Browse Topic: Glass

Items (2,199)
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
The integration of carbon nanotubes (CNT) into composite materials has revolutionized various high-performance industries, including aerospace, marine, and defense, for their exceptional thermal, mechanical, and electrical properties. The critical nature of these applications demands precise control over the manufacturing process to ensure the optimal performance of the CNT-reinforced composites. This study employs the Taguchi approach to systematically investigate and determine the optimal proportion of CNT volume fraction, fiber volume fraction, and stacking sequence in composite materials to achieve the optimal fundamental frequency. The Taguchi method, known for its efficiency in optimizing design parameters with a minimal number of experiments, enables the identification of the most influential factors and their optimal levels for enhancing material properties. Our findings demonstrate that the proper arrangement and proportioning of these components significantly improve the
B, SrivatsanBalakrishna Sriganth, PranavBhaskara Rao, LokavarapuBiswas, Sayan
The incorporation of natural available material into synthetic materials to form a fiber within a single polymer matrix has been ignited since environment concerns become crucial nowadays. Composite materials embedded with two or more types of fibers makes a composite as hybrid. The study of hybridization of natural and synthetic fibers brings out superior mechanical and tribological properties. In our present studies, fabrication of jute & glass fiber reinforced epoxy-based polymer hybrid composites were carried out using resin infusion technique. For comparing the various properties, the composite made of pure jute fiber i.e 100% jute, pure glass fiber i.e 100% glass, the hybrid composite containing 75% jute and 25% glass fiber, 50% jute and 50% glass fiber, and 25% jute and 75% glass fiber were made and its functional behaviors were studied. The results revealed the hybrid composite containing 25% jute and 75% glass fiber possessed maximum tensile strength of 292±5.8 MPa, flexural
J, ChandradassT, ThirugnanasambandhamM, Amutha SurabiP, Baskara SethupathiRajendran, RMurugadoss, Palanivendhan
This study investigates the frequency response characteristics of laminated composite rectangular plates, focusing on the influence of fiber orientation. The composite plates, composed of 12 layers of glass fiber reinforced polymer composites (GFRP), were chosen for their superior mechanical properties and broad applicability in engineering fields, including the automotive sector. In automotive engineering, these composites are valued for their lightweight properties and high strength, contributing to enhanced performance and fuel efficiency. The analysis employed a combination of finite element methods and Taguchi experimental design techniques to understand how fiber orientation affects the dynamic behavior of these plates. To systematically explore the impact of fiber orientation on the frequency response, the study utilized Taguchi's orthogonal array design. Specifically, the L9 (3^3) and L16 (4^4) orthogonal arrays were employed to structure the experimental runs effectively
N, SuhasC V, PrasshanthU, Anish KumarBhaskara Rao, Lokavarapu
The industrial world focuses on developing eco-friendly, natural fibres such as reinforcing lightweight, inexpensive compounds in modern days. Basalt, a rare phenomenon, derives its origins from molten volcanic rocks, which is essential for their cost-effectiveness and offers different glass fibre properties. High mechanical strength, outstanding wear resistance, and exceptional durability in a variety of environmental conditions are all displayed by basalt fibres. These fibres are ideal for reinforcing polymer composites because of their mechanical properties at high temperatures. Furthermore, basalt fibres are appropriate for long-term applications because they resist corrosion and degradation while maintaining structural integrity over time. This article provides a brief overview of basalt fibres as a substitute for glass fibres and as composite materials. Additionally, attempts are being made to draw attention to the expanding field of basalt fibre research. In the review, studies
Chidambaranathan, BibinRaghavan, SheejaSoundararajan, GopinathArunkumar, S.Ashok Kumar, R.Rajesh, K.
