Browse Topic: Metals
SCOPE IS UNAVAILABLE.
SCOPE IS UNAVAILABLE.
This specification covers a coating consisting of tungsten disulfide without binders and does not require a curing process.
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles.
This specification covers an aluminum alloy in the form of hand forgings up to 8 inches (203 mm), inclusive, in nominal thickness and a cross-sectional area not over 256 square inches (1652 cm2) and rolled rings up to 3.5 inches (89 mm), inclusive, in nominal thickness and with an OD to wall thickness ratio of 10:1 or greater (see 8.6).
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
This specification covers a magnesium alloy in the form of plate 0.250 to 2.000 inches (6.35 to 50.80 mm), inclusive, in nominal thickness (see 8.5).
This SAE Aerospace Standard (AS) covers miniature, composite, high density, threaded coupling, self-locking, circular, environment-resistant, electrical connectors utilizing removable crimp contacts, and associated hardware, which are capable of continuous operation within a temperature range of -65 to +175 °C (-85 to 347 °F). These connectors are supplied under an AS9100 reliability assurance program. See 6.1 for intended use and applications.
This specification covers an aluminum alloy in the form of rolled or forged rings up to 6 inches (152 mm), inclusive, in nominal thickness at the time of heat treatment and having an OD to wall thickness ratio of 10 or greater (see 8.6).
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of carbon and low-alloy steel forgings.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
This specification covers a heat-treatable, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and stock for forging or heading.
This specification covers an aluminum alloy in the form of Alclad sheet and plate 0.040 to 1.000 inch, inclusive (1.02 to 25.40 mm, inclusive) in nominal thickness (see 8.5).
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
This specification covers a magnesium alloy in the form of investment castings (see 8.6).
This specification covers the requirements for electrodeposited cadmium on metal parts.
This specification covers a low-alloy steel in the form of bare welding wire. Type 2 - copper coated wire was removed from this document (see 8.4).
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
Aluminum alloy wheels have become the preferred choice over steel wheels due to their lightweight nature, enhanced aesthetics, and contribution to improved fuel efficiency. Traditionally, these wheels are manufactured using methods such as Gravity Die Casting (GDC) [1] or Low Pressure Die Casting (LPDC) [2]. As vehicle dynamics engineers continue to increase tire sizes to optimize handling performance, the corresponding increase in wheel rim size and weight poses a challenge for maintaining low unsprung mass, which is critical for ride quality. To address this, weight reduction has become a priority. Flow forming [3,4], an advanced wheel rim production technique, which offers a solution for reducing rim weight. This process employs high-pressure rollers to shape a metal disc into a wheel, specifically deforming the rim section while leaving the spoke and hub regions unaffected. By decreasing rim thickness, flow forming not only enhances strength and durability but also reduces overall
Items per page:
50
1 – 50 of 33438