Browse Topic: Glass

Items (2,220)
ABSTRACT This paper focuses on development of methods for manufacturing structural thermoplastic composite materials, characterizing the mechanical properties of such composites, and modeling the static and dynamic performance in relevant military vehicle modeling and simulation environments. A thermoplastic polyethylene terephthalate (PET) / fiberglass composite was selected for this study due to the high specific strength of e-glass fibers, the high toughness of the PET thermoplastic, and relatively low price point, all which make it an attractive candidate for structural lightweighting of vehicles. The raw materials were manufactured into composite laminates using a compression molding process and then the mechanical properties were characterized using experimental test methods. Properties like stiffness, strength, and strain-to-failure of the composite were characterized using standard ASTM methods, and the resulting properties were directly fed into a computational material model
Patton, Evan G.Hart, Robert J.
ABSTRACT Traditional engineering concerns such as lubrication and cooling are still present even as vehicle functions become more complex. The established solution to monitor fluid levels has been a sight glass or a dipstick. More complex machines demand continuous knowledge of fluid levels without adding to operator workload. Remote monitoring of vehicle health will become normal and expected by owners and operators of evolving vehicle designs. This dual function fluid level sensor provides both electronic and operator monitoring of vehicle fluids, as well as redundancy in the event of electronic failure. Grouping of sensor components that are considered more likely to fail into one group, aids replacement when necessary. By incorporating a traditional dipstick into a continuous electronic monitoring solution, either method of level monitoring is facilitated
Swenson, David
Anode-free sodium metal batteries (AFSMBs) with initial zero sodium anodes are promising energy-storage devices to achieve high energy density and low cost. The morphology and reversibility of sodium controls the cycling lifespan of the AFSMBs, which is directly affected by the separator. Here, we compared the sodium deposition and corresponding electrochemical behaviors under the influence of three commercial separators, which were Celgard 2500, Al2O3-coated PP separator and glass fiber (denoting as 2500, C-PP and GF). Firstly, the reversibility of sodium plating/stripping was tested using half-cells, where coulombic efficiencies were stable at ~99.89% for C-PP and GF compare to 99.65% for 2500, indicating more dead sodium were formed for 2500. Then, the morphologies of deposited sodium were compared using optical microscopy. Compared to inhomogeneous sodium growth under 2500, C-PP obtained more flatter sodium layer with less height difference, attributing to the high mechanical
Qin, NanJin, LimingZheng, Jim P.
This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production
AS-3 Fiber Optics and Applied Photonics Committee
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061
AS-3 Fiber Optics and Applied Photonics Committee
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
This SAE Aerospace Recommended Practice (ARP) covers the requirements for the types of glass to be utilized in the fabrication of cover glasses and lighting wedges used in aerospace instruments. It defines the maximum extent of physical defects and recommends standard methods of inspection and evaluation. Definitions of terminology used in this document are covered in 2.2
A-20A Crew Station Lighting
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpoumpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals
Despite their many similarities, natural fibers have superior mechanical properties to synthetic fibers, including higher ultimate strength, greater elongation, resistance to ethering, biodegradability, lightweight, and fewer toxications. The mechanical characteristics of several matrices reinforced with synthetic and hemp fibers were examined in the current paper. We made the various hemp composites using vinyl ester, cellulose acetate (CA), treated CA, and GFRP (glass fiber-reinforced polymer) with CA. Composites were examined for mechanical characteristics such as tensile, flexural, impact, and hardness. Composites have a density of 1.19 g/cm3. Hemp with vinyl ester has higher tensile strength and flexural properties than other composites, but in impact, GFRP with CA has more impact strength of nearly 400 J/m, so for making eco-friendly biocomposite for lightweight structural applications
Vinoth Kumar, K.Karthick, K.Balasubramanian, M.Chidhamparam, R.S.Jones, S.
