Browse Topic: Metals

Items (33,390)
This specification covers an aluminum alloy in the form of castings (see 8.11).
AMS D Nonferrous Alloys Committee
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
Aluminum-lithium alloys are extensively used across various industries due to their exceptional strength-to-weight ratio, excellent fatigue/corrosion resistance and good thermal stability. These attributes, combined with improved weldability and ease of fabrication, make them ideal for lightweight engineering applications in sectors such as aerospace, automotive, and defense. Additive manufacturing (AM) offers unique opportunities to fully leverage the potential of aluminum-lithium alloys by enabling the fabrication of complex geometries, minimizing material waste, and supporting on-demand production. This paper explores the significance of lightweight materials, traces the evolution of aluminum-lithium alloys and provides a comprehensive overview of their AM. It discusses the properties and real-world applications of these alloys and examines various AM techniques employed in their processing. Key advancements in the AM of aluminum-lithium alloys are reviewed, including novel alloy
Santhana Babu, A.V.Antony Benson, B.Danusha, M.
This specification covers a titanium alloy in the form of wire, forgings, flash-welded rings 4.000 inches (101.60 mm), inclusive, and under in nominal diameter or distance between parallel sides, bars up through 10.000 inches (254 mm), inclusive, and under in nominal diameter with a maximum cross-sectional area for bars over 4.000 to 10.000 inches (101.60 to 254 mm) in diameter of 79 square inches (509.7 cm2), and stock for forging or flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification describes the engineering requirements for producing a non-powdery anodic coating on titanium and titanium alloys and the properties of such coatings.
AMS B Finishes Processes and Fluids Committee
Puddling is a crucial process in rice cultivation, involving the preparation of the soil in a flooded field to create a soft, muddy seedbed. There are two classifications for puddling: full cage and half cage. Full cage puddling involves replacing the rear wheels of the tractor with steel paddle wheels, which are used to till the rice paddies directly without any additional implement. In the half cage puddling, the rear wheels remain on the tractor, and a smaller cage or paddle wheel is attached to the outside. Considering the field size, the operator often releases the clutch very quickly after a speed or direction change. This generates torque spikes, which are harmful to Transmission Gears and Clutches. This can lead to gear teeth bending fatigue failure due to repeated higher bending stresses. In this paper, a study related to how to reduce overall product development time by simulating bending fatigue failure of gear in lab environment is presented. A systematic approach is used
Pathan, Irfan HamidullaBardia, Prashant
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition (see 8.4) and stock of any size for forging, flash-welded rings, or extrusions.
AMS F Corrosion and Heat Resistant Alloys Committee
Producing 3D models of cooling water passages of outboard motors, and calculating distribution of electric potential on the water passage surfaces using BEM, we have developed the new method for simulation of electric potential distribution. The outboard motor is a propulsion system attached to the transom of the boat with steering function. As the water around the boat is drawn in for cooling of the engine, the engine parts are susceptible to severe corrosion. As a means to help prevent corrosion, a part referred to as the anode metal, which has a lower natural potential, is provided. Such a method is called the sacrifice protection because the anode metal corrodes before the engine parts due to the difference of electric potential. Since anti-corrosion currents occur preferentially to areas close to the anode metal, the anode metal is required to be located at the most effective place for corrosion protection. However, there are certain restrictions in the layout of anode metal from
Shibuya, RyotaSuzuki, Hiroki
In the transition towards sustainable mobility, Circular Design principles are crucial. Electric Motors are subject to continuous innovation to improve efficiency, performance density and reduce externalities associated with their production. Therefore, the choice of technological solutions during design phase must guarantee optimal performance and minimal environmental impact throughout the entire product life cycle: production, use, and end-of-life. In the automotive sector, the use phase is particularly critical since the efficiency of the traction system is directly related to total energy consumption during the life cycle and, consequently, to its environmental impact. This research introduces a simulation-based approach to evaluate the use phase of an Axial Flux Electric Motor equipped with Permanent Magnets (AFPM). While providing high performance for electric traction motors, these magnets are composed of Rare Earth Elements (REEs), e.g. Neodymium, classified as Critical Raw
Guadagno, MaurizioBerzi, LorenzoPugi, LucaDelogu, Massimo
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
This specification covers a corrosion-resistant steel in the form of investment castings homogenized, solution, and precipitation heat treated to 150 ksi (1034 MPa) minimum tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
