Browse Topic: Fabrics and textiles

Items (1,497)
Car bumpers are protective structures for the occupants of a vehicle during a collision, absorbing impact energy, such a structure is located at the front and rear of the vehicle. Metals were used to manufacture the first bumpers, and it was subsequently assessed that using a different material would reduce their weight, for example plastic, resulting in increased fuel economy and impact absorption. Also, the use of polymers reinforced by glass fibers offer good mechanical strength. This work evaluates the replacement of conventional materials by an ecologically more viable alternative, natural fibers as plastic reinforcement, reducing costs, without considerable loss in the material mechanical properties. Specimens of reinforced composite material were produced with jute fiber. The fibers, obtained through fabrics, were standardized in length of 5.0 mm and 15.0 mm. The matrix phase applied was the unsaturated and pre-accelerated terephthalic polyester resin manufactured by Royal
Soares, Rafael VilhenaDias, Roberto Yuri Costade Mendonca Maia, Pedro VictorJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
Polypropylene has been the plastic traditionally used in the manufacture of bumpers. Composite materials have been presented as an alternative due to lightness and sustainability. This article presents a composite of polyester resin and jute fiber fabric as an innovative alternative to be studied for the manufacture of automotive bumpers. Composite material was manufactured for characterization. It was used as matrix the terephthalic polyester resin, unsaturated and pre-accelerated, and the catalyst MEK V388 for curing the composite. The chosen reinforcement was the jute fiber fabric. Silicone molds with dimensions according to ASTM 3039 were used to manufacture specimens, and subsequent tensile strength test to determine properties and compare with literature data. The composite with jute fiber reinforcement with alignment 0°/0°/0° was evaluated as viable for the application in car bumpers, having its value of tensile strength surpassed that of the composite reinforced by jute fiber
Dias, Roberto Yuri CostaSoares, Rafael Vilhenade Mendonca Maia, Pedro Victordos Santos, Jose Emilio MedeirosMiranda, Igor Ramon SinimbúJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundering. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile
ABSTRACT Presenting a reference architecture for High Performance Embedded Computing for use in Ground Vehicles, based on OpenVPX, up to 40 Gigabit / Second data fabrics (Infiniband and Ethernet), methods of Remote Direct Memory Access, and Open Standard software layers (OFED). How to provide the appropriate chassis and backplanes to accommodate the HPEC modules, Signal I/O, and data fabrics which can then provide sophisticated capabilities, such as software defined radios, active protection systems, electronic warfare, and sensor processing (fusion and analysis). Illustrate paths for technology refresh, showing historical and expected gains in hardware performance across technology refresh cycles and the SWaP-C reduction for a fixed amount of processing capacity over time
Jedynak, David
Scientists have developed an innovative wearable fabric that is flexible but can stiffen on demand. Developed through a combination of geometric design, 3D printing, and robotic control, the new technology, RoboFabric, can quickly be made into medical devices or soft robotics
In the future, power sockets used to recharge smartphones, tablets, and laptops could become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, clothing could soon function as solar collectors and thus as a mobile energy supply
Multi-sensor fusion (MSF) is believed to be a promising tool for vehicular localization in urban environments. Due to the differences in principles and performance of various onboard vehicle sensors, MSF inevitably suffers from heterogeneous sources and vulnerability to cyber-attacks. Therefore, an essential requirement of MSF is the capability of providing a consumer-grade solution that operates in real-time, is accurate, and immune to abnormal conditions with guaranteed performance and quality of service for location-based applications. In other words, an MSF algorithm depends heavily on data synchronization, cost, an accurate process model, a prior knowledge of covariance matrices, integrity assessments, and security against cyber-attacks. Multi-sensor Fusion-based Vehicle Localization addresses trending technologies in MSF-based vehicle localization and outlines some insights into the unsettled issues and their potential solutions. The discussions and outlook are presented as a
Guo, GeLiu, JiagengLiu, Guangheng
A new groundbreaking “smart glove” is capable of tracking the hand and finger movements of stroke victims during rehabilitation exercises. The glove incorporates a sophisticated network of highly sensitive sensor yarns and pressure sensors that are woven into a comfortable stretchy fabric, enabling it to track, capture, and wirelessly transmit even the smallest hand and finger movements
