Browse Topic: Materials testing

Items (214)
ABSTRACT Ballistic validation testing typically involves firing multiple shots at a nominal velocity and ensuring the target stops every round with only partial penetrations, no completes. This testing is specified as a consequence of the binary nature of the test, and the need to meet a particular probability of penetration at a specified velocity with a certain confidence level. This legacy process has significant shortcomings owing to both the test procedures involved as well as the nature of the statistical interpretation of the results. This paper describes an alternative test and analysis procedure that produces the required level of performance and confidence information at a specified velocity, as well as the confidence over a wide range of other velocities and performance levels. In addition, this procedure eliminates many of the shortcomings associated with the legacy “no penetration” test protocol, and requires no more shots at the target. Citation: J. Eridon, S. Mishler
Eridon, JamesMishler, Scott
ABSTRACT The US Army TARDEC has been researching an alternative to current armor steel that is both tough, and light-weight. The studied alloy is based on the Fe-Mn-Al-C system. This study was conducted to investigate and quantify this alloy’s susceptibility to hot cracking phenomena related to casting and welding. Very little research has been done on general weldability of this alloy system, so the results of these tests will be compared to other high Mn steels, and alloys that have undergone cast pin tear testing. Testing will be conducted utilizing button melting tests, autogenous spot welds, and cast pin tear testing. The cast pin tear testing was conducted to measure this alloys susceptibility to weld solidification cracking. The spot welds were used to quantify the susceptibility of the weld heat affected zone (HAZ) to liquation cracking, as well as to observe the solidification structure of the fusion zone. The testing results showed that the FeMnAl system in its current form
Evans, WilliamRamirez, Antonio J.Sebeck, Katherine
ABSTRACT The primary focus of this effort is to evaluate the roof liner technology’s ability to reduce the head injury criteria (HIC) and head acceleration to mitigate vertical impact related injures to mounted crew injures which may occur during top and bottom threat events. In an effort to reduce the likelihood of head injury during top and bottom threat attacks, an adequate roof liner is needed to reduce the force exerted on the solider. The roof liners were able to pass all system level tests. The successful system level testing confirmed the blast mat technology’s TRL-6 recommendation. Citation: J. Klima, “Developing Performance and Operating Requirements for Energy Attenuating (EA) Roof Liner for all U.S. Army Military Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Klima, Julie
ABSTRACT V-shaped hulls for vehicles, to mitigate buried blast loads, are typically formed by bending plate. Such an approach was carried out in fabricating small test articles and testing them with buried-explosive blast load in Southwest Research Institute’s (SwRI) Landmine Test Fixture. During the experiments, detailed time dependent deflections were recorded over a wide area of the test article surface using the Dynamic Deformation Instrumentation System (DDIS). This information allowed detailed comparison with numerical simulations that were performed with LS-DYNA. Though in general there is good agreement on the deflection, in the specific location of the bends in the steel the agreement decreases in the lateral cross section. Computations performed with empirical blast loads developed by SwRI and by more computationally intensive ALE methods in LS-DYNA produced the same results. Computations performed in EPIC showed the same result. The metal plate was then bent numerically so
Walker, James D.Chocron, SidneyMoore, Thomas Z.Bradley, Joseph H.Carpenter, Alexander J.Weiss, CarlGerlach, Charles A.Grosch, Donald J.Grimm, MattBurguess, Victor W.