Car bumpers are protective structures for the occupants of a vehicle during a collision, absorbing impact energy, such a structure is located at the front and rear of the vehicle. Metals were used to manufacture the first bumpers, and it was subsequently assessed that using a different material would reduce their weight, for example plastic, resulting in increased fuel economy and impact absorption. Also, the use of polymers reinforced by glass fibers offer good mechanical strength. This work evaluates the replacement of conventional materials by an ecologically more viable alternative, natural fibers as plastic reinforcement, reducing costs, without considerable loss in the material mechanical properties. Specimens of reinforced composite material were produced with jute fiber. The fibers, obtained through fabrics, were standardized in length of 5.0 mm and 15.0 mm. The matrix phase applied was the unsaturated and pre-accelerated terephthalic polyester resin manufactured by Royal
Soares, Rafael VilhenaDias, Roberto Yuri Costade Mendonca Maia, Pedro VictorJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
This study describes the Taguchi optimization process applied to optimize drilling parameters for glass fiber reinforced composite (GFRC) material. The machining process is analyzed in relation to process parameters using analysis of variance (ANOVA). The characteristics assessed for both the drilling and the specimen include speed, feed rate, drill size, and specimen thickness. The commercial software program MINITAB14 was used to collect and analyze the measured results. Cutting force and torque during drilling are examined in relation to these parameters using an orthogonal array and a signal-to-noise ratio. The primary goal is to identify the critical elements and combinations of elements that impact the machining process to achieve minimal cutting thrust and torque, based on the evaluation of the Taguchi technique.
Raja, RosariJannet, SabithaKandavalli, Sumanth Ratna
Hybrid reinforcement-made polypropylene (PP) composites are beneficial over monolithic PP and utilized for various engineering and non-engineering applications. The present investigation of PP hybrid composites is developed with 10 percentages of weight (wt%) of E-glass fiber embedded with 0–6 wt% of silicon carbide via compression technique associated with hot press. E-glass fiber and SiC influencing wear rate, tensile strength, and microhardness behavior of PP and its composites are experimentally investigated. The peak loading of SiC as 6 wt% into PP/10 wt% E-glass fiber is recorded as better wear resistance (0.021 mm3/m), maximum tensile strength value (54.9 MPa), and highest hardness (68 HV). Moreover, the investigation results of hybrid PP composite are better resistance to wear and hiked tensile and hardness behavior compared to monolithic PP. This PP/10 wt% E-glass fiber/6 wt% of SiC hybrid composite is adopted for high-strength to lightweight sports goods applications.
Venkatesh, R.
Shipbuilders didn’t have the option of fiberglass when the nonprofit American Bureau of Shipping (ABS) was established 160 years ago to help safeguard life and property on the seas. Fortunately, technology to help better ensure the safety of ocean vessels has also come a long way in that time, in part because people have become a spacefaring species.
Anode-free sodium metal batteries (AFSMBs) with initial zero sodium anodes are promising energy-storage devices to achieve high energy density and low cost. The morphology and reversibility of sodium controls the cycling lifespan of the AFSMBs, which is directly affected by the separator. Here, we compared the sodium deposition and corresponding electrochemical behaviors under the influence of three commercial separators, which were Celgard 2500, Al2O3-coated PP separator and glass fiber (denoting as 2500, C-PP and GF). Firstly, the reversibility of sodium plating/stripping was tested using half-cells, where coulombic efficiencies were stable at ~99.89% for C-PP and GF compare to 99.65% for 2500, indicating more dead sodium were formed for 2500. Then, the morphologies of deposited sodium were compared using optical microscopy. Compared to inhomogeneous sodium growth under 2500, C-PP obtained more flatter sodium layer with less height difference, attributing to the high mechanical
Qin, NanJin, LimingZheng, Jim P.
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
This SAE Aerospace Recommended Practice (ARP) covers the requirements for the types of glass to be utilized in the fabrication of cover glasses and lighting wedges used in aerospace instruments. It defines the maximum extent of physical defects and recommends standard methods of inspection and evaluation. Definitions of terminology used in this document are covered in 2.2.
A-20A Crew Station Lighting
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpoumpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals.
