Browse Topic: Corrosion

Items (7,704)
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
ABSTRACT Active thermography has been demonstrated to be an effective tool for detection of near-surface corrosion hidden under paint, as well as hidden material loss due to corrosion. Compared to established point inspection techniques (e.g. ultrasound, eddy current), thermography offers fast, wide-area inspection of flat or curved surfaces that does not require direct contact or coupling. In its simplest form, it can be used to perform qualitative inspection using a heat gun or lamp and an uncooled IR camera. Recent developments in thermographic signal processing, coupled with improved IR camera and thermal excitation technology have resulted in significant advances in resolution, sensitivity and probability of detection of near and far-surface corrosion, and the ability to perform quantitative characterization of corrosion
Shepard, StevenBeemer, Maria
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT This paper describes the results of work performed to assess the use of corrosion product for Digital Image Correlation (DIC) measurements. DIC was recently evaluated for its capability to measure contour, strain and deflection of metals using the corrosion product instead of a painted speckle pattern. The DIC system, consisting of two cameras with zoom lenses, was set up at an angle to the specimen, enabling both cameras to image multiple sides of a specimen simultaneously. This provides a more direct measurement of in-plane and out-of-plane deformation and strains. Aluminum and steel dogbones were placed in a salt spray chamber for up to 10 days. Contour measurements were then taken at various evaluation settings as an initial assessment of the use of the corrosion product for DIC measurements. Multiple tensile tests were then performed to assess the capability of using corrosion product for strain and deflection measurements while a material is under applied load. System
Sia, Bernard
ABSTRACT Corrosion damage to military ground vehicles costs the U.S. Army around $1.6B per year. A large part of that cost is related to keeping vehicles like the Stryker at their full fighting capability. Corrosion damage has been a common finding on Stryker vehicles and even light corrosion damage, which often reaches 10% of the body thickness or more, can degrade its armor protection rating and require replacement. Recently, cold spray deposition has been shown to be capable of restoring the full ballistic resistance of corrosion damaged high hard steel armor panels. These repairs can be done on-vehicle in depot facilities, using mobile high-pressure cold spray systems. This repair capability can reduce the number of entire side, roof, and floor panels that need to be cut out and re-welded in, which is the only currently approved repair operation for corrosion damage that exceeds allowable depths. Citation: V.K. Champagne, C.A. Widener, A.T. Nardi, G.D. Ferguson, “Structural Repair
Champagne, Victor K.Widener, Christian A.Nardi, Aaron T.Ferguson, Gehn D.
ABSTRACT Army Regulation (AR) 750-59 requires the Corrosion Prevention and Control (CPC) program manager to conduct a survey of Army Materiel for corrosion on a 4-year basis. With Army ground assets estimated to number at over 500,000, statistical sampling of equipment and installations was determined to be the most effective means to meet this requirement. Starting in FY2015, the Integrated Logistics Support Center (ILSC) at the Tank-Automotive and Armaments Command (TACOM), working with Tank Automotive Research, Development, and Engineering Center (TARDEC), contracted Elzly Technology Corporation (Elzly) to develop a methodology to perform these surveys and catalog the assessment data. From January 2015 through May 2018, Elzly and ILSC personnel have visited 22 installations, inspected over 8,200 assets, recorded corrosion or coating damage on over 121,000 parts, and have cataloged over 180,000 photos of parts with corrosion and coating damage (surveys continue today). As part of the
Ault, J. PeterScott Porter, Thomas SandersRepp, JohnPike, Timothy
ABSTRACT The U.S. Army - GVSC Materials Characterization and Failure Analysis team conducted a preliminary study in FY18 to address the issue of galvanic and pitting corrosion of U.S. Army ground vehicle system (GVS) structural surfaces. The objective of this study was to develop a permanent coating solution to supplement the existing corrosion protective coating of zinc rich primer and CARC paint, and extend the lifecycle of the armor. Twenty-five permanent, 0.1 inch layer, additively manufactured (AM) coated coupons of deposited Stellite 6 cobalt alloy on MIL-STD-46100 High Hard (HH) armor steel blocks were produced for cyclic testing using an un-optimized set of parameters. These coupons were subjected to a twenty-four week study in accelerated corrosive conditions of a fog spray chamber alongside primer-CARC coated and uncoated coupons. The resulting study showed no signs of pitting corrosion in the surface of the AM coated coupons, and minimal galvanic corrosion. Citation: I
