Browse Topic: Metals

Items (33,565)
The objective of this experimental study was to investigate the change of shifting rate of metal V-belt type CVT during speed up/down under quasi-idle loading condition. Changes in the rotational speeds of the driving and driven pulleys were simultaneously measured by the rotational speed sensors installed on the driving and driven shafts during speed up/down shifting, respectively. In addition, the interaxial force applied to the driving and driven pulleys was measured by a load cell. The shifting rate was defined as the ratio of the calculated radial displacement to the tangential displacement of the belt in the pulley groove. This study found that the shifting rate was determined not only by the slippage between the pulley and the belt element, but also by the elastic deformation of the belt element in the pulley groove. The power transmission performance was improved when the elastic deformation was small even though radial slippage between the pulley and the belt element was
Mori, YuichirouOkubo, KazuyaObunai, Kiyotaka
The use of plastic gears has expanded due to their lightweight properties, low noise emission, and cost-effective manufacturing. For instance, in the transportation equipment industry, some metal gears are being replaced with plastic gears. To achieve further size and weight reduction, gears must be able to withstand higher loads without damage. Gears have various modes of damage. Since there are different types of wear, each with different factors, it is important to identify the factors and take appropriate countermeasures. In gear meshing, there are many factors that affect wear, so restricted-factor tests are required to confirm the effectiveness of countermeasures. The purpose of this study is to elucidate the wear regime in high-load gear meshing and then to establish a simplified evaluation method replicating the meshing of gears for wear resistance focusing on the relative sliding between the two surfaces of metal and plastic. In the evaluation, changes in wear morphology over
Yamamoto, JimpeiSuzuki, TakaharuAko, NatsukiIwasaki, ShinyaKurita, Hirotaka
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils (see 8.7).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, shapes (profiles), and tubing 0.250 to 3.000 inches (6.35 to 76.20 mm), inclusive, in nominal diameter, least thickness, or nominal wall thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, profiles, and tubing.
AMS D Nonferrous Alloys Committee
This specification establishes testing methods and maximum permissible limits for trace elements in nickel alloy castings and powder materials. It shall apply only when required by the material specification.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of bars and forgings 8 inches (203 mm) and under in nominal diameter or maximum cross-sectional dimension and forging stock of any size.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a magnesium alloy in the form of permanent mold castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of seamless drawn tubing from 0.025 to 0.500 inch (0.64 to 12.70 mm), inclusive, in wall thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of die forgings 4 inches (102 mm) and under in nominal thickness at time of heat treatment, hand forgings up to 6 inches (152 mm), inclusive, in as-forged thickness, rolled rings with wall thickness up to 3.5 inches (89 mm), inclusive, and stock of any size for forging or rolled rings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of hand forgings up to 6 inches (152 mm), inclusive, in nominal as-forged thickness and having a cross-sectional area of not more than 156 square inches (1006 cm2) (see 8.7).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of sheet and strip 0.125 inch (3.18 mm) and under in nominal thickness (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up through 2.999 inches (76.2 mm) in diameter, least thickness, or wall thickness and 25 square inches (161 cm2) or less in cross-sectional area (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 3.001 to 9.000 inches (76 to 229 mm), inclusive, in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and shapes up to 4.000 inches (101.60 mm), inclusive, in nominal diameter or least thickness and having a nominal cross-sectional area up to 20 square inches (129 cm2) (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a magnesium alloy in the form of permanent mold castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 1.0 to 6 inches (25.4 to 152.4 mm), inclusive, in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an extra high toughness, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition and stock of any size for forging, flash-welded rings, or extrusion.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing with a nominal diameter or least thickness (wall thickness of tubing) up to 5.000 inches (127 mm), inclusive (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of bars up through 10.000 inches (2540 mm) in nominal diameter or least distance between parallel sides, inclusive, with bars having a maximum cross-sectional area of 79 square inches (509.67 cm2), and stock for forging of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of extruded profiles 0.750 to 1.500 inches (19.05 to 38.10 mm) in nominal thickness with a maximum cross-sectional area of 19 square inches (123 cm2) and a maximum circle size of 11 inches (279 mm) (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers discontinuously reinforced aluminum alloy (DRA) metal matrix composites (MMC) made by mechanical alloying of the 2124A powder and SiC particulate, which is then consolidated by hot isostatic pressing (HIP) into shapes less than 62 square inches (0.04 m2) in cross-sectional area (see 8.12).
