Browse Topic: Oxygen
Reliable seed germination and plant production requires an environment that is neither too dry nor too wet. PONDS was developed to improve water and nutrient delivery for plants grown on the International Space Station (ISS). The technology uses an innovative wicking material to passively link a water/nutrient reservoir to a growth cylinder where seeds are germinated and plants are produced. PONDS addresses limitations with existing ISS plant-production technology by providing consistent delivery of water/nutrients, improving oxygen transfer to plants, and allowing users to determine how much water is being applied.
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
Medical tubing is an essential component of countless healthcare applications, from intravenous (IV) and oxygen lines to catheters and diagnostic equipment. These tubes, often made of clear flexible polymers, must be produced to exacting standards: free of contaminants, strong under pressure, and biocompatible. However, the joining process to connect these tubes can introduce significant manufacturing challenges.
Current regulations (e.g., Title 14 of the United States Code of Federal Regulations, or 14 CFR) define design requirements for oxygen system provisions for protection of crewmembers and passengers following emergency events such as in-flight decompression. This aerospace information report (AIR) addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a critical concern for all aircraft, ranging from single-engine types operating above 10000 feet to complex, high-performance aircraft equipped with supplemental oxygen systems. Proper planning ensures compliance with regulations and supports pilot and passenger safety at higher altitudes. This document
NASA Kennedy Space Center engineers developed a Cryogenic Oxygen Storage Module (COSM) to store oxygen in solid-state form and deliver it as a gas to an end-use environmental control and/or life support system. Additionally, the COSM can scrub out nuisance or containment gases such as carbon dioxide and/or water vapor in conjunction with supplying oxygen, forming a synergistic system when used in a closed-loop application.
NASA's Cryogenic Flux Capacitor (CFC) capitalizes on the energy storage capacity of liquefied gases. By exploiting a unique attribute of nano-porous materials, aerogel in this case, fluid commodities such as oxygen, hydrogen, methane, etc. can be stored in a molecular surface-adsorbed state. This cryogenic fluid can be stored at low to moderate pressure densities, on par with liquid, and then quickly converted to a gas, when the need arises. This solution reduces both safety-related logistics issues and the limitations of complex storage systems.
I’m guessing that when you think about applications for AI, physical fitness is not the first thing that comes to mind. But it is actually one of the more common applications. The most popular fitness sensors use AI to keep track of how many steps you’ve taken, track your progress, and integrate that with health information like heartrate or even blood oxygen level. But AI can do much more than that.
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indication as required by Airworthiness Requirements of CS/FAR 25.1449 to show that oxygen is being delivered to the dispensing equipment. Requirements of this document shall be applicable to any type of oxygen system technology and encompass “traditional” pneumatic devices, as well electric/electronic indication.
Although progress has recently been made to characterise the transition of microscopic liquid fuel droplets from classical evaporation to a diffusive mixing regime, still little is known about the transition from one to the other under reactive conditions. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models for droplet mixing, ignition, combustion and soot formation. In order to address this issue we performed systematic measurements using high- speed long-distance microscopy, for n-dodecane into gas at elevated temperatures (from 750 to 1,600 K) and pressures up to 13 MPa. We describe these high- speed visualizations at the microscopic level, including the time evolution of the liquid droplets, reaction wave, and soot distribution. Our measurements show that these parameters are influenced by the operating conditions (gas pressure, gas temperature, oxygen content) as well as the
Diesel engines operated at high altitudes would experience performance degradation due to the fuel-air amount mismatch, resulting in combustion deterioration. Technologies that supplement oxygen concentration, such as intake oxygen enrichment, turbocharging and the addition of oxygenated fuel additives, can help restore performance at high altitudes, but each has its own limitations Operating diesel engines at high altitudes still generates extremely lean fuel-air mixtures, making the improved utilization of excess air the most economically efficient approach to optimize engine performance under such conditions. The objective of this paper is to investigate the effects of injector nozzle-hole numbers on diesel engines operated at high altitudes, a topic that has been limitedly discussed in existing literature, with the aim of enhancing understanding regarding the potential of this cost-effective approach and aiding in the design of a cooperative approach between oxygen concentration
This document defines the minimum degree of purity and maximum levels of certain deleterious impurities allowable for aviator's breathing oxygen at the point of manufacture or generation. It covers gaseous, liquid, and chemically generated oxygen, and oxygen supplied by in situ concentration and in situ electrolysis. Different limits are established for oxygen from different sources, in recognition of differences in the ways the oxygen is stored, dispensed, and utilized, taking into account the safety of the user. These limits are not intended to specifically reflect upon the relative capabilities or merits of various technologies. Procurement documents may specify more stringent limits, where required for specific applications. Medical oxygen is not covered by this standard. In the United States, medical oxygen is a prescription drug and complies with the United States Pharmacopoeia (USP). In Europe, medical oxygen specification compiles with the European Pharmacopoeia monograph (Ph
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment. Aeromedical LOX equipment is not addressed herein as it is beyond the scope of
This standard covers regulators of the following types: Type I - Automatic Continuous Flow Type II - Adjustable Continuous Flow Type III - Pre-Set Continuous Flow Class A - Cylinder Mounted Class B - Line Mounted
This document is intended to give general instructions and directions for personnel performing maintenance and modification work on Oxygen Systems.