ABSTRACT For this particular effort, TARDEC Center for Systems Integration (CSI) was tasked to lead an effort to develop an underbody kit that would serve multiple functions. The underbody kit would provide an additional 1,200 lbs of net buoyancy to enhance water mobility per the LAV. This program is in the development and testing phase with a prototype expected to be produced June of 2015. This program is one of multiple efforts to ensure the FOLAV meet all system requirements to keep the vehicle viable to 2035. In addition, the TARDEC concept/prototype must meet the same mine blast protection provided by the underbody D-Kit that was produced for the fleet of vehicles in 2010. This is a unique challenge as a combination of buoyancy, mine blast, and structural requirement on a ground military vehicle is novel idea. Vehicle weight and survivability requirements are difficult challenges on combat vehicles, to include the LAV, so the TARDEC solution would have to reduce the weight of the
Capouellez, JamesVunnam, MadanKhatib-Shahidi, BijanMcCarty, Steven L.Hullinger, David
ABSTRACT This paper addresses candidate technologies for attaching steels to selected lightweight materials. Materials of interest here include aluminum and titanium alloys. Metallurgical challenges for the aluminum-to-steel and titanium-to-steel combinations are first described, as well as paths to overcome these challenges. Specific joining approaches incorporating these paths are then outlined with examples for specific processes. For aluminum-to-steel joining, inertia, linear, and friction stir welding are investigated. Key elements of success included rapid thermal cycles and an appropriate topography on the steel surface. For titanium-to-steel joining, successful approaches incorporated thin refractory metal interlayers that prevented intimate contact of the parent metal species. Specific welding methods employed included resistance mash seam and upset welding. In both cases, the process provided both heat for joining and a relatively simple strain path that allowed significant
Gould, Jerry E.Eff, MichaelNamola, Kate
ABSTRACT The first part of this paper will outline the conception of the testing apparatus (Figure 1), along with its operation and preliminary results. The second part of the paper will discuss a new methodology used to correlate the dependence of crack growth rate for strain crystallizing natural rubbers in terms of tearing energy. The tearing energy which depends on the type of elastomer, geometry and stress strain behavior of a particular specimen demonstrates a direct correlation with the crack growth rate at different R-ratios (= min tearing energy/max tearing energy). Figure 1 Schematic of the testing apparatus
Kujawski, DanielDiStefano, DarenBradford, William
ABSTRACT One of the deadliest threats that ground combat vehicles regularly encounter is the Explosively Formed Penetrator (EFP). The extremely high impact velocities that are typical of EFPs necessitate extremely heavy armor, which is often impractical due to the corresponding compromise in mobility and reliability. One possible solution to this threat is to use granular ceramics as an alternative to current armor solutions. An evaluation of high-speed impacts into granular ceramics and extensive testing across a wide range of parameters provides data to support this proposal. These results demonstrate an impressive potential for granular ceramics in EFP protection kits with a substantial reduction in both cost and weight to achieve the same level of protection as plate or sheet materials. Citation: P. Kopinski, “Ceramic Particle Armor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Kopinski, Peter
ABSTRACT In this work, Abrams tank track system T-158LL backer pad elastomer self-heating and fatigue behavior was characterized experimentally, and the backer pad design was digitally twinned to show how complex in-service conditions can be evaluated virtually. The material characterization included measurement of the thermal properties and dissipative characteristics of the rubber compound, as well as its fatigue crack growth rate curve and crack precursor size. The analysis included 1) a structural finite element analysis of the backer pad in operation to obtain the load history, 2) a thermal finite element analysis to obtain steady-state operating temperature distribution within the backer pad, and 3) a thermo-mechanical fatigue analysis using the Endurica CL fatigue solver to estimate the expected service life and failure mode of the backer pad. As validation, experiments were conducted on the backer pad to measure operating temperature, fatigue life, and failure mode over a
Mars, William V.Castanier, MatthewOstberg, DavidBradford, William
Exploring the mechanical properties of soft tissues under compressive loading is crucial for understanding their role in automobile incidents. Soft tissues, which serve as cushions or padding between bone and vehicle interiors, significantly influence contact duration and forces, thereby altering incident kinematics and injury. In this investigation, muscle and soft connective tissues from post-mortem human subjects (PMHS) forearms were excised and subjected to compression and indentation testing methods at various rates and strains. Specific samples with higher proportions of muscle were compared against samples without muscle tissues to evaluate the role of compositional changes. Anthropomorphic test device (ATD) upper extremity foam and vinyl–foam composite analog tissues underwent similar testing for comparison. High impact rates simulating those in high-speed automotive collisions were achieved using a custom-built drop tower impactor setup. The results revealed significantly
Dennis, Cole J.Quenneville, Cheryl E.