Despite their many similarities, natural fibers have superior mechanical properties to synthetic fibers, including higher ultimate strength, greater elongation, resistance to ethering, biodegradability, lightweight, and fewer toxications. The mechanical characteristics of several matrices reinforced with synthetic and hemp fibers were examined in the current paper. We made the various hemp composites using vinyl ester, cellulose acetate (CA), treated CA, and GFRP (glass fiber-reinforced polymer) with CA. Composites were examined for mechanical characteristics such as tensile, flexural, impact, and hardness. Composites have a density of 1.19 g/cm3. Hemp with vinyl ester has higher tensile strength and flexural properties than other composites, but in impact, GFRP with CA has more impact strength of nearly 400 J/m, so for making eco-friendly biocomposite for lightweight structural applications.
Vinoth Kumar, K.Karthick, K.Balasubramanian, M.Chidhamparam, R.S.Jones, S.
Thermo-mechanical fatigue and natural aging due to environmental conditions are challenging to simulate in an actual test with advanced fiber-reinforced composites, where their fatigue and aging behavior are little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in pipes, aircraft, and spacecraft structures, including microwave transparent structures, impact-resistant parts of the wing, fuselage deck and many other load-bearing structures. Often additional additively manufactured features and coatings on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper, we employ a thermo-mechanical fatigue model based on an accelerated fatigue test and life prediction under hot-to-cold cycles. Thermo-mechanical strain-controlled stress
Kancherla, Kishore BabuB S, DakshayiniRaju, BenjaminRoy Mahapatra, Debiprosad
A new approach has allowed researchers at Aalto University to design a kind of metamaterial that has so far been beyond the reach of existing technologies. Unlike natural materials, metamaterials and metasurfaces can be tailored to have specific electromagnetic properties, which means scientists can create materials with features desirable for industrial applications.
In this paper, experimental studies were conducted to examine the mechanical behavior of a polymer composite material called polyamide with glass fiber (PA6-GF), which was fabricated using the three-dimensional (3D) fusion deposition modeling (FDM) technique. FDM is one of the most well-liked low-cost 3D printing techniques for facilitating the adhesion and hot melting of thermoplastic materials. PA6 exhibits an exceptionally significant overall performance in the families of engineering thermoplastic polymer materials. By using twin-screw extrusion, a PA6-GF mixed particles made of PA6 and 20% glass fiber was produced as filament. Based on literature review, the samples have been fabricated for tensile, hardness, and flexural with different layer thickness of 0.08 mm, 0.16 mm, and 0.24 mm, respectively. The composite PA6-GF behavior is characterized through an experimental test employing a variety of test samples made in the x and z axes. The mechanical and physical characteristics of
Sivanesh, A. R.Soundararajan, R.Natrayan, M.Nallasivam, J. D.Santhosh, R.
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed. Weibull aging model and
Youn, Jee YoungChung, Min GyunAhn, Hyo Sang
The current battery carrier for commercial vehicles is made of steel and is designed to hold two batteries weighing approximately 80 kg to 100 kg. However, this battery carrier faces several issues including corrosion, chemical reactivity, high maintenance requirements and its heavy weight. To tackle these challenges, a fiber-reinforced composite battery carrier is designed and developed specifically for commercial vehicles. The objective is to identify a solution that can meet the performance requirements of both static and dynamic loading, thereby reducing the overall weight. The proposed composite battery carrier offers a lightweight design, requires minimal maintenance, possesses high tensile strength and stiffness and is corrosion and chemical resistant. Furthermore, it provides the flexibility to integrate battery cover locking arrangements for added convenience and security. The structure of the composite battery carrier comprises a continuous glass fiber reinforced composite
Srivastava, SanjaySonkusare, Shailesh
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective. Then, the model parameters of the J-C constitutive model are identified based on the experimental data, and the
Zheng, Wei-JunLiu, Xiao-AngShangguan, Wen-BinZhang, QuGu, Chen-guang
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Cho, KyeongkukChoi, JEWON
FMVSS No. 205, “Glazing Materials,” uses impact test methods specified in ANSI/SAE Z26.1-1996. NHTSA’s Vehicle Research and Test Center initiated research to evaluate a subset of test methods from ANSI Z26.1-1996 including the 227 gram ball and shot bag impact tests, and the fracture test. Additional research was completed to learn about potential changes to tempered glass strength due to the ceramic paint area (CPA), and to compare the performance of twelve by twelve inch flat samples and full-size production parts. Glass evaluated included tempered rear quarter, sunroof, and backlight glazing. Samples with a paint edge were compared to samples without paint, and to production parts with and without paint in equivalent impact tests. A modified shot bag with stiffened sidewalls was compared to the ANSI standard shot bag. The fracture test comparison included evaluating the ANSI Z26.1 impact location and ECE R43 impact location. Over 900 tests covering the various test conditions
Rains, Corinn
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested.