A lightweight high-pressure hose assembly consists of hose made with fabric braids and PTFE (Polytetrafluoroethylene) tube crimped with metallic fittings. These hose assemblies are mainly used for aircraft landing gear application considering its high-pressure sustenance and better flexibility. The proposed study investigates the effect of thermo-mechanical stresses generated during cyclic soaking and flexibility testing at thermostatic subzero (-65°F) and high temperature (+275°F) on performance of high pressure- fabric braided hose assembly. This effect was further studied through hose tear-down to investigate the hose layer degradation and focused changes in inner PTFE tube. With an incremental exposure to cyclic temperature environment, a linear growth was observed for the micropores within PTFE
Neve, AbhilashPatil, Sandip
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant-derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy. The bio-composite laminate is produced through a compression molding process involving interleaved layers
B S, DakshayiniKancherla, Kishore BabuRaju, BenjaminRoy Mahapatra, Debiprosad
Thermo-mechanical fatigue and natural aging due to environmental conditions are challenging to simulate in an actual test with advanced fiber-reinforced composites, where their fatigue and aging behavior are little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in pipes, aircraft, and spacecraft structures, including microwave transparent structures, impact-resistant parts of the wing, fuselage deck and many other load-bearing structures. Often additional additively manufactured features and coatings on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper, we employ a thermo-mechanical fatigue model based on an accelerated fatigue test and life prediction under hot-to-cold cycles. Thermo-mechanical strain-controlled stress
Kancherla, Kishore BabuB S, DakshayiniRaju, BenjaminRoy Mahapatra, Debiprosad
A durable, copper-based coating developed by a team at Dartmouth University can be integrated into fabric to create responsive, reusable materials such as protective equipment, environmental sensors, and smart filters
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process. Non-planar
Strelkova, DoraUrbanic, Ruth Jill
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry. Textile Circularity and the Sustainability Model of New Mobility provides context and insights on why textiles—a term that not only includes plant-based and animal-based
Lee-Jeffs, AnnSafi, Joanna
In the aerospace industry, large aircrafts employ composite materials for making complex structures which not only reduces weight and cost but also reduces the number of joints. Irrespective of that joining of structures cannot be avoided and for that mechanical fasteners such as rivets and bolts are employed along with adhesive bonding. Further, in recent years natural fibers have been studied extensively for their numerous advantages and have already been made into several automotive applications. Keeping these current trends in mind an attempt is made to investigate the joining behavior of natural fiber composites experimentally. So in this study, the ultimate failure load, bearing strength and the dominating failure mode of jute-hemp fabric-reinforced polymeric composites joined using single and double-bolted configurations are studied. The polymeric composite laminates were successfully fabricated using resin infusion technique and test specimens were fabricated following ASTM
Koppad, PraveennathChinnakurli Suryanarayana, RameshReddy, NagarajaSethuram, D
A new washable wireless smart textile technology has potential uses in virtual reality and American Sign Language
In the domain of Additive Manufacturing (AM), Fused Filament Fabrication (FFF) hath flourished as a promising method for crafting complex geometric parts with a commendable degree of dimensional precision. The perception of recycling metal scrap particles obtained from machining operations unbound the scope of developing sustainable layered polymer composites with integral properties of metal particles. In this context, the present work is intended to investigate the tensile properties of Polylactic Acid (PLA), strengthened with fine particles of bronze scrap particles as reinforcement fabricated by FFF-based additive manufacturing technique. The composite specimens are manufactured as per ASTM standard with different combinations of build orientation, infill pattern, and no. of reinforcement layers. The orientation angles of 00, 300, and 600 are used for building the composite specimens with honeycomb, rectilinear, and grid infill patterns. 1, 2 and 3 layers of reinforcement stacking
SANGARAVADIVEL, P.DINESH, D.Babu, N.Dhinesh, S.K.