Military performance requirements for adhesives have been traditionally derived to fulfill niche defense needs in harsh operational environments with little consideration for dual-use commercial potential. U.S. Army Research Laboratory, Aberdeen, MD The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals' unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective. Then, the model parameters of the J-C constitutive model are identified based on the experimental data, and the
Zheng, Wei-JunLiu, Xiao-AngShangguan, Wen-BinZhang, QuGu, Chen-guang
The safety of commercial aviation industry has come under extensive scrutiny and how the system safety process is applied. One specific system safety regulation concerns how unsafe system operating conditions are meeting regulatory requirements. Minimal regulatory guidance was available on this topic and an industry committee (American Society for Testing of Materials) decided to provide a consensus standard with input from a cross-section of airplane manufacturers, suppliers, and regulatory authorities on what is meant by an unsafe system operating condition and how compliance can be shown to the regulation(s). The committee determined that an unsafe system operating condition is when a failure condition severity increases (to hazardous or catastrophic) due to crewmember(s) inaction. For example, if a hazard has occurred it is possible the severity can increase to an unacceptable level as the crewmember(s) are not aware of the hazard. Enabling the crewmember(s) to mitigate the failure
Estagin, Edward
Magnesium alloys possess a unique combination of benefits stemming from their exceptional strength-to-weight ratio and reduced density. The aforementioned attributes render them notably attractive for utilization in automotive and aeronautical sectors. Furthermore, these alloys are gaining significant interest from the industry because of their outstanding dimensional stability, excellent ability to dampen vibrations, high recyclability, and good castability. They also exhibit superior stiffness, among other attributes. Nonetheless, magnesium and its alloys face several noteworthy challenges that limit their industrial utilization. These include low resistance to deformation over time, limited stability at high temperatures, restricted malleability, poor ductility, and inadequate resistance to corrosion. This study aims to investigate the phenomenon of stress corrosion cracking in magnesium alloy when exposed to potassium chromate. Addition of Ca showed better mechanical properties. A
Daniel Das, A.Suresh Balaji, R.Marimuthu, S.Manivannan, S.
ISOFIX anchorage plays a critical role in restraining child occupants during crashes. Effective design of ISOFIX anchorages is essential for achieving controlled child occupant kinematics. CAE simulations are extensively used for the development of ISOFIX anchorages. Comprehensive material characterization of ISOFIX wires play a vital role for achieving desired prediction accuracy. This paper covers the detailed process of ISOFIX material characterization for material failure prediction. ISOFIX wires are case hardened to exhibit required strength characteristics. Due to its material characteristics, the conventional material models don't give desired prediction accuracy for failure prediction. Therefore, advanced material models are developed in LS Dyna environment, which can accurately predict plastic and fracture behavior of ISOFIX wires. Extensive coupon level material testing was done to achieve the material hardening and failure characteristic in Tension, Compression, Shear, and
Neve, Vijay ShrikrishnaKumar, SaketBandru, ShreenuSharma, Ankurvan der Loos, Philipp
All two-wheeler industries validate their product’s fatigue life on proving track before heading for mass production. Proving test tracks are made to simulate the end-user environment in order to find out the possible fatigue failures during each development stage of vehicle design, which in turn helps the CAE analysts to verify the design before it goes to the end-user hands. In this article we present the design and failure analysis of sub-frame assembly of motorbike observed during the accelerated fatigue test on proving track. Sub-frame main rod was found broken exactly between two weld endings during fatigue test before reaching 6% of the target fatigue life. Possible causes of sub-frame failures have been identified/analyzed in detail using fish bone diagram. A finite element analysis (FEA) model of sub-frame assembly was developed and a random response analysis was carried out on initial design. Acceleration input loads measured from test track have been given at the sub-frame
Sharma, AshishKhare, Saharash
Composites are increasingly being used in aerospace and defense parts manufacture for several reasons including the high strength to weight ratio of materials, and due to the fuel savings generated by their lighter weight. Force measurement and material testing is an essential process for product designers and manufacturers to ensure part integrity, and to gain insightful data for creating the highest quality composite components
