Browse Topic: Oxygen
I’m guessing that when you think about applications for AI, physical fitness is not the first thing that comes to mind. But it is actually one of the more common applications. The most popular fitness sensors use AI to keep track of how many steps you’ve taken, track your progress, and integrate that with health information like heartrate or even blood oxygen level. But AI can do much more than that
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indication as required by Airworthiness Requirements of CS/FAR 25.1449 to show that oxygen is being delivered to the dispensing equipment. Requirements of this document shall be applicable to any type of oxygen system technology and encompass “traditional” pneumatic devices, as well electric/electronic indication
Although progress has recently been made to characterise the transition of microscopic liquid fuel droplets from classical evaporation to a diffusive mixing regime, still little is known about the transition from one to the other under reactive conditions. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models for droplet mixing, ignition, combustion and soot formation. In order to address this issue we performed systematic measurements using high- speed long-distance microscopy, for n-dodecane into gas at elevated temperatures (from 750 to 1,600 K) and pressures up to 13 MPa. We describe these high- speed visualizations at the microscopic level, including the time evolution of the liquid droplets, reaction wave, and soot distribution. Our measurements show that these parameters are influenced by the operating conditions (gas pressure, gas temperature, oxygen content) as well as the
Diesel engines operated at high altitudes would experience performance degradation due to the fuel-air amount mismatch, resulting in combustion deterioration. Technologies that supplement oxygen concentration, such as intake oxygen enrichment, turbocharging and the addition of oxygenated fuel additives, can help restore performance at high altitudes, but each has its own limitations Operating diesel engines at high altitudes still generates extremely lean fuel-air mixtures, making the improved utilization of excess air the most economically efficient approach to optimize engine performance under such conditions. The objective of this paper is to investigate the effects of injector nozzle-hole numbers on diesel engines operated at high altitudes, a topic that has been limitedly discussed in existing literature, with the aim of enhancing understanding regarding the potential of this cost-effective approach and aiding in the design of a cooperative approach between oxygen concentration
This document is intended to give general instructions and directions for personnel performing maintenance and modification work on Oxygen Systems
This standard covers regulators of the following types: Type I - Automatic Continuous Flow Type II - Adjustable Continuous Flow Type III - Pre-Set Continuous Flow Class A - Cylinder Mounted Class B - Line Mounted
This document defines the minimum degree of purity and maximum levels of certain deleterious impurities allowable for aviator's breathing oxygen at the point of manufacture or generation. It covers gaseous, liquid, and chemically generated oxygen, and oxygen supplied by in situ concentration and in situ electrolysis. Different limits are established for oxygen from different sources, in recognition of differences in the ways the oxygen is stored, dispensed, and utilized, taking into account the safety of the user. These limits are not intended to specifically reflect upon the relative capabilities or merits of various technologies. Procurement documents may specify more stringent limits, where required for specific applications. Medical oxygen is not covered by this standard. In the United States, medical oxygen is a prescription drug and complies with the United States Pharmacopoeia (USP). In Europe, medical oxygen specification compiles with the European Pharmacopoeia monograph (Ph
This specification covers a stable, noncorrosive, water-soluble, highly-penetrating, fluorescent solution which may, but need not, be diluted with an appropriate amount of water for use
A new kind of solar panel, developed at the University of Michigan, has achieved 9 percent efficiency in converting water into hydrogen and oxygen — mimicking a crucial step in natural photosynthesis. Outdoors, it represents a major leap in the technology, nearly 10 times more efficient than solar water-splitting experiments of its kind
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document. Guidance on this can be obtained from ARP1176. Rules for transportation and shipment do not cover oxygen equipment installed in an interior monument, e.g., galley unit or in a fuselage
This specification covers a premium aircraft-quality alloy steel in the form of bars and forgings 199 square inches (1284 cm2) and under in cross section, and forging stock of any size
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 μm) and that no powder (0.0 wt%) greater than 40 mesh (425 μm) is allowed
This specification covers a premium aircraft-quality alloy steel in the form of bars, forgings 100 square inches (645 cm2) and under in cross-sectional area and forging stock of any size
This specification covers a premium aircraft-quality alloy steel in the form of bars and forgings 189 in2 (1219 cm2) and under in cross-sectional area and forging stock of any size
This specification covers connector and cable accessory heat shrinkable, electrical insulating, molded components fabricated from various polymer based compositions. These components are intended for use as connector and cable accessory components to provide strain relief, electrical insulation, and environmental sealing
In this experimental study, an attempt is made to enhance the performance characteristics of diesel fuel with two different natural additives (NA). Borassus Flabelifer (NB1) and Oryza Sativa straws (NB2) were chosen as natural additives. The selected natural additives were milled for 150 hours using a planetary ball mill and their particle sizes ranging from 120 to 125 nm. The milled natural additives were doped into neat diesel using a magnetic stirrer followed by ultrasonication and their stability was ascertained. The presence of high carbon and oxygen content was noted on EDS results of milled powder. The properties of fuel were analyzed as per ASTM standards and it was observed that there was a marginal decrease in calorific value, flash point, and fire point of the fuel. Performance analysis of the fuel was carried out in a diesel engine at different load conditions and it was observed that brake thermal efficiency reduced by 1.73 % and 1.24 % for NB1 and NB2 doped diesel
Engineers have created a tiny wireless implant that can provide real-time measurements of tissue oxygen levels deep underneath the skin. The device, which is smaller than the average ladybug and powered by ultrasound waves, paves the way for the creation of a variety of miniaturized sensors that could track key biochemical markers in the body such as pH or carbon dioxide. These sensors could one day provide doctors with minimally invasive methods for monitoring the biochemistry inside functioning organs and tissues
Activation loss, mass transfer loss and ohmic loss are the three main voltage losses of the polymer electrolyte membrane fuel cell. While the former two types are relevant to concentration of oxygen in catalyst layer and the later one is associated with the water content in membrane. Distributions of water content and oxygen in a single cell are inconsistent which cause that current densities in each segment of the single cell are different. For the dry inlet gas, the water in the segments near the gas inlet channel will be carried to the segments near the gas outlet channel, which causes high ohmic loss of the segments near the gas inlet channel. In this work, a transfer non-isothermal quasi-three-dimensional model is developed to investigate inconsistency of current densities. Comprehensive physical and chemical phenomena inside the cell are included, especially the mass transfer of hydrogen, oxygen, vapor and liquid water in gas channels, gas diffusion layer and catalyst layer and
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines. In this study, with the HCCI code of CHEMKIN, the influence of argon dilution ratio, compression ratio, excess oxygen ratio, and engine speed on engine performance indicators including indicated thermal efficiency, CA10 (crank angle at 10% of total heat release), CA50, CA90-10, and in-cylinder
Researchers have integrated water purification technology into a new proof-of-concept design for a sea water electrolyzer that uses an electric current to split apart the hydrogen and oxygen in water molecules. This new method for “sea water splitting” could make it easier to turn wind and solar energy into a storable and portable fuel
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 µm) and that no powder (0.0 wt%) greater than 40 mesh (425 µm) is allowed
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a rough microstructure when it becomes oxide that can be recognized easily, making it a good marker. The oxygen diffusion was determined through the pad characterization, after SAE J2522 and J2707 tests, with SEM and EPMA/WDS techniques. The results show that tribochemistry also takes place beneath the PAD surface during braking due to the oxygen presence and the high
Items per page:
50
1 – 50 of 1275