Toppler, Ian JSchleh, Daniel CRomero, Claudio Gutierrez
ABSTRACT This paper describes validation testing of a comprehensive vehicle corrosion simulation and modeling tool under development by US Army TARDEC called “ACES” (Accelerated Corrosion Expert Simulator). ACES is used to predict the initiation and growth of corrosion on Wheeled Vehicles, Aircraft, Ships and other Assets. It is able to simulate coating & corrosion performance under various operating scenarios and to forecast & display deterioration of vehicle systems over time. ACES has a high degree of correlation to Accelerated Corrosion Deterioration Road Test (ACDRT) data and the original prediction algorithms were correlated using ACDRT data from the Army Family of Medium Tactical Vehicles (FMTV) truck. This paper describes validation testing of the predictions conducted by a third-party stakeholder using a different vehicle, namely the Marine Corps’ Medium Tactical Vehicle Replacement (MTVR
Savell, C ThomasWoodson, ScottPorter, ScottRepp, JohnAult, PeteThiel, AlexHathaway, Bob
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
This specification covers a premium aircraft-quality corrosion-resistant steel in the form of bars, forgings, and forging stock
AMS F Corrosion and Heat Resistant Alloys Committee
The focus on sustainability has encouraged innovation across industries with a growing emphasis on minimizing environmental impact. In the transportation sector, optimizing engine lubricants emerges as a crucial avenue for achieving sustainable performance as used engine oil is the primary lubricants waste stream. Re-Refined Base Oil (RRBO) presents a compelling solution, offering a sustainable alternative to virgin base oils. By reclaiming and reprocessing used oil, RRBO not only minimizes waste but also embodies the ideology of circularity, promoting resource efficiency and environmental conservation. This study presents the collaborative efforts between an Indian Automotive OEM and Lubricant Technology Partner towards the development of engine oil utilizing Re-Refined Base Oil (RRBO) for automotive applications. Specifically, two formulations were targeted: a 5W-30 A5/B5 oil for Bharat Stage IV passenger car usage and a 15W-40 CI4+ oil for Bharat Stage IV commercial vehicle
Tyagarajan, SethuramalingamSingh, SamsherBondre, SushilThanapathy, Saravana RajaDalvi, Preshit
This specification covers bonded honeycomb core made of aluminum alloy and supplied in the form of blocks, slices, or other configurations as ordered (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.000 inch (25.40 mm) and under in nominal thickness
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Aerospace Standard (AS) establishes the requirements for heat-cured solid film lubricants. For other general or high-temperature applications, refer to AS1701. This document requires qualified products
E-25 General Standards for Aerospace and Propulsion Systems
The most used rotor material is gray cast iron (GCI), known for its susceptibility to corrosion. The impact of corrosion on the braking system is paramount, affecting both braking performance and the emission of particulate matter. The issue becomes more severe, especially when the brakes are left stationary or unused for extended durations in humid conditions, as seen with electric vehicles (EVs). Brake disc corrosion amplifies the risk of corrosion adhesion between contacting surfaces, leading to substantial damage, increased quantity and mass of non-exhaust particulate emissions, and decreased braking effectiveness. In addition, brake pads' friction material plays a crucial role in generating the necessary stopping force, creating friction that transforms kinetic energy into heat. However, heightened pressure during braking elevates rotor temperatures, contributing to the degradation of the friction material. This degradation manifests in decreased mechanical strength, heightened
Nousir, SaadiaWinter, Karl-Michael
To combat corrosion and wear issues of automotive brake discs, many manufacturers have introduced various surface treatment technologies, such as thermal spraying, laser cladding, and ferritic nitrocarburizing (FNC). Besides those surface treatment technologies, a plasma electrolytic aluminating (PEA) process has also shown to be effective in producing alumina-based ceramic coatings on cast iron substrates, providing an enhanced corrosion resistance. In this study, the PEA-coated brake rotor and FNC-treated brake rotor were comparatively tested in various corrosion conditions, including an electrochemical corrosion test and simulative corrosion experiment, before and after a road driving test. A scanning electron microscope (SEM) and an energy-dispersive X-ray (EDX) were used to observe and analyze morphology and chemical compositions of the surfaces and cross-sections of the tested rotors. The results showed that the new PEA-coated brake rotor demonstrated the best corrosion