Thermo-mechanical fatigue and natural aging due to environmental conditions are challenging to simulate in an actual test with advanced fiber-reinforced composites, where their fatigue and aging behavior are little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in pipes, aircraft, and spacecraft structures, including microwave transparent structures, impact-resistant parts of the wing, fuselage deck and many other load-bearing structures. Often additional additively manufactured features and coatings on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper, we employ a thermo-mechanical fatigue model based on an accelerated fatigue test and life prediction under hot-to-cold cycles. Thermo-mechanical strain-controlled stress
Kancherla, Kishore BabuB S, DakshayiniRaju, BenjaminRoy Mahapatra, Debiprosad
A new approach has allowed researchers at Aalto University to design a kind of metamaterial that has so far been beyond the reach of existing technologies. Unlike natural materials, metamaterials and metasurfaces can be tailored to have specific electromagnetic properties, which means scientists can create materials with features desirable for industrial applications
In this paper, experimental studies were conducted to examine the mechanical behavior of a polymer composite material called polyamide with glass fiber (PA6-GF), which was fabricated using the three-dimensional (3D) fusion deposition modeling (FDM) technique. FDM is one of the most well-liked low-cost 3D printing techniques for facilitating the adhesion and hot melting of thermoplastic materials. PA6 exhibits an exceptionally significant overall performance in the families of engineering thermoplastic polymer materials. By using twin-screw extrusion, a PA6-GF mixed particles made of PA6 and 20% glass fiber was produced as filament. Based on literature review, the samples have been fabricated for tensile, hardness, and flexural with different layer thickness of 0.08 mm, 0.16 mm, and 0.24 mm, respectively. The composite PA6-GF behavior is characterized through an experimental test employing a variety of test samples made in the x and z axes. The mechanical and physical characteristics of
Sivanesh, A. R.Soundararajan, R.Natrayan, M.Nallasivam, J. D.Santhosh, R.
The current battery carrier for commercial vehicles is made of steel and is designed to hold two batteries weighing approximately 80 kg to 100 kg. However, this battery carrier faces several issues including corrosion, chemical reactivity, high maintenance requirements and its heavy weight. To tackle these challenges, a fiber-reinforced composite battery carrier is designed and developed specifically for commercial vehicles. The objective is to identify a solution that can meet the performance requirements of both static and dynamic loading, thereby reducing the overall weight. The proposed composite battery carrier offers a lightweight design, requires minimal maintenance, possesses high tensile strength and stiffness and is corrosion and chemical resistant. Furthermore, it provides the flexibility to integrate battery cover locking arrangements for added convenience and security. The structure of the composite battery carrier comprises a continuous glass fiber reinforced composite
Srivastava, SanjaySonkusare, Shailesh
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues
Cho, KyeongkukChoi, JEWON
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed. Weibull aging model and
Youn, Jee YoungChung, Min GyunAhn, Hyo Sang
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective. Then, the model parameters of the J-C constitutive model are identified based on the experimental data, and the
Zheng, Wei-JunLiu, Xiao-AngShangguan, Wen-BinZhang, QuGu, Chen-guang
FMVSS No. 205, “Glazing Materials,” uses impact test methods specified in ANSI/SAE Z26.1-1996. NHTSA’s Vehicle Research and Test Center initiated research to evaluate a subset of test methods from ANSI Z26.1-1996 including the 227 gram ball and shot bag impact tests, and the fracture test. Additional research was completed to learn about potential changes to tempered glass strength due to the ceramic paint area (CPA), and to compare the performance of twelve by twelve inch flat samples and full-size production parts. Glass evaluated included tempered rear quarter, sunroof, and backlight glazing. Samples with a paint edge were compared to samples without paint, and to production parts with and without paint in equivalent impact tests. A modified shot bag with stiffened sidewalls was compared to the ANSI standard shot bag. The fracture test comparison included evaluating the ANSI Z26.1 impact location and ECE R43 impact location. Over 900 tests covering the various test conditions
Rains, Corinn
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested
Raja, R.Jannet, SabithaVerghese, JerryAbhishek, PullanikkatJohn, Febin CherianHyjan, Hywin
Natural fibers are increasingly being used to reinforce glass fiber composites rather than synthetic fibers because of their increased tensile strength, despite some inherent disadvantages. With the help of the structural analysis program ANSYS, three different combinations were thoroughly analyzed with an eye toward factors like total deformation, equivalent elastic strain, and equivalent stress in order to determine the best combination. The composite specimen exhibiting the best performance qualities was chosen for further manufacturing. A fracture load of 8.93 kN and a tensile strength of 81.46 MPa were obtained from tensile strength tests and Charpy impact tests performed on samples made from the composite. The impact test, which produced a value of 14 J using a 15 kg pendulum, also shed light on the ability to absorb energy during fracture. These results indicate that the composite material has qualities that make it a good choice for dashboards and panels for automobiles
Santhosh, S.Sakthivel, P.Premkumar, M.Raghulkumar, M.Ragul, M.Ragul, S.