Nylon polymer with an optimal blend of Kevlar, fiberglass, and high-speed, high temperature (HSHT) Fiberglass offers improved characteristics such as flexural strength, wear resistance, electrical insulation, shock absorption, and a low friction coefficient. For this reason, the polymer composite manufactured by combining HSHT, Kevlar, and fiberglass with nylon as base material will expand the uses of nylon in the aerospace, automotive, and other industrial applications related to ergonomic tools, assembly trays, and so forth. The proposed work was carried out to investigate the continuous fiber reinforcement (CFR) in nylon polymer using a dual extrusion system. Twenty experimental runs were designed using a face-centered central composite design (FCCD) approach to analyze the influence of significant factors such as reinforcement material, infill pattern, and fiber angle on the fabricated specimen as per American Society for Testing Materials (ASTM) standards. The tensile strength
Kaushik, AshishKumar, PardeepGahletia, SumitGarg, Ramesh KumarKumar, AshishYadav, MohitGiri, JayantChhabra, Deepak
The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century. Driveline lubricants have always been required to protect hardware, and
Hunt, Gregory J.Choo, LindseyNewcomb, Timothy
This specification covers powdered metal products consolidated by hot isostatic pressing (HIP) of titanium alloy powder compacts
AMS G Titanium and Refractory Metals Committee
Previous research papers presented methods for joining different aluminium or steel sheets of the same thickness using the friction stir welding process with flat tools. A novel variant of the friction stir welding process has been developed by the Materials Testing Institute of the University of Stuttgart, enabling the joining of aluminium and steel sheets of different thicknesses in order to further increase the lightweight potential of sheet metal components. Compared to the conventional welding method, the difference of this method relates to the stir welding tool used, which consists of a stepped welding pin and allows combined lap-and-butt joints to be produced. In this context, this paper aims to demonstrate the lightweight potential and the crash performance of Tailor Welded Blanks (TWBs) made from DX54(1 mm) and AL6016 - T4 (2 mm). For this purpose, the first step was to identify possible parts of car body structures that could be replaced by components made from these TWBs
Bachmann, MaximilianStöckl PhD, JohannesRiedmüller PhD, Kim RouvenLiewald, Mathias
Aircraft icing is a well-known problem that can have serious consequences for flight safety. To combat this problem, various ice protection systems (IPSs) have been developed and are currently used on most aircraft, including thermal ice protection systems. However, these systems can be costly, heavy and ineffective. Therefore, there is a need to improve the efficiency and response time of these systems. In recent years, research has focused on the development of hybrid systems that combine different ice protection technologies to achieve better performance. In this sense, the use of an active element with a coating on its external part that improve its efficiency would be an important advance, but there is a wide range of active systems and even more of coatings and surface treatments. Therefore it would be helpful to have a test methodology that would allow a simple but thorough assessment of the performance of each passive system, and this is precisely what is proposed in this
García, PalomaMora, JulioCarreño, FranciscoRedondo, FranciscoRodriguez, RafaelRivero, PedroVicente, AdrianAcosta, CarolinaLarumbe, SilviaMedrano, ÁngelLecumberri, Cristina
This SAE Recommended Practice presents recommendations for test fuels and fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes handling and usage of test fuels e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials. They are not intended for other activities, such as engine development, design verification, or process validation unless agreed
null, null
14-day material test to determine the cyclic effects of runway deicing compounds on cadmium plated parts
G-12RDP Runway Deicing Product Committee
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. This SAE No. 2 friction test monitors the µ-v curve for a negative slope which can be used to evaluate a wet clutch system (WCS) anti-shudder performance and can be used for any wet driveline mechanism. WCS shudder is considered a clutch failure condition. The cause of shudder is consistent with glazing as the primary failure mode. It has been shown that a substantial loss of the wet friction material surface porosity leads to a glaze forming on the friction material surface. This process typically leading to a negative dµ/dv slope over time as addressed in SAE 2020-01-0560. This procedure includes evaluation friction characteristics of wet clutch stystem (WCS) at various specific pressures, speeds, and temperatures, and an extended durability duty cycle test to