Raja, R.Jannet, SabithaVerghese, JerryAbhishek, PullanikkatJohn, Febin CherianHyjan, Hywin
Natural fibers are increasingly being used to reinforce glass fiber composites rather than synthetic fibers because of their increased tensile strength, despite some inherent disadvantages. With the help of the structural analysis program ANSYS, three different combinations were thoroughly analyzed with an eye toward factors like total deformation, equivalent elastic strain, and equivalent stress in order to determine the best combination. The composite specimen exhibiting the best performance qualities was chosen for further manufacturing. A fracture load of 8.93 kN and a tensile strength of 81.46 MPa were obtained from tensile strength tests and Charpy impact tests performed on samples made from the composite. The impact test, which produced a value of 14 J using a 15 kg pendulum, also shed light on the ability to absorb energy during fracture. These results indicate that the composite material has qualities that make it a good choice for dashboards and panels for automobiles.
Santhosh, S.Sakthivel, P.Premkumar, M.Raghulkumar, M.Ragul, M.Ragul, S.
Working on the nanoscale gives researchers a lot of insight and control when fabricating and characterizing materials. In larger scale manufacturing, as well as in nature, many materials have the capacity for flaws and impurities that can disrupt their complex structure. This creates several weak points that can easily break under stress. This is common with most glass, which is why it is thought of as such a delicate material.
This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load. A high-strength
Lampman, DeWitt
Bamboo fibers were used as reinforcement in hardened epoxy mixes altered with ethoxylated soybean oil (ESO) to enhance the mechanical and thermal qualities. Compared to a bio-based epoxy mix, the tensile strength and modulus of the laminate with 20% bamboo fiber were higher. During thermogravity analysis (TGA) evaluation, it was discovered that the rate of deterioration peak had been moved to a warmer temperature, indicating improved thermal durability of the aggregate over the base material. The dynamic mechanical evaluation of the bio-based composite anticipated increased storage modulus and greater glass transition temperatures. High fiber–matrix adherence was visible in scanning electron morphology (SEM). Measurements of the interfacial adhesion demonstrate the hydrophilicity of the bio-based reinforced composites. The binding and effective insemination of fibers is responsible for the fiber-reinforced composite’s durability. Higher rigidity and durability were generated because
Meshram, Pawan DevidasNatrayan, L.Balaji, N.Reddy, Vinay
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint. This paper examines the current state and challenges of ELV recycling in India and proposes a sustainable recycling solution for waste bumpers that includes paint removal, modification, reprocessing & recovery of precious metals from xEV Li-ion batteries
Baviskar, AjayKhera, PankajTelgote, AshishDhuria, HimanshuSharma, Amit
Natural fibers such as sisal, jute, and curauá have lengths that allow the production of aligned specimens. In the case of sisal fiber, this length varies from 700 to 1100 mm, making it possible to manufacture composites with lengths that fit the dimensions provided for in specific standards such as ASTM D3039M. This work seeks to evaluate the mechanical resistance of a composite of natural Sisal fiber aligned 0° unidirectional in the form of a plate, making a comparison in the tension obtained with experimental data through the universal testing machine EMIC with the theoretical data applying the mixing rule. The methodology used to manufacture these plates was manual, which fits the proposal of using little equipment or technology to obtain these composite materials. On the occasion, glass plates and double-sided tape were used so that the fibers maintained their alignment and it was possible to manufacture them. The results were satisfactory and within expectations for this type of