Liu, YintingNie, Xueyuan
Niobium (Nb) alloyed Grey cast iron in combination with Ferritic Nitrocarburize (FNC) case hardening heat treatment is proposed to improve wear resistance and reduce brake dust generation of brake rotors. Standard Eutectic and Hypereutectic Grey irons alloyed with Niobium were evaluated in comparison to baseline unalloyed compositions. Brake speed snub sensitivity tribological testing was performed on a matrix including Niobium alloyed, Unalloyed, FNC, Non FNC, Non-Asbestos Organic (NAO) friction and Low metallic (Low Met) friction materials. Full size brake rotors were evaluated by Block Wear and Corrosion Cleanability. Improved wear, corrosion resistance and reduced brake dust debris were demonstrated by the Niobium alloyed FNC brake rotor combinations. Corrosion is an important consideration when evaluating brake performance. Combining cyclic corrosion and brake rotor testing provides the best comparison with field exposure
Holly, Mike
The work investigates the penetration depth of a low environmental impact Cr(III)-based sealing on two anodized Aluminum-Silicon alloys (i.e., EN AC-42200 and EN AC-43200) for brake system applications. EN AC-42200 and EN AC-43200 specimens are: 1) obtained by sectioning of gravity cast components; 2) anodized using different process times to obtain different anodic layer thicknesses; and 3) sealed in a Cr(III)-based proprietary sealing solution at low temperature. The obtained sealed anodic layers are characterized using several techniques including: Glow Discharge Optical Emission Spectroscopy (GDOES), metallographic analyses and Eddy current thickness measurements. Results demonstrate that: a) the Cr(III) concentration within the anodic layers shows an exponentially decreasing trend from the specimen surface toward the anodic layer-substrate interface; b) the typical thickness of the sealing layer is in the order of 1.5μm; and c) the Cr(III) penetration depth is only marginally
Pavesi, AriannaFumagalli, LucaAbello, Mary AngelBonfanti, AndreaMancini, AlessandroVedani, MaurizioBertasi, Federico
Today, advancements in industrial laser cleaning automation show great promise in boosting productivity and safety when rust and contaminant removal or surface preparation is required for higher volumes of components and equipment
This study examined the effects of lubricant viscosity and metallic content on the oxidation reactivity of diesel particles. In the first part, the factors affecting thermogravimetric analysis (TGA) experiments was discussed and confirmed. The influences of initial soot mass, heating rate, and airflow rate on soot oxidation rate and experimental reproducibility were investigated to develop an optimized TGA method. On the basis of these experiments, an initial soot mass of 2.0 mg, airflow rate of 4.8 L/h, and heating rate of 2.5°C/h were used for all subsequent TGA tests. It could be found that the TGA experiments had high repeatability, and the differences were less than 0.1%. In the second part, a four-cylinder diesel engine was lubricated with seven kinds of lubricant with different viscosity and metallic content by the use of viscosity index improver (VII), antioxidant and corrosion inhibitor (ACI), and ashless dispersant (AD). Particle samples were subjected to TGA to test their
Meng, HaoYang, HeZhang, WeiliXing, JianqiangXu, YanWang, Yajun
This SAE Aerospace Information Report (AIR) provides guidance on using environmental, electrochemical, and electrical resistance measurements to monitor environment spectra and corrosivity of service environments, focusing on parameters of interest, existing measurement platforms, deployment requirements, and data processing techniques. The sensors and monitoring systems provide discrete time-based records of (1) environmental parameters such as temperature, humidity, and contaminants; (2) measures of alloy corrosion of the sensor; and (3) protective coating performance of the sensor. These systems provide measurements of environmental parameters, sensor material corrosion rate, and sensor coating condition for use in assessing the risk of atmospheric corrosion of a structure. Time-based records of environment spectra and corrosivity can help determine the likelihood of corrosion to assess the risk of corrosion damage of the host structure for managed assets and aid in establishing
HM-1 Integrated Vehicle Health Management Committee
The present work highlights the significance of nanocomposite coatings for their ease of processing and applicability in combating corrosion. Ongoing research is dedicated to the development of an effective nanocomposite hydrophobic coating. A hydrophobic nanocomposite coating was deposited on galvanized iron (GI) using a sol-gel route with polymethylsiloxane (PDMS) reinforced with nano-SiO2. Surface morphology and chemical composition analysis, conducted with scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR), revealed the coating’s structural and compositional attributes. The resulting hydrophobic coating exhibits a water contact angle (WCA) of 104.1°, indicating a 30.45% increase compared to bare GI. Subsequent to these characterizations, the adhesion of the coated GI, rated as 4B per ASTM D3359, is followed by commendable resistance to corrosion, as evidenced by electrochemical tests. The corrosion rate