Working on the nanoscale gives researchers a lot of insight and control when fabricating and characterizing materials. In larger scale manufacturing, as well as in nature, many materials have the capacity for flaws and impurities that can disrupt their complex structure. This creates several weak points that can easily break under stress. This is common with most glass, which is why it is thought of as such a delicate material
This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load. A high-strength
Lampman, DeWitt
Bamboo fibers were used as reinforcement in hardened epoxy mixes altered with ethoxylated soybean oil (ESO) to enhance the mechanical and thermal qualities. Compared to a bio-based epoxy mix, the tensile strength and modulus of the laminate with 20% bamboo fiber were higher. During thermogravity analysis (TGA) evaluation, it was discovered that the rate of deterioration peak had been moved to a warmer temperature, indicating improved thermal durability of the aggregate over the base material. The dynamic mechanical evaluation of the bio-based composite anticipated increased storage modulus and greater glass transition temperatures. High fiber–matrix adherence was visible in scanning electron morphology (SEM). Measurements of the interfacial adhesion demonstrate the hydrophilicity of the bio-based reinforced composites. The binding and effective insemination of fibers is responsible for the fiber-reinforced composite’s durability. Higher rigidity and durability were generated because
Meshram, Pawan DevidasNatrayan, L.Balaji, N.Reddy, Vinay
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint. This paper examines the current state and challenges of ELV recycling in India and proposes a sustainable recycling solution for waste bumpers that includes paint removal, modification, reprocessing & recovery of precious metals from xEV Li-ion batteries
Baviskar, AjayKhera, PankajTelgote, AshishDhuria, HimanshuSharma, Amit
Natural fibers such as sisal, jute, and curauá have lengths that allow the production of aligned specimens. In the case of sisal fiber, this length varies from 700 to 1100 mm, making it possible to manufacture composites with lengths that fit the dimensions provided for in specific standards such as ASTM D3039M. This work seeks to evaluate the mechanical resistance of a composite of natural Sisal fiber aligned 0° unidirectional in the form of a plate, making a comparison in the tension obtained with experimental data through the universal testing machine EMIC with the theoretical data applying the mixing rule. The methodology used to manufacture these plates was manual, which fits the proposal of using little equipment or technology to obtain these composite materials. On the occasion, glass plates and double-sided tape were used so that the fibers maintained their alignment and it was possible to manufacture them. The results were satisfactory and within expectations for this type of
Dias, Roberto Yuri CostaJunior, Manoel Antonio Cantão Simõesde Mendonca Maia, Pedro VictorVeloso, Mauro José GuerreiroFujiyama, Roberto Tetsuo
Manufacturing processes impact many factors on a product. Depending on the selected method, development time, part performance and cost are affected. In the automotive sector, there is a growing demand for weight reduction due to the advent of electrification and the greenhouse gas emission regulations. In addition, geometric complexity is a challenging factor for the feasibility of mass production of parts. In this scenario, plastic materials are a very interesting option for application in various vehicle parts, since these materials can be molded by injection, vacuum forming, among others, while maintaining good mechanical properties. Almost a third of a vehicle’s parts are polymeric, making the development of these materials strategic for car manufacturers. This article investigates the impact of the presence of fiberglass in a thermoplastic automotive body part. Three rounds of injection simulations were performed using Autodesk Moldflow Adviser considering polypropylene with 20
de Oliveira Neto, Raimundo Arraisda Rocha Loi, MoniqueJunior, Luis Roberto Martins RegoJunior, Georges Louis Nogueira Guimarã
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6. Nanocomposites, on the other hand, are hybrid materials in which at least one of the components has nanometric dimensions, and the other component serves as a matrix, such as the dispersed particles of GF and GNPs present
Dantas, Patrícia Alluede Freitas, Camila Mendonçade Souza, Camila Gomes PeçanhaLopes, Rodolfo RodrigoOsti, Reinaldo
Until recently, microscopic robotic systems have had to make do without arms. Now, a team at ETH Zurich has developed an ultrasonically actuated glass needle that can be attached to a robotic arm. This lets them pump and mix minuscule amounts of liquid and trap particles