AMS D Nonferrous Alloys Committee
This specification covers one grade of commercially pure titanium in the form of bars, wire, forgings, and flash-welded rings up to 5.000 inches (127.00 mm), inclusive, in nominal diameter or least distance between parallel sides and stock for forging or flash-welded rings (see 8.6).
AMS G Titanium and Refractory Metals Committee
This study aims to predict the impact of porosities on the variability of elongation in the casting Al-10Si-0.3Mg alloy using machine learning methods. Based on the dataset provided by finite element method (FEM) modeling, two machine learning algorithms including artificial neural network (ANN) and 3D convolutional neural network (3D CNN) were trained and compared to determine the optimal model. The results showed that the mean squared error (MSE) and determination coefficient (R2) of 3D CNN on the validation set were 0.01258/0.80, while those of ANN model were 0.28951/0.46. After obtaining the optimal prediction model, 3D CNN model was used to predict the elongation of experimental specimens. The elongation values obtained by experiments and FEM simulation were compared with that of 3D CNN model. The results showed that for samples with elongation smaller than 9.5%, both the prediction accuracy and efficiency of 3D CNN model surpassed those of FEM simulation.
Zhang, Jin-shengZheng, ZhenZhao, Xing-zhiGong, Fu-jianHuang, Guang-shengXu, Xiao-minWang, Zhi-baiYang, Yutong
Shear-polarized ultrasonic sensors have been instrumented onto the outer liner surface of an RTX-6 large marine diesel engine. The sensors were aligned with the first piston ring at top dead center and shear ultrasonic reflectometry (comparing the variation in the reflected ultrasonic waves) was used to infer metal–metal contact between the piston ring and cylinder liner. This is possible as shear waves are not supported by fluids and will only transmit across solid-to-solid interfaces. Therefore, a sharp change in the reflected wave is an indicator of oil film breakdown. Two lubricant injection systems have been evaluated—pulse jet and needle lift-type injectors. The needle lift type is a prototype injector design with a reduced rate of lubricant atomization relative to pulse jet injectors. This is manifested as a smaller reduction in the reflected ultrasonic wave, showing less metal–metal contact had occurred. During steady-state testing, the oil feed rate was varied; the high flow
Rooke, JackLi, XiangweiDwyer-Joyce, Robert S.