In regions with hot and humid climatic conditions, lightweight cotton textiles such as lawns, are famous for clothing and being explored for use in automobile interiors. Specifically, there’s an interest in these fabrics for car seat covers, interior roof linings, and door trims. Textiles must balance weight and durability for automotive applications to ensure passenger comfort while withstanding regular wear and tear. This study assesses cotton fabrics’ wear and mechanical performance with densities between 40 and 60 g/m2, produced using yarn counts of 70, 60, and 40 Ne. The objective was to determine the optimal fabric parameters for creating automotive spare parts that are both durable and comfortable. Two production strategies were contrasted: coarser yarn counts with fewer warp and weft threads per inch and finer yarn counts with a higher thread density. Findings revealed that fabrics crafted from the coarser yarns, with more irregular warp and weft threads, demonstrated better
Natrayan, L.Mohammed Ali, H.Mothilal, T.Reddy, Vinay
Researchers have chosen to study natural fibers instead of synthetic fibers since low-cost and ecologically favorable materials are required. The present research concentrates on the mechanical characteristics of epoxy composites reinforced with bamboo and bagasse fibers. The hybrids were created using four different ratios of bamboo/bagasse fibers, then hand-laid up. The material characteristics of the generated composites, including tension, bending, impacts, and Shore D hardness measurements, were assessed. The scanning electron microscopy technique was used to study morphology. Three levels of bamboo and a core network of bamboo fibers in composites were assumed to generate superior qualities. The core layer of bamboo and an outer layer typically characterized by sugarcane composites have enhanced flexural strength and Shore D toughness because of the bamboo layer at the center. The results of the microstructural investigations showed no pores or cracks, which improved the bending
Natrayan, L.Ashok, S. K.Kaliappan, SeeniappanKumar, Pankaj
A single strand of fiber has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline. The newly developed material showed good potential for wearable e-textiles. Researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas
Utilizing soft, flexible materials such as cloth, paper, and silicone, soft robotic grippers is an essential device that acts like a robot’s hand to perform functions such as safely grasping and releasing objects. Unlike conventional rigid material grippers these are more flexible and safe. However, their low load capacity makes it difficult for them to lift heavy objects, and their poor grasping stability makes it easy to lose the object even under mild external impact
Personal devices feed our sight and hearing virtually unlimited streams of information while leaving our sense of touch mostly … untouched
Proton Exchange Membrane (PEM) Fuel Cell (FC) presents itself as a promising technology in view of zero-tailpipe emission vehicles. In addition, the constant development of renewable energy sources will lead to an increase in green hydrogen availability, and thus completely eliminate emissions for devices that use H2 as an energy vector. However, PEM FCs are still far from being fully developed as a technology: thermal and water management are the main issues that researchers are studying through experiments and Computational Fluid Dynamics (CFD) simulations. For the numerical approach, H2O removal models often consider a simplified flat surface, but the microgeometry of the Gas Diffusion Layer (GDL) has a leading role in determining the critical dimension for droplet detachment and how much resistance the surface poses to water sliding. The aim of this paper is to investigate the influence of droplets number on a GDL. The GDL has been characterized through optical analysis (5 μm/pixel
Antetomaso, C.Merola, S. S.Irimescu, A.Vaglieco, B. M.Di Micco, S.Jannelli, E.