The aim of this research is to investigate the effect of cutting temperature on the post-machining performance of “carbon fiber-reinforced polymer” (CFRP), providing insights into how temperature variations during machining influence the material’s mechanical properties and structural integrity. First, cutting temperatures generated during machining were monitored and used to categorize specimens. These specimens were then subjected to control heating at various temperatures, simulating the range of cutting conditions. Subsequently, the heated specimens were left to cool naturally in ambient air. A comprehensive tensile experiment was conducted on these specimens to assess the impact on mechanical behavior. The tensile properties, including elastic modulus and maximum tensile stress, were analyzed and compared across the different temperature. This approach allowed for a systematic evaluation of cutting temperature’s influence on CFRP’s post-machining performance, shedding light on the
Imdadul, Haque MdAbdul, Kader MohammadHelal, Miah MdAkter, Anika Insana
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics. Dr. Susi Otto, from the Dodd-Walls Centre for Photonic and Quantum Technologies, led the field testing of the portable atomic radio frequency sensor. Such sensors, that are enabled by atoms in a so-called Rydberg state, can provide superior performance over current antenna technologies as they are highly sensitive, have broad tunability, and small physical size, making them attractive for use in defense and communications
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics
Nylon polymer with an optimal blend of Kevlar, fiberglass, and high-speed, high temperature (HSHT) Fiberglass offers improved characteristics such as flexural strength, wear resistance, electrical insulation, shock absorption, and a low friction coefficient. For this reason, the polymer composite manufactured by combining HSHT, Kevlar, and fiberglass with nylon as base material will expand the uses of nylon in the aerospace, automotive, and other industrial applications related to ergonomic tools, assembly trays, and so forth. The proposed work was carried out to investigate the continuous fiber reinforcement (CFR) in nylon polymer using a dual extrusion system. Twenty experimental runs were designed using a face-centered central composite design (FCCD) approach to analyze the influence of significant factors such as reinforcement material, infill pattern, and fiber angle on the fabricated specimen as per American Society for Testing Materials (ASTM) standards. The tensile strength
Kaushik, AshishKumar, PardeepGahletia, SumitGarg, Ramesh KumarKumar, AshishYadav, MohitGiri, JayantChhabra, Deepak
The uses of fillers in composites are creating new opportunities in the composite industry. Hollow Glass Microspheres (HGM) are Soda-lime-borosilicate glass hollow spheres with thin walls used as low-density filler material which can reduce final part weight by up to 15% or more without compromising the mechanical integrity. Glass bubbles take up 20 times the space of normal mineral filler, lowering the cost per unit volume; hence, the need for weightless and high-strength materials for state-of-the-art engineering applications may be met by HGM reinforced composites. Epoxy being a key structural material for marine, automotive and aerospace applications, is known for its brittle nature, poor mechanical and thermal properties and to date, not much work has been done on hollow glass microspheres reinforced carbon epoxy composites, however few systematic studies showing the influence of reinforcements on mechanical and thermal properties of carbon epoxy/HGM composites were conducted
K, TejasviRanga, K. V SS, GurusideswarSingh, P. Sundar
Ultrasonic Testing (UT) is a typical Non-destructive testing (NDT) method for examining the structural components for aircraft production. Manufacturing aircraft made of fiber metal laminates (FML) includes cascaded steps such as placement of aluminum, glass prepreg, adhesive, doublers, stringers, vacuum bagging and curing in an autoclave. Quality control (QC) is performed first at the layup of the component (without stringers) after curing and the quality assessment is visually evaluated. The manually performed examination of anomalies is very time-consuming. In addition, conducted NDT inspection using a manual UT phased array for Glass Reinforced (GLARE®) FML of A380, it lacked the high capacity of data and additionally an evaluation software
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating. The finding from the theoretical analysis, it indicates that overall heat load reduction of the electric buses was reduced by ~6-7% improvement with different specifications of glasses as compared to the
Ratnaparkhi, Pankaj PrabhakarFartade, SunilNagarhalli, Prasanna VTodkar, NikhilNagare Sr, Rahul
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level
Dodwad, AbhishekNagarhalli, Prasanna VFartade, SunilAhire, Uttam Namdeo
Currently, there is a growing tendency to incorporate natural fibers in composites due to their affordability, lightweight nature, and eco-friendliness. Researchers are continuously exploring new materials that offer improved mechanical properties for a broader range of applications. In this work, an experimental investigation on tensile and fatigue behavior of jute-wool felt-reinforced epoxy hybrid laminate is carried, in addition to an E-glass fiber-reinforced epoxy laminate that helps in comparison. Constant amplitude tensile fatigue test is conducted for 80%, 70%, and 60% of the ultimate load of respective composites at a stress ratio of 0.1 and frequency of 7 Hz for both laminates. The jute-wool felt composite showed good fatigue resistance. Though glass fiber composite showed higher tensile strength, jute-wool felt composite exhibits higher fatigue performance than glass fiber composites at higher stress levels. However, at lower stress levels, glass fiber composite shows better