Many manufacturing techniques and processes have been implemented over the years to improve the formability of sheet metals. Warm forming of sheet metals is one such established method. However, it is more commonly and successfully applied to aluminum grades. The re-evaluation of less-used metal forming technologies, such as warm forming and sheet hydroforming for steel are responses to the challenges posed by competitive processes like large castings and the geometry requirements of new BEV parts. By understanding the effects of elevated temperatures (above or below recrystallization temperatures) on different steel grades and the impact of various heating methodologies, the industry can adapt and optimize these proven techniques for modern applications. This paper is a thorough summary of the effect of elevated temperatures on various grades of steel. Different heating techniques, their cycle times and effects on final forming feasibility are contrasted. The effect of chemistry
Kella, CarolineWormald, Tom
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
In order to comply with the tightening of global regulations on automobile exhaust gas, further improvements to exhaust gas control catalysts and upgrades to on-board diagnostics (OBD) systems must be made. Currently, oxygen storage capacity (OSC) is monitored by front and rear sensors before and after the catalyst, and deterioration is judged by a decrease in OSC, but it is possible that catalyst deterioration may cause the rear sensor to detect gas that has not been sufficiently purified. It is important to observe the activity changes when the catalyst deteriorates in more detail and to gain a deeper understanding of the catalyst mechanism in order to create guidelines for future catalyst development. In this study, we used a μ-TG (micro thermogravimetric balance) to analyze in detail how differences in design parameters such as the type of precious metal, detection temperature, and mileage (degree of deterioration) affect the OSC rate in addition to the OSC of the ceria-based
Hamada, ShotaUegaki, ShinyaTanabe, HidetakaNakayama, TomohitoJinjo, ItsukiKurono, SeitaOishi, ShunsukeNarita, KeiichiOnishi, TetsuroYasuda, KazuyaMatsumura, DaijuTanaka, Hirohisa
The automotive industry is amidst an unprecedented multi-faceted transition striving for more sustainable passenger mobility and freight transportation. The rise of e-mobility is coming along with energy efficiency improvements, greenhouse gas and non-exhaust emission reductions, driving/propulsion technology innovations, and a hardware-software-ratio shift in vehicle development for road-based electric vehicles. Current R&D activities are focusing on electric motor topologies and designs, sustainability, manufacturing, prototyping, and testing. This is leading to a new generation of electric motors, which is considering recyclability, reduction of (rare earth) resource usage, cost criticality, and a full product life-cycle assessment, to gain broader market penetration. This paper outlines the latest advances of multiple EU-funded research projects under the Horizon Europe framework and showcases their complementarities to address the European priorities as identified in the 2Zero
Armengaud, EricRatz, FlorianMuñiz, ÁngelaPoza, JavierGarramiola, FernandoAlmandoz, GaizkaPippuri-Mäkeläinen, JenniClenet, StéphaneMessagie, MaartenD’amore, LeaLavigne Philippot, MaevaRillo, OriolMontesinos, DanielVansompel, HendrikDe Keyser, ArneRomano, ClaudioMontanaro, UmbertoTavernini, DavideGruber, PatrickRan, LiaoyuanAmati, NicolaVagg, ChristopherHerzog, MaticWeinzerl, MartinKeränen, JanneMontonen, Juho
Reduction of frictional losses by changing the surface roughness in the form of surface textures has been reported as an effective method in reducing friction in the boundary regime of lubrication. Laser-based micro texturing has been mostly used to create these texture patterns and it is reported that it can reduce the frictional resistance by ~20-50%. However, the use of laser-based techniques for texture preparation led to residual thermal stress and micro cracks on the surfaces. Hence, the current study emphasizes using conventional micromachining on piston material (Al alloy Al4032) to overcome this limitation. Three variations of semi-hemispherical geometries were prepared on the surface of Al alloy with dimple depths of 15, 20 and 40 μm and dimple diameters of 90, 120 and 240 μm. Prepared textured surfaces with untextured surfaces are compared in terms of wear, wettability, and friction characteristics based on Stribeck curve behaviors. Results of this investigation demonstrated
Sahu, Vikas KumarShukla, Pravesh ChandraGangopadhyay, Soumya
The mechanical properties of materials play a crucial role in real life. However, methods to measure these properties are usually time-consuming and labour intensive. Small Punch Through (SPT) has non-destructive characteristics and can obtain load-displacement curves of specimens, but it cannot visually extract the mechanical properties of materials. Therefore, we designed a proprietary SPT experiment and fixture, built a finite element method (FEM) model and developed a multi-fidelity model capable of predicting the mechanical properties of steel and aluminium alloys. It makes use of multi-fidelity datasets obtained from SPT and FEM simulation experiments, and this integration allows us to support and optimize the predictive accuracy of the study, thus ensuring a comprehensive and reliable characterization of the mechanical properties of the materials. The model also takes into account variations in material thickness and can effectively predict the mechanical properties of materials
Zou, JieChen, YechaoLi, ShanshanHuayang, Xiang
CNTs play an important role in modern engineering projects, especially in engine pistons design for the next-generation of motorcycles. This work presents a comprehensive analyses proposed project using finite element method under actual operating conditions purpose performance evaluation of a motorcycle engine piston design, investigating the suitability of four distinct materials. Precise material properties adhering to linear elastic isotropic behavior were defined within the software environment and proposed advanced nanomaterial ensuring accurate representations of the proposed under the prescribed loading scenarios. The primary objective was to identify the optimal material choice for the piston, ensuring superior strength, minimal deformation, and lightweight characteristics essential for high-performance engine applications. Moreover interpreting and understanding the dynamic behavior of common and advanced engineering materials. Through a comprehensive evaluation of the
Ali, Salah H. R.Ahmed, Youssef G. A.Ali, Amr S.H.R.
