Browse Topic: Metals

Items (33,367)
Lightweight materials are essential in reducing the overall weight and improving the efficiency and performance of ICE and electric vehicles. The use of aluminum alloys is critical in transitioning to a more energy sustainable and environmentally friendly future. The accessible combinations of high modulus to density and strength to weight ratios, as well as their excellent thermal conductivity, make them an ideal solution for overall weight reduction in vehicles, thereby improving fuel efficiency and reducing emissions. Aluminum alloys with high strength and lifetime thermal stability have been industrialized for usage in brake rotor applications. Amongst the most used aluminum alloys with high thermal stability are 2618-T8 and 4032-T6 for use in aerospace and automotive industries, respectively. However, when it comes to prolonging the life of a product at temperatures that exceed 200°C, the properties of these alloys will quickly degrade within the first 300 hours of exposure
Duchaussoy, AmandineLorenzino, PabloFranklin, JackTzedaki, Maria
Advanced ferritic nitrocarburizing process combined with a specialized post-oxidation treatment described as FNC + Smart ONC® [1] is developed for brake rotor applications. The process can be applied to standard grey cast iron brake rotors, significantly reducing PM 10 emissions to levels below the Euro 7 limits for most vehicles equipped with at least some recuperative braking capabilities, all without compromising performance. Finished grey iron brake rotors, ferritic nitrocarburized and post oxidized were evaluated according to several industry standards. The standards include SAE J2707B (Block Wear Test including Highway) [2], GRPE-90-24 Rev.1 Emission Test (Full WLTP Brake Cycle 6 Times) [3], and SAE J2522 (AK-Master Performance) [4]. Nitrocarburized post oxidized brake rotors were compared to untreated grey iron rotors exposed to several friction materials. Ferritic nitrocarburizing and post oxidation addresses the issue of corrosion, which is particularly relevant for brake
Winter, Karl-MichaelHolly, Mike
This work investigates the influence of casting microstructure on the mechanical performance of ad hoc samples of recycled EN AC-43200 Al-Si alloy. Three batches are produced by modifying the casting process parameters (i.e., molten alloy temperature and in-mold cooling conditions) to obtain different casting microstructures. Room temperature tensile and high-cycle fatigue tests, coupled with metallography, X-ray tomography, and fatigue fracture surface analysis, are performed to elucidate the relationship between microstructural characteristics and mechanical properties of the investigated alloy. The findings indicate that casting pores and intermetallic precipitates play a pivotal role in influencing the mechanical behavior and performance of cast, recycled EN AC-43200 Al-Si alloy. Additionally, an inverse correlation between secondary dendrite arm spacing (SDAS) and both tensile properties and fatigue life is established.
Pavesi, AriannaBarella, SilviaD'Errico, FabrizioBonfanti, AndreaBertasi, Federico
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings up to 8.0 inches (203 mm) in diameter or least distance between parallel sides in the solution heat-treated condition (see 8.4), and stock of any size for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of sand, permanent mold, and composite mold castings with nominal wall thickness up to 1.0 inch (25 mm) or nominal weight up to 50 pounds (23 kg) (see 8.2 and 8.8).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum bronze alloy in the form of centrifugal and continuous-cast castings (see 8.6).
AMS D Nonferrous Alloys Committee
The rapid development of electric mobility leads to improve the performance of all the powertrain components. There is still a high need to maximize their efficiency for autonomy reasons, but weight and volume are critical parameters for automotive, aeronautic or train applications. This paper focuses on electrical machines, especially the permanent magnet synchronous axial flux motors (PMSAFM) which offer advantages in terms of power density and volumetric electromagnetic torque. The paper proposes a panorama of solutions for designing such a motor, with an application case to 100 kW – 10000 rpm, and an objective of 12 kW/kg at steady state. Obtaining such a power density can be obtained by optimizing the design, by boosting the current, using a high DC voltage, choosing a high-performance electrical steel and adapted permanent magnets, etc). For the PMSAFM topologies several configurations can be considered, and the authors show that a double rotor PMSAFM surface-mounted magnets
Lecointe, Jean-PhilippeHebri, MohamedBauw, GrégoryFawaz, SaraDuchesne, StéphaneZito, GianlucaABDELLI, AbdenourARSLANE, Idir
Researchers at the Department of Energy’s Oak Ridge National Laboratory are using advanced manufacturing techniques to revitalize the domestic production of very large metal parts that weigh at least 10,000 pounds each and are necessary for a variety of industries, including clean energy.
Thermal nondestructive evaluation (NDE) is a widely used method for detecting defects such as cracks, corrosion, and dis-bond layers in metallic and composite structures. Traditional thermal inspection methods rely on a high-intensity, broadband light heat source (e.g., flash lamp, quartz lamp) that generates heat that is absorbed by the material, and an infrared camera captures the transient thermal response to generate inspection data. However, inspecting low emissivity surfaces (such as unpainted aluminum and titanium alloys) poses challenges including high reflection of the heat source light that can cause inaccurate measurement of the surface temperature response, produce false defect indications, and potential sensor damage due to high-intensity reflections.
This specification covers an aluminum alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a carbon steel in the form of bars up through 3.000 inches (76.20 mm) and forgings and forging stock of any size.
AMS E Carbon and Low Alloy Steels Committee
TOC
Tobolski, Sue
This specification covers a dilute aluminum/TiB2 metal matrix composite in the form of sand castings.
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of castings.
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of bars, wire, forgings up to 4.000 inches (101.60 mm), inclusive, and forging stock.
