Browse Topic: Materials properties

Items (31,548)
As electric vehicles continue to revolutionize transportation, ensuring the reliability of their powertrain systems and Battery Packs has become a critical focus. One key challenge is galvanic corrosion, which occurs when dissimilar metals in contact are exposed to an electrolyte, such as seashore moisture or road salt used in snow or ice zones. This corrosion can weaken structural components, compromise electrical conductivity, and reduce the lifespan of critical systems. Common areas at risk include metallic joints within battery enclosures, busbars, cooling systems, and electrical connectors. Environmental factors such as high humidity and temperature fluctuations further amplify the issue, making it a pressing concern for manufacturers. This paper aims to systematically identify critical galvanic joints within electric powertrain systems and Battery Packs and provide effective strategies to mitigate corrosion risks. Preventative measures include choosing compatible materials with
Narain, AdityaVenugopal, SivakumarGopalan, VijaysankarVaratharajan, Senthilkumaran
This study provides an extensive analysis through finite element analysis (FEA) on the effects of fatigue crack growth in three different materials: Structural steel, Titanium alloy (Ti Grade 2), and printed circuit board (PCB) laminates based on epoxy/aramid. A simulation of the materials was created using ANSYS Workbench with static and cyclic loading to examine how the materials were expected to fail. The method was based on LEFM and made use of the Maximum Circumferential Stress Criterion to predict where cracks would happen and how they would progress. Normalizing SIFs while a crack was under mixed loading conditions was achieved using the EDI method [84]. We used Paris Law to model fatigue crack growth using constants (C and m) for the materials from previous studies and/or tests. For example, in the case of titanium Grade 2, we found Paris Law constants with C values from 1.8 × 10-10 to 7.9 × 10-12 m/cycle and m values from 2.4 to 4.3, which illustrate differing effects of their
T, LokeshBhaskara Rao, Lokavarapu
The present study details the design evolution and failure analysis of a novel hybrid stabilizer bar link (stab link) developed for the front suspension of a born electric sports utility vehicle (SUV) platform characterized by higher gross vehicle weight (GVW), increased wheel travel, and constrained packaging space. To address these challenges, a unique hybrid stab link was designed featuring dual plastic housings at both the metal ball joint ends, connected by a steel tube, and achieving a 30% weight reduction while offering enhanced articulation angles for extremely lower turning circle diameter (TCD) of the vehicle, compared to the conventional stab link. The unique hybrid stab failed under complex loading conditions during accelerated durability testing (ADT), prompting a comprehensive investigation. The failure analysis included road load data acquisition across various stab bar diameter configurations evolved during suspension tuning, different stabilizer link designs evolved
Selvendiran, PJ, RamkumarNayak, BhargavM, SudhanPatnala, Avinash
This study investigates the tribological behaviour of Sesbania rostrata fiber (SRF) reinforced polycaprolactone (PCL) biocomposites using a pin-on-disc wear couple. The stationary SRF/PCL composite specimen interacted with a rotating EN31 steel disc (64 HRC), establishing the sliding wear interface in accordance with ASTM G99 standards. Composite laminates containing 10, 20, and 30 wt% SRF were evaluated at a sliding velocity of 1 m/s over a fixed distance of 1000 m under varying normal loads. The incorporation of SRF significantly enhanced the wear performance relative to neat PCL, with 20 wt% fiber loading achieving the lowest coefficient of friction and specific wear rate due to improved load transfer, stronger interfacial adhesion, and a more uniform laminate structure. In contrast, the 30 wt% composite exhibited fiber agglomeration, reduced homogeneity, and weakened fiber–matrix interactions, resulting in increased wear. SEM microstructural analysis confirmed the formation of a
Raja, K.Senthil Kumar, M.S.
This study presents a comparative investigation of the vibration characteristics of rectangular and circular plates with fixed edges using analytical, numerical, and computational approaches. Analytical models based on classical plate theory were employed to calculate natural frequencies and mode shapes, while finite element analysis (FEA) was performed in a CAE tool to provide high-fidelity simulation results. A detailed mesh convergence study confirmed numerical stability, with frequency variations below 1% between successive refinements. Analytical predictions showed excellent agreement with simulation results for lower modes, with errors as low as 0.25% for the rectangular plate and 2.65% for the circular plate. However, higher modes exhibited significant deviations, with errors reaching up to 29.01% for rectangular and 181.52% for circular geometries, highlighting the limitations of closed-form solutions in capturing complex vibrational behavior. Python-based computational tools
N, SuhasR, SanjayBhaskara Rao, Lokavarapu
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of rolled or forged rings up to 6 inches (152 mm), inclusive, in nominal thickness at the time of heat treatment and having an OD to wall thickness ratio of 10 or greater (see 8.6).
AMS D Nonferrous Alloys Committee
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
Lighting Materials Standards Committee
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of carbon and low-alloy steel forgings.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 31548