In sheet metal simulation, computation time is significantly influenced by the number of elements used to discretize the sheet blank, which covers the shape of forming tool geometry. Based on particle kinematics, motion of material point is modeled, and the concept of zero circumferential motion material line (ZML) is proposed. The slope ratio of material line (SRML) is proposed to quantify the circumferential deviation for determining the ZML. Based on the SRML, a method is developed to segment sheet blank and apply constraints. The method is demonstrated through forming simulation on a Hishida geometry. The proposed method, with its minimal to no circumferential motion along ZMLs, exhibits high level of accuracy retention while simultaneously impressively reducing computation time (up to 77%). This combination of efficiency and precision makes it a compelling approach for reducing simulation cost.
Sheng, ZiQiangAsimba, BrianCabral, Kleber
The current ASTM A653 standard for determining the bake hardening index (BHI) of sheet metals can lead to premature fracture at the transition radius of the tensile specimen in high strength steel grades. In this study, a new test procedure to characterize the BHI was developed and applied to 980 and 1180 MPa third generation advanced high strength steels (3G-AHSS). The so-called KS-1B methodology involves pre-straining over-sized tensile specimens followed by the extraction of an ASTM E8 sample, paint baking and re-testing to determine the BHI. Various pre-strain levels in the range of 2 to 10% were considered to evaluate the KS-1B procedure with select comparisons with the ASTM A653 methodology for pre-strain levels of 2 and 8%. Finally, to characterize the influence of paint baking at large strain levels, sheared edge conical hole expansion tests were conducted. The tensile mechanical properties of the 3G steels after paint baking were observed to be sensitive to the pre-strain with
Northcote, RhysBerry, AvalonNarayanan, AdvaithTolton, CameronLee, HaeaSmith, JonathanMcCarty, EricButcher, Cliff
New highly ductile advanced high strength steel (AHSS) grades with tensile strength greater than 980 MPa have been developed with the aim of achieving a combination of high strength and excellent formability. The new jetQTM-Family [1, 2] offers high local and global ductility, which is expected to contribute to the improvement of vehicle crash performance. For the reliable design and management of vehicle crash performance, material modeling, including work hardening behavior and material failure strain, plays an important role in numerical simulation. Especially, the accuracy of material failure prediction is important for the development of crash performance. In this study, the fracture behaviors of 980jetQTM, 1180jetQTM, and conventional Dual-Phase (DP) steels are investigated through simple tensile and V-bending fracture tests incorporating experimental-numerical hybrid ductile fracture analysis. Based on the experimental results, the ductile fracture parameters in the Hosford
Sato, KentaroSakaidani, TomohiroOhnishi, YoichiroPaton, AdrianRoesen, Hartwig
According to several precedent studies, most of the cold-forming advanced high-strength steel (AHSS) grades can obtain reinforced yield strength from the automotive forming and paint-baking treatments without losing their fracture resistance like some aluminum alloys. Concisely, the mechanism of such behavior can be mainly attributed to the ‘Cottrell Atmospheres,’ some thermally mobilized interstitial atoms that cluster around and impede mobile dislocations during only the yielding stage of the plastic deformation but cannot continue durably enough to affect the fracture. Nevertheless, an exception, Q&P1180, was discovered from precedent studies and characterized in this work. Different from other AHSSs, this grade exhibited distinctively elevated fracture resistance and yield strength after the pre-straining and baking. Such uniqueness was speculated to be caused by 1) no soft ferrite in the microstructure and 2) the transformed fresh martensite induced by the plastic deformation
Hu, JunSun, YetingThomas, Grant