Oblique motor vehicle crashes can cause serious head or brain injuries due to contact with interior vehicle structures even with the deployment of air bags, as they are not yet completely successful in preventing traumatic brain injury. Rotational head velocity is strongly correlated to the risk of brain injury, and this head motion is potentially related to the tangential friction force developed during contact between the head and air bags. Although crash test dummy head skins are designed with appropriate mass properties and anthropometry to simulate the normal direction impact response of the human head, it is not known whether they accurately represent the frictional properties of human skin during air bag interaction. This study experimentally characterized the dynamic friction coefficient between human/dummy skins and air bag fabrics using a pin-on-disc tribometer. Human skin samples were harvested from five locations (left and right forehead, left and right cheek, and chin
Noll, ScottDong, ShengKang, Yun-SeokBolte, JohnStammen, JasonMoorhouse, Kevin
This SAE Aerospace Recommended Practice (ARP) describes and gives general guidelines on use and applicability of standard methods for impregnating dry fabric and lay-up of the impregnated plies. The methods of impregnating dry fabric and ply lay-up described in this document have specific application and are not interchangeable. The methods should only be used when specified in an approved repair procedure or with the agreement of the Original Equipment Manufacturer (OEM) or regulatory authority
AMS CACRC Commercial Aircraft Composite Repair Committee
A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli
A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli
These methods of test are applicable for determining the resistance to snagging and abrasion of automotive bodycloth, vinyl, and leather
Textile and Flexible Plastics Committee
E-mobility is creating more challenges and great opportunities for automotive textile industries to bring out new textiles for light weight, more aesthetic, better feel, sustainable and biomaterial to meet the customer perception. Textiles allows a more design freedom to in terms of construction, weaving and wrapping solutions. A hard rough plastic surface could be transferred into a more pleasant soft touch surface by a simple wrapping with textiles. The introduction of electric vehicle will convert the car as more silent as it replaces the engine by motor and battery mechanism. The more silent is the car, the more silent is the BSR behavior of the material. This work discloses of a polyester textile developed to meet automotive lightweight to strength requirements with its new nonwoven construction for seat insert and bolster application which demands for high breaking strength, abrasion resistance, stretch and set and soiling resistance. This textile also studied for thermal
Palaniappan, Elavarasan
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN
Palaniappan, ElavarasanMohammed, RiyazuddinLewis, EdlinBalaji, K V
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts. The plastic parts helped us in significantly reduce weight yet retaining the structural integrity and strength
Khairnar, Prashant DattatrayPradhan, PrabhudattaKakani, Phani KumarBornare, HarshadSriperumbudur, Srivatsa
The making of a quilt is an interesting process. Historically, a quilt is a canvas of work made from old pieces of cloth cut into squares or whatever shape that make a nice connected pattern and then stitched together. The quilt could be random pieces that is not related to each other. In most recent years and more common cases, a quilt is made of different pieces of patches that are connected and laid out in a special way to tell a story. Not only does it portray a story that is put together in a certain sequence, but it also stiches the pieces of the quilt into a nice and complete narrative. A story that one can understand just by looking at the quilt spread and unfolded. Much like the making of a quilt that has a story to tell, a Product Digital Quilt will tell the story of a product. The Digital Product Quilt replaces the conventional way of telling a product story. The traditional product story is a method that is serially connecting multiple product life cycle silos together
Hamada, Mohamed Y.Rabelo, Luis
“Miniature, wearable, electronic gadgets are ever more common in our daily lives. But currently, they are often dependent on rare, or in some cases toxic, materials. They are also leading to a gradual buildup of great mountains of electronic waste. There is a real need for organic, renewable materials for use in electronic textiles,” said Sozan Darabi, doctoral student in the department of chemistry and chemical engineering at Chalmers University of Technology and the Wallenberg Wood Science Center, and lead author of a scientific article recently published in ASC Applied Materials & Interfaces
Imagine a T-shirt that could analyze sweat, potentially alerting the wearer to any health abnormalities. Well, this is now closer to reality thanks to a research group’s recent innovation. Fibers and fabrics are ever present in our daily lives, and their origins are intertwined with the history of human civilization. While progress has been made, much remains unchanged for fibers and fabrics