AMS G Titanium and Refractory Metals Committee
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
This specification covers an iron-nickel alloy in the form of strip 0.020 to 0.250 inch (0.51 to 6.35 mm), inclusive, in thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes process controls for the repeatable production of preforms by Wire Fed Plasma Arc Directed Energy Deposition (PA-DED). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
U.S. Army researchers, in collaboration with academic partners, invented a stronger copper that could help advance defense, energy and aerospace industries thanks to its ability to endure unprecedented temperature and pressure extremes. Extreme materials experts at the U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory built on a decade of scientific success to develop a new way to create alloys that enable Army-relevant properties that were previously unachievable. An alloy is a combination of a metal with other metals or nonmetals.
Bosch bolstered its 3D printing capabilities when it added a new metal 3D printer at its Nuremberg, Germany, plant earlier this year. The NXG XII 600 metal 3D printer from Nikon SLM Solutions met the supplier's need - the need for speed - as well as the non-Top Gun-related precision, flexibility and energy efficiency when manufacturing complex metal parts for its in-house and third-party customers. The Nuremberg plant invested nearly six million euros in the center, including the purchase and installation of the new metal 3D printer. Bosch claims to be the first Tier 1 automotive supplier in Europe to have a facility in this performance class.
Gehm, Ryan
A Rear Underrun Protection Device (RUPD) is a safety feature installed on the rear end of chassis of trailers, designed to prevent smaller vehicles from sliding underneath the rear of the trailer in the event of a collision. Therefore, it plays a critical role in reducing the risk of serious injuries or fatalities. The RUPD standard is updated aiming to improve the strength and resistance of these devices, therefore improving the road safety. This paper shares the author’s experience with the latest standards and regulations for Rear Underrun Protection Devices (RUPD), with a focus on the use of Advanced High Strength Steel (AHSS). It provides a general overview of RUPD standard requirements and suggests several AHSS steel tube sizes suitable for the main longitudinal member, serving as a starting point for design. Key design parameters and potential failure points in RUPD structures are discussed, along with possible solutions. Finite Element Modeling (FEM) is commonly used in the
Rad, Nima Asadi
The continuous improvement of validation methodologies for mobility industry components is essential to ensure vehicle quality, safety, and performance. In the context of mechanical suspensions, leaf springs play a crucial role in vehicle dynamics, comfort, and durability. Material validation is based on steel production data, complemented by laboratory analyses such as tensile testing, hardness measurements, metallography, and residual stress analysis, ensuring that mechanical properties meet fatigue resistance requirements and expected durability. For performance evaluation, fatigue tests are conducted under vertical loads, with the possibility of including "windup" simulations when necessary. To enhance correlation accuracy, original suspension components are used during testing, allowing for a more precise validation of the entire system. Additionally, dynamic stiffness measurements provide valuable input for vehicle dynamics and suspension geometry analysis software, aiding in
Zahn, André N.Graebin, MatheusMalacarne, RodrigoToniolo, Juliano C.
Compressive residual stresses are very important at fatigue life, therefore this work has an objective to determine compressive residual stresses longitudinally, along a surface, with three levels of deflection causing tensile prestresses on the surface fibers, of 750 MPa, 1100 MPa and 1500 MPa, supported in one support position on the compression side, 150 mm, equidistant from the longitudinal center of the samples, which are made of EN 47 steel (DIN 51CrV4), with dimensions of 15 mm thick, 70 mm width and 1500 mm long. The samples are submitted to quenching, tempering, surface polishing and stress relief processes, with radius of 2500 mm and concavity downwards, and after they are immersed in a tank with mineral and conventional quenching oil compound, then the samples are tempered and the concave surfaces are polished to remove decarburization and took into the furnace to relieve stress caused by the surface polishing process. Next step, the samples are peened, with deflections of
Chiqueti, Cleber Michelde Almeida Benassi, AdrianoGomes, Bárbara Mirandados Santos, Marcosde Lima, Alexandre SantanaRolim, José Ronaldo Agostinhoda Silva, Fernando Vilanova
This specification covers a premium aircraft-quality alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of permanent mold castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.010 to 1.750 inch (0.25 to 44.45 mm) in thickness, supplied in the annealed (O temper) condition. When specified, product shall be supplied in the “as fabricated” (F) temper (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of centrifugal castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of castings with nominal wall thickness up to 1.0 inch (25 mm) (see 8.8).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
With rising environmental concerns, developing lead-free solders is crucial for sustainable electronics. Traditional lead-based solders, while effective, pose health and environmental risks, prompt a shift to safer alternatives that retain reliability. Sn-9Zn alloys, when alloyed with elements such as cerium (Ce) and chromium (Cr), show enhanced mechanical and thermal properties suited for modern electronics. This study examines the effects of Ce and Cr, and their combination in Sn-9Zn solder alloy, analyzing improvements in microstructure, thermal, wettability, and hardness properties. Microstructural analysis reveals that Ce and Cr additions refine the alloy’s structure, benefiting performance. Wettability testing shows that Sn-9Zn-0.05Ce achieves the lowest wetting angle, while Sn-9Zn-0.05Ce-0.1Cr displays a balanced angle between Sn-9Zn-0.05Ce and Sn-9Zn-0.1Cr. Differential scanning calorimetry (DSC) results indicate that Sn-9Zn-0.05Ce has the lowest melting temperature, while Sn
Kumar, NiranjanMaurya, Ambrish
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) from 0.375 to 1.300 inches (9.53 to 33.02 mm) in diameter or thickness, produced with cross-sectional area of 22.5 square inches (145 cm2), maximum, and a circumscribing circle diameter (circle size) of 17.4 inches (44.2 cm), maximum (see 2.4 and 8.8).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 33367