Thilakan, SanjayMathivanan, N. Rajesh
The lightweight structure of a semitrailer composite leaf spring is designed and manufactured using glass fiber composite to replace the conventional steel leaf spring. The sliding composite mono leaf spring was designed based on the conventional parabolic spring design theory. The composites product design (CPD) module of CATIA software is used to create the lamination of the composite leaf spring. Using finite element analysis of the position and proportion of ±45° biaxial layer by OptiStruct software, it is found that a certain proportion (nearly 5%) of a ±45° biaxial layer can effectively reduce the shear stress under the condition of keeping the total number of layers fixed. Then, the natural frequency, stiffness, and strength of the composite leaf spring are simulated by the finite element method. Finally, the stiffness, fatigue, and matching of the designed spring are tested by experiments. The design weight of the composite leaf spring is 18.5 kg, which is 55.4% lighter than
Wang, LubinZhu, ChendiLu, XiaoqinZhang, ZhengpengLiang, Shiwen
More than five million people in the United States live with some form of paralysis and may encounter difficulties completing everyday tasks, like grabbing a glass of water or putting on clothes. New research from Carnegie Mellon University’s Robotics Institute (RI) aims to increase autonomy for individuals with such motor impairments by introducing a head-worn device that will help them control a mobile manipulator
In an automotive vehicle, the Window Regulator is an electro-mechanical assembly that is mounted inside the door. The basic function of the Window Regulator is to raise or lower the glass when required and hold the glass in closed position or in any desired position. During Water servicing or rains, Water will typically enter inside the door through the seals and on to the Window Regulator mechanism. Hence these conditions must be physically tested in the laboratory to assess the Window Regulator’s functionality which could get affected by Water intrusion. The Water spray test conditions are based on mutual agreement between Inteva Products and the OEMs. Water spray test involves moving the electric Window Regulator to upper stall position (Window closed) at a defined voltage and line resistance. The glass must be dwelled followed by spraying defined amount of Water which simulates the rain. The agreed number of test cycles would be around 4500 which lasts about 7 weeks. Hence, to
Gavhane, SudarshanBabu, YugandharPrasannakumar, JitheshBanjan, Rohith
The innovation and application of new technologies in battery electric vehicle (BEV) development continues to be a key objective of the automotive industry. One such area of development is glazing designs that reduce transmission of noise into vehicle interiors. Highly asymmetric laminated front side lites that consist of thick soda lime glass exterior plies laminated with thinner ion exchanged interior plies with acoustic polyvinyl butyral interlayers offer substantially reduced noise transmission compared to industry standard monolithic front side lites. These asymmetric laminate designs also provide additional benefits of improved toughness and penetration resistance. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of asymmetric laminated glass front side lites. The test-based assessment included within this study was conducted to isolate
Pruetz, Jeffrey E.Fisher, W KeithGovindswamy, KiranStirzinger, Brett
Vehicle weight reduction is important to improve the fuel mileage of Internal Combustion Engine (ICE) vehicles and to extend the range of Electric Vehicles (EVs). Glass Fiber Reinforced (GFR) Composite (Polyamide) brackets provide significant weight reductions at a competitive part price. Traditionally, metal brackets are designed to surpass a target natural frequency and static stiffness. Composite brackets are inherently less stiff and have lower natural frequencies. However, composite brackets also have higher material damping than metal brackets, and good isolation performance can be achieved. The key to integrating composite brackets into the vehicle design is to perform adequate analysis to ensure that the noise and vibration performance at the vehicle level meets expectations. In this paper, case studies are presented for two different vehicles – a Clevis bracket for an IC Engine vehicle, and an electric motor mount bracket. For each case, measurement data is used to develop
Rengarajan, RevathiThom, BrianMercado Granados, Ricardo
Photonics, the science and technology of light, relies on optical components that affect light transmission in very specialized ways. To achieve the precision required, the optical components must be precisely ground from standard forms of glass, ceramics, or other materials to exceedingly tight tolerances, in many cases with extreme levels of flatness and parallelism