This specification covers a stable, noncorrosive, water-soluble, highly-penetrating, fluorescent solution which may, but need not, be diluted with an appropriate amount of water for use.
A new kind of solar panel, developed at the University of Michigan, has achieved 9 percent efficiency in converting water into hydrogen and oxygen — mimicking a crucial step in natural photosynthesis. Outdoors, it represents a major leap in the technology, nearly 10 times more efficient than solar water-splitting experiments of its kind.
This SAE Aerospace Information Report (AIR) provides general information on Continuous Flow Oxygen Systems which are available, principle functions of those systems and technical approaches to be taken into account during design and realization of systems. However, particular performance specifications and detailed information of manufacturing, testing and integration of such systems is beyond the scope of this document.
Closed-cycle protective breathing apparatus, commonly referred to as rebreathers, or CCBA provide trained aircrew members or ground personnel with eye and respiratory protection from toxic atmospheres.
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document. Guidance on this can be obtained from ARP1176. Rules for transportation and shipment do not cover oxygen equipment installed in an interior monument, e.g., galley unit or in a fuselage
This specification covers a premium aircraft-quality alloy steel in the form of bars and forgings 199 square inches (1284 cm2) and under in cross section, and forging stock of any size.
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report.
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 μm) and that no powder (0.0 wt%) greater than 40 mesh (425 μm) is allowed.
This specification covers a premium aircraft-quality alloy steel in the form of bars, forgings 100 square inches (645 cm2) and under in cross-sectional area and forging stock of any size.
This specification covers a premium aircraft-quality alloy steel in the form of bars and forgings 189 in2 (1219 cm2) and under in cross-sectional area and forging stock of any size.
This specification covers connector and cable accessory heat shrinkable, electrical insulating, molded components fabricated from various polymer based compositions. These components are intended for use as connector and cable accessory components to provide strain relief, electrical insulation, and environmental sealing.
In this experimental study, an attempt is made to enhance the performance characteristics of diesel fuel with two different natural additives (NA). Borassus Flabelifer (NB1) and Oryza Sativa straws (NB2) were chosen as natural additives. The selected natural additives were milled for 150 hours using a planetary ball mill and their particle sizes ranging from 120 to 125 nm. The milled natural additives were doped into neat diesel using a magnetic stirrer followed by ultrasonication and their stability was ascertained. The presence of high carbon and oxygen content was noted on EDS results of milled powder. The properties of fuel were analyzed as per ASTM standards and it was observed that there was a marginal decrease in calorific value, flash point, and fire point of the fuel. Performance analysis of the fuel was carried out in a diesel engine at different load conditions and it was observed that brake thermal efficiency reduced by 1.73 % and 1.24 % for NB1 and NB2 doped diesel
This SAE Aerospace Information Report (AIR) provides an orientation regarding the general technology of chemical oxygen generators to aircraft engineers for assistance in determining whether chemical oxygen generators are an appropriate oxygen supply source for hypoxia protection in a given application and as an aid in specifying such generators. Information regarding the details of design and manufacture of chemical oxygen generators is generally beyond the scope of this document.
Items per page:
50
1 – 50 of 1275