In an attempt to reduce CO2 release from alloy wheel production, we have developed an aluminum alloy for casting that satisfies necessary property requirements using recycled aluminum, but without heat treatment. The wheel is a critical safety feature of any vehicle, and it should have toughness and strength .In many wheels, virgin aluminum containing small amounts of impurities is used to maintain toughness, and heat treatment (T6), which is post-casting quick heating and quenching, is applied to provide strength. At the start of this project, we focused on two wheel-manufacturing processes, production of virgin aluminum and heat treatment, from which a large amount of CO2 is released. By switching to recycled aluminum, CO2 was reduced to one-ninth the original amount. The issue with recycled material is that impurities grow in the metal structures as intermetallic compounds and this reduces toughness. To deal with this issue, we have chosen high-pressure die casting (HPDC), in which
Suzuki, Noritaka
This specification covers a corrosion- and heat-resistant alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
In this study, the optimization of robotic gas metal arc welding (GMAW) parameters for joining hot-rolled ferritic-bainitic FB590 steel sheets with a thickness of 2.5 mm was investigated. The main objective was to evaluate the effect of wire feed speed and welding speed on the penetration depth, throat thickness, and mechanical performance of the welded joint. A series of welding experiments were carried out with wire feed speeds ranging from 50 cm/min to 100 cm/min and welding speeds ranging from 5 cm/min to 15 cm/min. Tensile and microhardness tests were carried out to evaluate the structural integrity of the welded joints. The results show that increasing the wire feed speed significantly improves the weld penetration and throat thickness, especially at constant welding speeds. The most suitable combination was found to be 70 cm/min wire feed at 8 cm/min travel speed and 100 cm/min wire feed at 12 cm/min and 15 cm/min travel speeds. The microhardness in the heat-affected zone
Babir, NaimeÜzel, Uğur
The work presents a micro-electromechanical system (MEMS) temperature sensor that has been designed using COMSOL Multiphysics 6.0 software for use in predicting the temperature of automotive parts. Due to its versatility, the shape of this design employs a meander, and this involves joule heating physics. It clearly shows the variation of resistance with temperature. For this design, Nitinol nano material is used because of the following advantages: Enhanced Shape Memory Effect, Superior Super elasticity, Increased Surface Area, Increased Surface Area, Improved Biocompatibility, Tunable Properties, Enhanced Mechanical Properties. Nitinol having high strength to weight ratio find its application in aerospace industry. This sensor works based on the principle of temperature dependence of resistance; that is, the resistance of the material increases or decreases based on temperature. It is observed that Nitinol has low von Mises stress, proving the safety nature of the material in
P, Geetha
Over the past decade, significant progress in nano science and nanotechnology has opened new avenues for the development of high-performance photovoltaic cells. At present, a variety of nanostructure-based designs—comprising metals, polymers, and semiconductors—are being explored for photovoltaic applications. Advancements in the understanding of optical and electrical mechanisms governing photovoltaic conversion have been supported by theoretical analyses and modeling studies. Nevertheless, the high fabrication cost and relatively low efficiency of conventional solar photovoltaic cells remain major barriers to their large-scale deployment. One-dimensional (1D) nano materials, in particular, have introduced promising prospects for enhancing photovoltaic performance owing to their unique structural and electronic characteristics. Nanowires, nano rods, and nanotubes exemplify such 1D nanostructures, offering substantial potential to improve photon absorption, electron transport, and
P, GeethaSudarmani, Rc, VenkataramananSatyam, SatyamNagarajan, Sudarson
Measurement plays a crucial role in the precise and accurate management of automotive subsystems to enhance efficiency and performance. Sensors are essential for achieving high levels of accuracy and precision in control applications. Rapid technical advancements have transformed the automobile industry in recent years, and a wide range of novel sensor devices are being released to the market to speed up the development of autonomous vehicle technology. Nonetheless, stricter regulations for reliable pressure sensors in automobiles have resulted from growing legal pressures from regulatory bodies. This work proposes and investigates a tribo electric nano sensor that is affected by a changing parameter of the separation distance between the device's primary electrode and dielectric layers. The system is being modeled using the COMSOL multiphysics of electrostatics and the tribo-electric effect. Open circuit electric potential and short circuit surface charge density are two of the
P, GeethaK, NeelimaSudarmani, RC, VenkataramananSatyam, SatyamNagarajan, Sudarson
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a premium aircraft-quality alloy steel in the form of welding wire.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
Items per page:
1 – 50 of 33390