Automatic Transmission and Transaxle Committee
The static coefficient of friction between lining and shoe plays a fundamental role in the lining fixing project, which is the most important parameter for the riveted joint calculation. For the lining riveting, the rivet needs to ensure that friction material and shoe remain in contact through the normal force applied on the surfaces, but the rivet should not be exposed to shear forces. Thus, the brake torque transmission must occur through the static coefficient of friction between lining and shoe, not allowing relative slips or movements between the pair in contact. Therefore, the present study aims to understand the influence of the static friction coefficient between lining and shoe as a function of the lining internal superficial roughness, from the evaluation of different roughness conditions - contact area with shoe -. The static coefficient of friction between lining and shoe is a complex measurement to be performed, due to the cylindrical geometry of the drum brake system, so
Antunes, Diego SeveroBrezolin, AndréFavero, JulianaWille, Norton HernandezBastos, Saulo Renê CasarinLuza, Thaysa
This SAE Aerospace Standard (AS) specifies scarf-cut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are usually used in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings and other seals for static and dynamic applications. NOTE: This specification includes material tests but does not include hydraulic or pneumatic performance tests
A-6C2 Seals Committee
Brakes are the critical component, plays a significant role regards to performance of vehicle. Vehicle safety is also strongly influenced by proper braking operation, which depends on pad to disc contact interface. Pad and disc surfaces are worn out due to continuous braking events, which in turn affects the life of the brake assembly and its performance. This paper presents the brake pad wear prediction of a disc brake assembly. A new and unworn pair of brake pads are considered for the study and tested under different braking scenarios. Wear simulation procedure is formulated based on Rhee’s wear formula and wear calculation model is established based on friction and wear mechanism. The correlation between the wear behavior of a friction material tested under controlled laboratory conditions and finite element method is investigated. Based on the calculated wear, lifespan of the brake pad is also calculated. The predicted life of the pad using inertia brake dynamometer (IBD) is then
S, GurumoorthyGrandhi, SreshtiS, Sridhar
This SAE Aerospace Standard (AS) specifies solid polytetrafluoroethylene (PTFE) retainers (backup rings) for use in static glands in accordance with AS5857. They are usually for use in hydraulic and pneumatic systems as anti-extrusion devices in conjunction with O-rings and other seals. NOTE: This specification includes material tests but does not include hydraulic or pneumatic performance tests
A-6C2 Seals Committee
The steering knuckle is an essential component in All-Terrain Vehicle (ATV) which withstands alternating loads subjected to different conditions without affecting the vehicle performance. The main objective of the proposed work was to design and analysis the steering knuckle under static conditions to observe stress, total deformation and factor of safety for proposed materials. In this present investigation, Aluminium alloy (AA7075) was chosen as it exhibits good ductility, high strength, toughness and high resistance to withstand impact load. The prime objective of this work was processed under three different conditions like virgin AA7075, AA7075 with T6 heat treatment and AA7075 with T6 heat treatment followed by shot-peening post processed technique was completed and to attain diverse strength of the samples were tested and noted appropriate responses. The secondary objective of our proposed work, an optimum knuckle design was modeled using Solidworks. The proposed materials test
Ranganathan, SoundararajanAravinth, Vishaalgopal, ShanthoshRaja, AjithC, Pradeep
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 6000 rpm stepped power test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 6000 rpm and is intended as a standard procedure for common use by both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction material b Fluid c Reaction plates These three variables must be clearly identified when reporting the results of using this
Automatic Transmission and Transaxle Committee
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a μPVT Test for the evaluation of the variation of wet friction system performance as a function of speed, temperature, and pressure. This procedure is intended as a standard for both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction material b Fluid c Reaction plates These three variables must be clearly identified when reporting the results of this test. If any of the test parameters or system hardware as described