Dias, Roberto Yuri CostaJunior, Manoel Antonio Cantão Simõesde Mendonca Maia, Pedro VictorVeloso, Mauro José GuerreiroFujiyama, Roberto Tetsuo
Manufacturing processes impact many factors on a product. Depending on the selected method, development time, part performance and cost are affected. In the automotive sector, there is a growing demand for weight reduction due to the advent of electrification and the greenhouse gas emission regulations. In addition, geometric complexity is a challenging factor for the feasibility of mass production of parts. In this scenario, plastic materials are a very interesting option for application in various vehicle parts, since these materials can be molded by injection, vacuum forming, among others, while maintaining good mechanical properties. Almost a third of a vehicle’s parts are polymeric, making the development of these materials strategic for car manufacturers. This article investigates the impact of the presence of fiberglass in a thermoplastic automotive body part. Three rounds of injection simulations were performed using Autodesk Moldflow Adviser considering polypropylene with 20
de Oliveira Neto, Raimundo Arraisda Rocha Loi, MoniqueJunior, Luis Roberto Martins RegoJunior, Georges Louis Nogueira Guimarã
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6. Nanocomposites, on the other hand, are hybrid materials in which at least one of the components has nanometric dimensions, and the other component serves as a matrix, such as the dispersed particles of GF and GNPs present
Dantas, Patrícia Alluede Freitas, Camila Mendonçade Souza, Camila Gomes PeçanhaLopes, Rodolfo RodrigoOsti, Reinaldo
Until recently, microscopic robotic systems have had to make do without arms. Now, a team at ETH Zurich has developed an ultrasonically actuated glass needle that can be attached to a robotic arm. This lets them pump and mix minuscule amounts of liquid and trap particles.
The aim of this research is to investigate the effect of cutting temperature on the post-machining performance of “carbon fiber-reinforced polymer” (CFRP), providing insights into how temperature variations during machining influence the material’s mechanical properties and structural integrity. First, cutting temperatures generated during machining were monitored and used to categorize specimens. These specimens were then subjected to control heating at various temperatures, simulating the range of cutting conditions. Subsequently, the heated specimens were left to cool naturally in ambient air. A comprehensive tensile experiment was conducted on these specimens to assess the impact on mechanical behavior. The tensile properties, including elastic modulus and maximum tensile stress, were analyzed and compared across the different temperature. This approach allowed for a systematic evaluation of cutting temperature’s influence on CFRP’s post-machining performance, shedding light on the
Imdadul, Haque MdAbdul, Kader MohammadHelal, Miah MdAkter, Anika Insana
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics. Dr. Susi Otto, from the Dodd-Walls Centre for Photonic and Quantum Technologies, led the field testing of the portable atomic radio frequency sensor. Such sensors, that are enabled by atoms in a so-called Rydberg state, can provide superior performance over current antenna technologies as they are highly sensitive, have broad tunability, and small physical size, making them attractive for use in defense and communications.
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics.
