightning strikes, these materials can suffer significant structural and functional damage due to their electrical and thermal properties. This study aims to develop a novel finite element (FE) model to minimize the error in estimating the thermal damage caused during lightning strikes. This will aid in design and optimization of lightning protection systems. The developed model introduces a simplified numerical approach to model the lightning arc interaction with CFRP laminate. The existing FE model includes idealized loading conditions, leading to high error in estimation of severe damage area and in-depth damage. The proposed methodology incorporates a more realistic lightning-induced loading pattern to improve accuracy. Several cases are analyzed using available FE methods and compared to the proposed model (case 6) to evaluate the
Sontakkey, AkshayKotambkar, MangeshKaware, Kiran
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Chiou, Yi-HauHwang, Hsiu-YingHuang, Liang-Yu
In response to the evolving landscape of exhaust gas regulations for small powertrains, reducing NOx emission is increasingly important. This study deeply investigated the feasibility of a NOx storage catalyst (NSC) containing cerium oxide (CeO2) and barium oxide (BaO) for reducing NOx emission. The key functions, NOx storage and reduction performances were evaluated, and deterioration mechanisms were explored through performance evaluations and physical property analyses. The findings revealed a strong correlation between the size of CeO2 crystals and NOx storage performance at low temperature, such as those encountered during city driving conditions. Conversely, at high temperature, such as those during highway driving conditions, NOx storage performance correlated well with sulfur deposition, suggesting that the formation of barium sulfate (BaSO4) contributes to the deactivation. This experiment also showed a strong correlation between NOx reduction performance and BaSO4 formation
Nakano, FumiyaKoito, Yusuke
The use of plastic gears has expanded due to their lightweight properties, low noise emission, and cost-effective manufacturing. For instance, in the transportation equipment industry, some metal gears are being replaced with plastic gears. To achieve further size and weight reduction, gears must be able to withstand higher loads without damage. Gears have various modes of damage. Since there are different types of wear, each with different factors, it is important to identify the factors and take appropriate countermeasures. In gear meshing, there are many factors that affect wear, so restricted-factor tests are required to confirm the effectiveness of countermeasures. The purpose of this study is to elucidate the wear regime in high-load gear meshing and then to establish a simplified evaluation method replicating the meshing of gears for wear resistance focusing on the relative sliding between the two surfaces of metal and plastic. In the evaluation, changes in wear morphology over
Yamamoto, JimpeiSuzuki, TakaharuAko, NatsukiIwasaki, ShinyaKurita, Hirotaka
This specification covers an extra high toughness, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition and stock of any size for forging, flash-welded rings, or extrusion.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded profiles 0.750 to 1.500 inches (19.05 to 38.10 mm) in nominal thickness with a maximum cross-sectional area of 19 square inches (123 cm2) and a maximum circle size of 11 inches (279 mm) (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing.
AMS E Carbon and Low Alloy Steels Committee
This foundation specification (AMS1424T) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
G-12ADF Aircraft Deicing Fluids
This specification covers an aluminum alloy in the form of die forgings 4 inches (102 mm) and under in nominal thickness at time of heat treatment, hand forgings up to 6 inches (152 mm), inclusive, in as-forged thickness, rolled rings with wall thickness up to 3.5 inches (89 mm), inclusive, and stock of any size for forging or rolled rings (see 8.6).
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 31300