Fiber-reinforced composites are widely used in injection molding processes because of their high strength and high elastic modulus. However, the addition of reinforcing agents such as glass fibers has a significant impact on their injection molding quality. The difference in shrinkage and hardness between the plastic and the reinforcement will bring about warpage and deformation in the injection molding of the product. At the same time, the glass fibers will be oriented in the flow direction during the injection molding process. This will enhance the mechanical properties in the flow direction and increase the shrinkage in the vertical direction, reducing the molding quality of the product. In this study, a test program was developed based on the Box-Behnken test design in the Design-Expert software, using a plastic part as an example. Moldflow software was used for simulation, and data analysis of the experimental data was carried out to investigate the significance of the influence
Wang, DezhaoFan, XiyingGuo, YonghuanLu, XiangningWang, ChangjingDing, Wenjie
In the Formula Student Electric China (FSEC), the body structure is generally divided into two types, truss steel tube body and carbon fiber load-bearing body (monocoque). The monocoque is loved by Formula Student teams around the world because it has a higher stiffness and lighter weight than the truss steel tube body. With the widespread application of monocoque, it also brings more problems. Due to the use of the monocoque, the connection between each component and the body was changed from the welding of the original truss steel pipe frame to a bolted connection. However, the bolted connection will provide a large preload force to the monocoque, resulting in the monocoque easily crushed in the local, so it is necessary to pre-bury an enhanced part in the monocoque to ensure the connection strength, that is, the embedded part. At present, aluminum plug-ins after topological hollow processing are being used. Although the weight is reduced a lot, the assembly cross-sectional area is
Kang, YuxinGuo, WeiWu, Shukai
This specification covers nonfluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle. The magnetic particles shall be in the form of either a single material or composite material as defined in 1.3
AMS K Non Destructive Methods and Processes Committee
Polished glass has been at the center of imaging systems for centuries. Their precise curvature enables lenses to focus light and produce sharp images, whether the object in view is a single cell, the page of a book, or a far-off galaxy. Changing focus to see clearly at all these scales typically requires physically moving a lens, by tilting, sliding, or otherwise shifting the lens. This is usually done with the help of mechanical parts that add to the bulk of microscopes and telescopes
This specification covers a resin-impregnated glass fabric honeycomb core in the form of flat or contoured sandwich structures
AMS P17 Polymer Matrix Composites Committee
The aim of the paper is to analyze the effect of the design factors on the buckling load of the thin hybrid laminated composite plate made of Carbon/Glass Epoxy fiber. The detailed investigation is done on the stacking sequence, stacking angle, cut-out orientation whose shape is elliptical and thickness of the plate. For optimization the Taguchi approach of Design for Experiments (DOE) is being considered. For obtaining the combinations L16 orthogonal array is implemented using MINITAB and analysis is carried using ANSYS software. Analysis of each factor is done and significance of each factor is decided based on the 0.05 confidence level. Normal Probability and Residual versus Fitted Values plot is being obtained. Based on the delta values rank for each factor which have four levels are given. The boundary condition of simply supported on all edges is considered during the simulation for calculating the critical buckling load
Gore, RenukaBhaskara Rao, Lokavarapu
Numerically investigating the effects of fiber orientation angles and control factors which is an important factor for minimize the deflection of laminated composites. This paper aims to observe the deflection analysis of laminated rectangular plates subjected to cantilever-type loading. The plates are made up of Glass fiber reinforced polymer composite (GFRP). The plates are having 12 plies, are subjected to self-weight, and are analyzed using different orientation angles by using the finite element method. Taguchi’s L9 orthogonal array is being used to obtain different orientation angles of fiber and arrangements. The orientation angle for 3 control factors varies between (10° to 90°) and for 4 control factors between (7.5° to 90°). The Signal to Noise (S/N) ratio is used to estimate the optimum levels for minimum deflection value of control factors. Analysis of variance (ANOVA) is performed for analysing the responses which have powerful influential control factors and their
Pathan, ArfatBhaskara Rao, Lokavarapu
Items per page:
1 – 50 of 2220