Nylon polymer with an optimal blend of Kevlar, fiberglass, and high-speed, high temperature (HSHT) Fiberglass offers improved characteristics such as flexural strength, wear resistance, electrical insulation, shock absorption, and a low friction coefficient. For this reason, the polymer composite manufactured by combining HSHT, Kevlar, and fiberglass with nylon as base material will expand the uses of nylon in the aerospace, automotive, and other industrial applications related to ergonomic tools, assembly trays, and so forth. The proposed work was carried out to investigate the continuous fiber reinforcement (CFR) in nylon polymer using a dual extrusion system. Twenty experimental runs were designed using a face-centered central composite design (FCCD) approach to analyze the influence of significant factors such as reinforcement material, infill pattern, and fiber angle on the fabricated specimen as per American Society for Testing Materials (ASTM) standards. The tensile strength
Kaushik, AshishKumar, PardeepGahletia, SumitGarg, Ramesh KumarKumar, AshishYadav, MohitGiri, JayantChhabra, Deepak
The uses of fillers in composites are creating new opportunities in the composite industry. Hollow Glass Microspheres (HGM) are Soda-lime-borosilicate glass hollow spheres with thin walls used as low-density filler material which can reduce final part weight by up to 15% or more without compromising the mechanical integrity. Glass bubbles take up 20 times the space of normal mineral filler, lowering the cost per unit volume; hence, the need for weightless and high-strength materials for state-of-the-art engineering applications may be met by HGM reinforced composites. Epoxy being a key structural material for marine, automotive and aerospace applications, is known for its brittle nature, poor mechanical and thermal properties and to date, not much work has been done on hollow glass microspheres reinforced carbon epoxy composites, however few systematic studies showing the influence of reinforcements on mechanical and thermal properties of carbon epoxy/HGM composites were conducted
K, TejasviRanga, K. V SS, GurusideswarSingh, P. Sundar
Ultrasonic Testing (UT) is a typical Non-destructive testing (NDT) method for examining the structural components for aircraft production. Manufacturing aircraft made of fiber metal laminates (FML) includes cascaded steps such as placement of aluminum, glass prepreg, adhesive, doublers, stringers, vacuum bagging and curing in an autoclave. Quality control (QC) is performed first at the layup of the component (without stringers) after curing and the quality assessment is visually evaluated. The manually performed examination of anomalies is very time-consuming. In addition, conducted NDT inspection using a manual UT phased array for Glass Reinforced (GLARE®) FML of A380, it lacked the high capacity of data and additionally an evaluation software.
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating. The finding from the theoretical analysis, it indicates that overall heat load reduction of the electric buses was reduced by ~6-7% improvement with different specifications of glasses as compared to the
Ratnaparkhi, Pankaj PrabhakarFartade, SunilNagarhalli, Prasanna VTodkar, NikhilNagare Sr, Rahul
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Dodwad, AbhishekNagarhalli, Prasanna VFartade, SunilAhire, Uttam Namdeo
ABSTRACT This paper focuses on development of methods for manufacturing structural thermoplastic composite materials, characterizing the mechanical properties of such composites, and modeling the static and dynamic performance in relevant military vehicle modeling and simulation environments. A thermoplastic polyethylene terephthalate (PET) / fiberglass composite was selected for this study due to the high specific strength of e-glass fibers, the high toughness of the PET thermoplastic, and relatively low price point, all which make it an attractive candidate for structural lightweighting of vehicles. The raw materials were manufactured into composite laminates using a compression molding process and then the mechanical properties were characterized using experimental test methods. Properties like stiffness, strength, and strain-to-failure of the composite were characterized using standard ASTM methods, and the resulting properties were directly fed into a computational material model
Patton, Evan G.Hart, Robert J.