This specification covers nonfluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle. The magnetic particles shall be in the form of either a single material or composite material as defined in 1.3
AMS K Non Destructive Methods and Processes Committee
This test is designed to measure the thickness of textiles, plastics, and similar materials
Textile and Flexible Plastics Committee
Scientists have developed a stretchable and waterproof fabric that turns energy generated from body movements into electrical energy. A crucial component in the fabric is a polymer that, when pressed or squeezed, converts mechanical stress into electrical energy. It is also made with stretchable spandex as a base layer and integrated with a rubber-like material to keep it strong, flexible, and waterproof
The human body models consisting of bone, soft tissue, and skin were created based on the latest anthropometry data. The mechanical modeling of vehicle seat cover was studied, as well as the simulation of human-seat interface pressure. As a case study, the seat finite element (FE) model was established using the real-vehicle seat geometric data considering the condition with and without seat cover. The seat and body were assembled to conduct the simulation of human-seat interface pressure. By comparing the simulative result with those of the test, the accuracy of the simulation and the important role of cover material in body pressure simulation were validated. The result also showed that the cover material could not be ignored in the simulation of human-seat interface pressure. The method of interface pressure simulation presented in this article is a systematic and useful way of predicting the human-seat interface pressure, which can be further used for functional verification and
Zhang, TianmingRen, JindongQi, ShiminYuan, BaoguoHuang, Hao
Automated-driving and ADAS functionalities continue to influence some of the latest cabin safety and materials trends. Evolving market realities have OEMs and automated-driving system developers adjusting once-aggressive timelines for deploying high-level driving automation. But new materials and safety technology for vehicle interiors continue to be influenced by advancing AV and ADAS functionalities. Regardless of how much driving automation is at play, vehicle cabins are evolving because of the possibilities - and challenges - automation and ADAS present. An array of launching or soon-to-arrive safety features, driver-information technology and materials innovations don't need AV applications as a reason for being, however. Drew Winter, Informa Tech Automotive's principal analyst - Cockpit of the Future, said that some of the feature and safety requirements of electric-vehicle and younger-demographic customers align with the technology directions for AVs and ADAS. New sustainable
Visnic, Bill
This specification covers a resin-impregnated glass fabric honeycomb core in the form of flat or contoured sandwich structures
AMS P17 Polymer Matrix Composites Committee
Natural fibers have been increasingly used in polymer composites during the last decade, and this has a significant impact on environmental implications. Natural fibers from lignocellulose materials have recently emerged in the form of fabric woven reinforced in polymer composites due to numerous applications, including structural and non-structural variants. One of the most promising materials for substituting synthetic polymeric materials by naturally available fiber reinforcements in polymer composites is woven fabric. Bamboo/Bamboo woven fabric encompasses bamboo yarn in both the warp and weft directions was chosen for this study. Bamboo/bamboo twill woven fabric acting as a reinforcement in the composites with epoxy resin as a bonding material using the compression moulding method of manufacturing. The mechanical characterization of twill woven fabric bamboo/bamboo reinforced composites was examined using five dissimilar fiber loading conditions (30:70, 35:65, 40:60, 45:55, and 50
A, KarthikR, JeyakumarP S, SampathR, Soundarararajan
Researchers have developed a technology that can be used to detect a body’s movements and vital information. The new soft transmission lines can be used in clothing or hospital bed sheets to make them capable of monitoring breathing and other vital movements, or in AI-powered textiles that allow robots to interact more safely and intuitively with humans
This SAE Aerospace Recommended Practice (ARP) contains guidance to assist users by providing a method to install an AS6224/2 repair sleeve
AE-8C2 Terminating Devices and Tooling Committee
This specification and its supplementary detail specifications cover an intermediate modulus aramid yarn in the form of cloth
AMS P17 Polymer Matrix Composites Committee
This specification covers a thermally stable aramid fabric in the form of cloth
AMS P17 Polymer Matrix Composites Committee
This specification and its supplementary detail specifications cover organic fibers in the form of cloth impregnated with epoxy resin, the resin to be supplied in a "B" stage condition
AMS P17 Polymer Matrix Composites Committee
This specification covers aramid fibers in the form of woven cloth
AMS P17 Polymer Matrix Composites Committee
This specification covers a heat-reactive, thermosetting, epoxy resin matrix in the form of a semi-solid. The resin matrix thermally cures to an epoxy polymer
AMS P17 Polymer Matrix Composites Committee
Items per page:
1 – 50 of 1497