Automatic Transmission and Transaxle Committee
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 3600 rpm Stepped Power Test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 3600 rpm and is intended as a standard procedure for common use by both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction Material b Fluid c Reaction Plates These three variables must be clearly identified when reporting the results of using this
Automatic Transmission and Transaxle Committee
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid. One of the plugs has a small fill hole with a gasketing system that
Fuel Systems Standards Committee
In accordance with § 4.11 of AS36100, materials used in the construction of pallets, nets, and containers shall take into account the effects of environmental conditions, such as temperature, humidity, and UV degradation, expected in service. In accordance with (E)TSO-C90, the applicant shall consider environmental degradation due to aging, ultra-violet (UV) exposure, weathering, etc., for any materials used in the construction of pallets, nets, and containers. The purpose of this Aerospace Recommended Practice (ARP) is to provide guidelines for the basic requirements to be considered regarding environmental degradation effects when qualifying composite materials in the design to fulfill the (E)TSO-C90 Minimum Performance Standard. Material qualification is the verifying of a materials attributes and characterizations, which are typically determined through testing. Material variances related to raw materials and manufacturing processes are not part of this Aerospace Recommended
null, null
Engineering Stress, also known as Nominal Stress, is used in material testing, to quantify load carrying characteristics and abilities, such as ultimate tensile strength (UTS), modulus of rupture (under bending), yield strength, etc. Standard testing, however, is limited to regular cross-section shapes (rectangular, circle, etc.). In engineering applications, however, geometry and loading are typically much more complex. While FEA can be used to calculate local stress concentrations, the underlying Nominal Stress is not known. This paper introduces a method to calculate nominal stresses, based on FEA element nodal forces. Internal testing results of FCD500 (common material for brake components) bars, with and without notches, will be presented. Corresponding Nominal Stresses and local stress concentrations will be discussed, along with testing results
Lee, LiBall, ChristianLou, Gang
The development of fuel systems components are becoming challenging with the increasing use of Biofuels like Biodiesels and Ethanol around the world. Biodiesels are one of the most challenging fuels, once they can have multiple sources, which influences its characteristics, mainly the oxidization stability and peroxide levels. As the fuel characteristics changes along the time, the correct materials selection during the development phase is very important for the fuel system performance during the vehicle lifetime. One of the components most affected by the Biodiesel is the in tank fuel pump system. During the vehicle lifetime, it is exposed to all sorts of fuel and its contaminants and exposed to system stress factors like temperature and voltage variation. The wires insulation in the fuel pump systems are one of the most affected components. Typical materials used on the insulation such as fluorinated compounds may not be resistant to Biodiesel, mainly after a certain ageing and use
Watanabe, Alberto K.Carriao, AlexandrePascon, Carlos H.Kikuchi, Marisa
The friction materials of the drum and disk brakes correspond to one of the most complex materials applied to automotive industry, however, little is known about how this type of material reacts under wear conditions. The aim of this work is to understand the effects of loads and temperatures on the topology of brake's friction materials under wear regime. For this, brake friction material specimens were subjected to wear tests on which procedure was based on the SAE J661 standard. The tests consisted on a sequence of braking and cooling intervals, where friction material specimens were pushed against a rotating drum with controlled velocity. Different test temperatures and normal loads were set. From these tests, the mass loss of each specimen was measured. In order to understand the topological aspects of the materials tested, an optical microscope and confocal microscope were used. The variation of the surface characteristics during the wear process on each specimen was analyzed
Terra, Caroline da SilvaSuetti, André LimaTravaglia, Carlos Abílio PassosSilva, Ladário daLopes, Luiz Carlos Rolim