Currently, there is a growing tendency to incorporate natural fibers in composites due to their affordability, lightweight nature, and eco-friendliness. Researchers are continuously exploring new materials that offer improved mechanical properties for a broader range of applications. In this work, an experimental investigation on tensile and fatigue behavior of jute-wool felt-reinforced epoxy hybrid laminate is carried, in addition to an E-glass fiber-reinforced epoxy laminate that helps in comparison. Constant amplitude tensile fatigue test is conducted for 80%, 70%, and 60% of the ultimate load of respective composites at a stress ratio of 0.1 and frequency of 7 Hz for both laminates. The jute-wool felt composite showed good fatigue resistance. Though glass fiber composite showed higher tensile strength, jute-wool felt composite exhibits higher fatigue performance than glass fiber composites at higher stress levels. However, at lower stress levels, glass fiber composite shows better
Thilakan, SanjayMathivanan, N. Rajesh
The lightweight structure of a semitrailer composite leaf spring is designed and manufactured using glass fiber composite to replace the conventional steel leaf spring. The sliding composite mono leaf spring was designed based on the conventional parabolic spring design theory. The composites product design (CPD) module of CATIA software is used to create the lamination of the composite leaf spring. Using finite element analysis of the position and proportion of ±45° biaxial layer by OptiStruct software, it is found that a certain proportion (nearly 5%) of a ±45° biaxial layer can effectively reduce the shear stress under the condition of keeping the total number of layers fixed. Then, the natural frequency, stiffness, and strength of the composite leaf spring are simulated by the finite element method. Finally, the stiffness, fatigue, and matching of the designed spring are tested by experiments. The design weight of the composite leaf spring is 18.5 kg, which is 55.4% lighter than
Wang, LubinZhu, ChendiLu, XiaoqinZhang, ZhengpengLiang, Shiwen
More than five million people in the United States live with some form of paralysis and may encounter difficulties completing everyday tasks, like grabbing a glass of water or putting on clothes. New research from Carnegie Mellon University’s Robotics Institute (RI) aims to increase autonomy for individuals with such motor impairments by introducing a head-worn device that will help them control a mobile manipulator.
In an automotive vehicle, the Window Regulator is an electro-mechanical assembly that is mounted inside the door. The basic function of the Window Regulator is to raise or lower the glass when required and hold the glass in closed position or in any desired position. During Water servicing or rains, Water will typically enter inside the door through the seals and on to the Window Regulator mechanism. Hence these conditions must be physically tested in the laboratory to assess the Window Regulator’s functionality which could get affected by Water intrusion. The Water spray test conditions are based on mutual agreement between Inteva Products and the OEMs. Water spray test involves moving the electric Window Regulator to upper stall position (Window closed) at a defined voltage and line resistance. The glass must be dwelled followed by spraying defined amount of Water which simulates the rain. The agreed number of test cycles would be around 4500 which lasts about 7 weeks. Hence, to
Gavhane, SudarshanBabu, YugandharPrasannakumar, JitheshBanjan, Rohith
Vehicle weight reduction is important to improve the fuel mileage of Internal Combustion Engine (ICE) vehicles and to extend the range of Electric Vehicles (EVs). Glass Fiber Reinforced (GFR) Composite (Polyamide) brackets provide significant weight reductions at a competitive part price. Traditionally, metal brackets are designed to surpass a target natural frequency and static stiffness. Composite brackets are inherently less stiff and have lower natural frequencies. However, composite brackets also have higher material damping than metal brackets, and good isolation performance can be achieved. The key to integrating composite brackets into the vehicle design is to perform adequate analysis to ensure that the noise and vibration performance at the vehicle level meets expectations. In this paper, case studies are presented for two different vehicles – a Clevis bracket for an IC Engine vehicle, and an electric motor mount bracket. For each case, measurement data is used to develop
Rengarajan, RevathiThom, BrianMercado Granados, Ricardo
The innovation and application of new technologies in battery electric vehicle (BEV) development continues to be a key objective of the automotive industry. One such area of development is glazing designs that reduce transmission of noise into vehicle interiors. Highly asymmetric laminated front side lites that consist of thick soda lime glass exterior plies laminated with thinner ion exchanged interior plies with acoustic polyvinyl butyral interlayers offer substantially reduced noise transmission compared to industry standard monolithic front side lites. These asymmetric laminate designs also provide additional benefits of improved toughness and penetration resistance. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of asymmetric laminated glass front side lites. The test-based assessment included within this study was conducted to isolate
Pruetz, Jeffrey E.Fisher, W KeithGovindswamy, KiranStirzinger, Brett
Items per page:
1 – 50 of 2199