Kumar, PrakashRamesh, M.R.Doddamani, Mrityunjay
This recommended practice provides recommendations for minimizing high temperature oxidation (HTO) during the heat treatment of aluminum alloy products and parts. HTO leads to deterioration of properties
AMS D Nonferrous Alloys Committee
Demands for new materials with superior properties are rising as technological advancement is speeding up globally. Composite materials are gaining popularity due to their enhanced mechanical properties over metal and alloys. Aluminum metal matrix composites (MMCs) are becoming popular in several areas of application such as aerospace, automobile, armed forces, and other commercial applications due to their lightweight, increased strength, better fracture toughness, stiffness, corrosion resistance, and cost-effectiveness. The present study reviews the effects of different reinforcements on MMC materials. The main aim of the present work is to give a clear idea to the readers about the role of individual reinforcement in Al7075-based MMCs. Also, the details of weight% and size of different reinforcement are provided, which will help the readers in their future works. It has been observed that inorganic reinforcements give better mechanical and wear properties to composite materials. For
Kumar, RandhirMondal, Sharifuddin
This specification covers a rust removing compound in the form of a solid, generally powdered, to be dissolved in water, and heated
AMS J Aircraft Maintenance Chemicals and Materials Committee
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpart
Balasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
This procurement specification covers aircraft-quality solid rivets made from a corrosion resistant nickel-copper alloy of the type identified under the Unified Numbering System as UNS N04400 and of 46 ksi minimum shear strength
E-25 General Standards for Aerospace and Propulsion Systems
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling. DESS is a text-based
Steuteville, RobinBaker, Chad
Baking ovens in the automotive paint shop are crucial to ensuring quality of paint curing and hence meet the corrosion protection targets in manufacturing process. Ovens are also among the most energy consuming processes in the entire paint shop. With the onset of Electric Vehicle revolution, original equipment manufacturers focus heavily on light weighting resulting in significant design changes to the body in white (BIW). This presents a challenge of achieving accurate curing in the existing ovens designed for the current and past generations of vehicles Using Computational fluid dynamics (CFD), this research intends to present a solution by minimizing the need for prototyping for design changes. Lattice Boltzmann Method (LBM) based thermal simulations are used to predict the curing behaviour on the BIW surface. The LBM based conjugated heat transfer simulations consider turbulence using a Large-Eddy Simulation (LES) approach and Boussinesq approximation. The approach does not need
Skagius-Kallin, AndréKiani, FarzadMonaco, ErnestoStadik, AlexanderBoraey, MohammedMenon, MuraleekrishnanPeng, ChongPanov, Dmitrii
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed
Liu, YiHess, DevinWang, QiguiCoryell, Jason
A promising, more durable fuel cell design could help transform heavy-duty trucking and other clean fuel cell applications. Consisting of nanowires that are less susceptible to corrosion, the innovative electrode — the heart of a polymer electrolyte-membrane fuel cell — could usher in a new era for fuel cells, which use hydrogen as emission-free power for vehicles
This procurement specification covers split cotter pins with optional ends (see Figure 1), made from a corrosion resistant steel of the type identified under the Unified Numbering System as UNS S30200
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers tubular-shaped, slotted spring pins made of a corrosion and moderate heat resistant, martensitic iron base alloy of the type identified under the Unified Numbering System as UNS S42000 and heat treated to permit flexure when inserted into a hole
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, and forging stock
AMS F Corrosion and Heat Resistant Alloys Committee
This procurement specification covers tubular-shaped, coiled spring pins made of a corrosion resistant nickel base alloy of the type identified under the Unified Numbering System as UNS N07718
E-25 General Standards for Aerospace and Propulsion Systems
Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis. Corrosion modeling is done using the COMSOL
Kumar, SujeetKumar, YogeshE. K., Vimal K.