NVH (Noise Vibration & Harshness) is one of the main focus areas during the development of products such as passenger cars or trucks. Physical test methods have traditionally been used to assess NVH, but the necessity for reducing cost and creating a robust solution early in the design process has driven the increased usage of simulation tools. Development of well-defined methods and tools for NVH analysis allows today’s OEMs to have a virtual engineering based development cycle from concept to test. However, a subset of NVH problems including squeak and rattle (S&R) have not been generally focused upon. In a vehicle, S&R is a recurring problem for interior plastic parts such as an instrument panel or door trim. Since 2012, Altair has been developing S&R Director (SnRD), which is a solution that identifies and combats S&R issues by embedding the Evaluation-Line (E-Line) methodology [1] [2]. This methodology is based on industry best practices, as described in the paper SAE 2012-01-1553
Benhayoun, IsmailBonin, FrédéricMilliet de Faverges, AntoineMasson, Julien
14-day material test to determine the cyclic effects of runway deicing compounds on cadmium plated parts
G-12RDP Runway Deicing Product Committee
Fe-Mn-Al-C steel alloys have been previously studied for their potential as an alternative steel alloy for Rolled Homogeneous Armor (RHA). Prior examination of the material system has shown promise in this capacity due to the high strength and reduced density of Mn steels as compared to RHA. The prior tested materials were both wrought and cast versions but were all less than an inch in thickness. The alloy is once again being examined, but this time in thicker wrought plate. The aim of the current body of work is to develop a Military Specification (MIL-SPEC) for this new class of ballistically capable material. For industry and communities interested in such material development, the purpose of this paper, then, is to provide a summary of the processing parameters, the prior ballistic and dynamic material testing, cutting and welding approaches, and the extent of progress on industrial sized thick plate development
Howell, Ryan A.Gerth, Richard
A reduction in brain disorders owing to traumatic brain injury (TBI) caused by head impacts in traffic accidents is needed. However, the details of the injury mechanism still remain unclear. In past analyses, brain parenchyma of a head finite element (FE) model has generally been modeled using simple isotropic viscoelastic materials. For further understanding of TBI mechanism, in this study we developed a new constitutive model that describes most of the mechanical properties in brain parenchyma such as anisotropy, strain rate dependency, and the characteristic features of the unloading process. Validation of the model was performed against several material test data from the literature with a simple one-element model. The model was also introduced into the human head FE model of THUMS v4.02 and validated against post-mortem human subject (PMHS) test data about brain displacements and intracranial pressures during head impacts. Additionally, several parametric studies were performed to
Atsumi, NoritoshiNakahira, YukoIwamoto, MasamiHirabayashi, SatokoTanaka, Eiichi
Instron (Norwood, MA) manufactures materials testing equipment and accessories that are used to test samples ranging from components for jet engines to medical syringes. The company’s ElectroPuls systems are used for fatigue testing, which examines the behavior of materials under fluctuating or cyclic loads in the elastic regime. The E1000, E3000, and E10000 fatigue test systems are suited for biomedical/biomechanical research applications, and feature a wide dynamic performance range and low force characteristics. The all-electric systems use linear motor technology to eliminate the need for ball/lead-screws, and enable slow-speed static tests through to high-frequency dynamic tests at over 100 Hz
Acoustic material testing is becoming increasingly relevant to engineers, designers and manufacturers from a broad range of industries. This paper presents comparisons between material absorption measurements made using the traditional approaches of the reverberation room method and the fixed impedance tube using a sample holder, with those obtained using a lightweight portable flanged impedance tube method. The portable tube allows fast non-destructive in-situ material measurements. It may therefore be used to measure the impact of the installed lay-up (e.g. effects of facing sheets, curvature, material compression, bagging, etc.). Results are presented for both non-locally reacting and locally reacting materials. The flanged tube results are compared directly with in-tube data. They are also corrected for random incidence to allow comparison with the diffuse field reverberation room data. It is concluded that the flanged portable impedance tube method provides an attractive
Murray, Paul B.Kunio, Jason T.Christensen, LeifLarsen, Flemming S.
Items per page:
1 – 50 of 214