For electrical vehicle (EV) automotive body-in-white (BIW) structures, protection of passengers and battery in crash event becomes equally important. In addition to energy absorption, intrusion protection for battery and vehicle becomes extremely important and GPa advanced high strength steels (AHSS) including press hardened steels (PHS), DP/MP/CP/GEN3 steels have become material of choice for design for those components. Higher yield strength materials especially in 980/1180MPa MP and CP category are chosen for part design over conventional low yield strength DP. In this study, the forming characteristics including both global and local formability are evaluated and compared among 980 DP/MP grades. Formability test such as forming limit curve (FLC), true fracture strain, V bend, half dome, and hole expansion tests are conducted. Microstructure analysis to understand the effect of different grain structure and phases of DP/MP grades is also accomplished. A T-shape laboratory die trials
Shih, Hua-ChuPednekar, VasantShi, MingSingh, JatinderTedesco, SarahWu, Wei
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
Akbari, MeysamWang, AndyWang, QiguiYan, Cuifen
Utilization of fiber-reinforced composite laminates to their full potential requires consideration of angle-ply laminates in structural design. This category of laminates, in comparison with orthotropic laminates, imposes an additional degree of challenge, due to a lack of material principal axes, in determination of elastic laminate effective properties if the same has to be done experimentally. Consequentially, there is a strong inclination to resort to the usage of “CLPT” (Classical Laminated Plate Theory) for theoretically estimating the linear elastic mechanical properties including the cross-correlation coefficients coupling normal and shear effects. As an angle-ply laminate is architecturally comprised of layers of biased orthotropic laminas (based on unidirectional or woven bidirectional fibers), an essential prerequisite for the application of CLPT is an a-priori knowledge of elastic mechanical properties of a constituent lamina. It is natural to expect that the properties of
Tanaya, SushreeDeb, Anindya
Monocoque is a kind of integrated shell structure technology, which has gradually become the primary choice for various racing teams to make car bodies because of its advantages of small specific gravity and high specific strength. The unit of the monocoque is a carbon fiber composite sandwich structure, which is composed of two layers of carbon fiber skin inside and outside and core material between them. The inner and outer layers of the carbon fiber skin are stacked with carbon fiber composite materials of different directions and types.In this project, we plan to optimize the shape of the monocoque shell using the surface design software Alias, select core materials of different materials and structures, more advanced layups, and obtain feasible layup sequences and core material types through Ansys simulation and Matlab collaborative optimization, which will be verified by three-point bending experiments. Different from the previous lightweight work based a lot on experience, this
Cheng, Zhu H.Liu, JJ
Blistering in aesthetic parts poses a significant challenge, affecting overall appearance and eroding brand image from the customer's perspective and blister defects disrupt painting line efficiency, resulting in increased rework and rejection rates. This paper investigates the causes and effects of blistering, particularly in the context of internal soundness of Aluminum castings, emphasizing the crucial role of Computed Tomography in defect analysis. Computed Tomography is an advanced Non-Destructive Testing technique used to examine the internal soundness of a material. This study follows a structured 7-step QC story approach, from problem identification to standardization, to accurately identify the root Cause and implement corrective actions to eliminate blister defect. The findings reveal a strong link between internal soundness and surface quality. Based on the root cause, changes in the casting process and die design were made to improve internal soundness, leading to reduced
D, BalachandarNataraj, Naveenkumar
Items per page:
1 – 50 of 33565