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance
AE-4 Electromagnetic Compatibility (EMC) Committee
This study focuses on enhancing the corrosion resistance of AZ91D magnesium alloy, known for its impressive strength-to-weight ratio within the magnesium group. Despite its lightweight properties, the alloy's moderate corrosion and wear resistance have restricted its widespread use. To address this limitation, we explored the application of the Dow 17 process to enable hard anodizing of AZ91D magnesium alloy. Our primary objective is to investigate the impact of hard anodizing on AZ91D magnesium alloy and its potential to mitigate corrosion issues. Hard anodizing results in the formation of a robust oxide film on the alloy's surface. We posit that this oxide film can significantly reduce substrate corrosion, expanding the alloy's utility in various applications. To substantiate our claims, we conducted a comprehensive corrosion performance analysis of AZ91D magnesium alloy, with and without hard anodizing treatment. We employed advanced techniques, including potential dynamic
Marimuthu, S.Manivannan , S.Daniel Das, A.Suresh Balaji, R.Abishek, S.Yogendra Kumar, R.
Magnesium alloys possess a unique combination of benefits stemming from their exceptional strength-to-weight ratio and reduced density. The aforementioned attributes render them notably attractive for utilization in automotive and aeronautical sectors. Furthermore, these alloys are gaining significant interest from the industry because of their outstanding dimensional stability, excellent ability to dampen vibrations, high recyclability, and good castability. They also exhibit superior stiffness, among other attributes. Nonetheless, magnesium and its alloys face several noteworthy challenges that limit their industrial utilization. These include low resistance to deformation over time, limited stability at high temperatures, restricted malleability, poor ductility, and inadequate resistance to corrosion. This study aims to investigate the phenomenon of stress corrosion cracking in magnesium alloy when exposed to potassium chromate. Addition of Ca showed better mechanical properties. A
Daniel Das, A.Suresh Balaji, R.Marimuthu, S.Manivannan, S.
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively. Increasing the welding speed
Gideon Ganesh, M.Rajendran, I.Hariharan, K.Naveen Kumar, S.Rajeswaran, M.
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bare AZ91D magnesium alloy exhibited a microhardness value
Kishore Kanna, K.Mohamed Thariq, R.Marimuthu, S.Daniel Das, A.Suresh Balaji, R.Manivannan, S.
The increased adoption of AA2014 Aluminum alloy within the manufacturing sector can be attributed to its lightweight properties and other attributes that position it as an appealing substitute for steel. Notably, AA2014 Aluminum alloy is employed in the production of components and frameworks for aircraft engines. However, conventional welding techniques do not always seamlessly apply to aluminum alloys due to aluminum's high thermal conductivity, pronounced susceptibility to oxidation, and comparatively low melting point. These characteristics can give rise to challenges such as burn-through and porosity during welding. To tackle these issues, the application of friction stir welding (FSW), a solid-state welding method, has been embraced. In the creation of lap joints, five distinct tools, each featuring a different ratio of tool shoulder diameter (D) to pin diameter (d), ranging from 2 to 4, were employed. An exhaustive evaluation of the mechanical and metallurgical properties of
Sandeep, ChVijaya Prakash, B.Amarnath, V.Balu Mahandiran, S.Shanthi, C.
This specification establishes requirements for a corrosion-removing compound in the form of a liquid concentrate
AMS J Aircraft Maintenance Chemicals and Materials Committee
In passenger cars, exterior damage due to external objects is a common and repetitive problem for the customer. A vehicle running over an unpaved or granular road undergoes such damages where the tyre picks up stones (Figure 1) [1] and ejects them towards the vehicle exterior surfaces. These stones cause mechanical damage to the vehicle: affecting aesthetics, accelerating corrosion, and reducing safety. This mechanical damage is more severe in case of electrical vehicles as batteries are placed at the underside of the vehicle. Figure 2 [2] shows an example damaged caused by stone chipping. Induced erosion due to chipping cause corrosion propagation on the peeled surface, Figure 2 shows an example of such corrosion. So far, physical testing and analytical mathematical methods are the most common ways to evaluate damages. However, there is a need of computationally inexpensive, repeatable, and accurate method, which can account for the complex system. This paper describes a validated
Kumar, SouravBabbar, RitvikPattankar, RohanVenkatarama, NithinYenugu, SrinivasaDuggirala, Ravi
The automotive sector trend is moving towards vehicle electrification that provides great energy and environmental implications. However, Electrical Vehicles (EVs) are facing challenges in term of charging, driving range and life cycle with respect to existing vehicles. One of the key components in EV which is responsible for charging is On-Board Charger (OBC). OBCs are mainly used in converting DC power from battery pack to AC power and contains different power-electronic devices such as MOSFETs, diodes, magnetics etc. Heat-sinks are used to transfer the heat generated by these electronics and also as an enclosure to accommodate the electronics. Aluminum based alloy-ADC-12 generally used for manufacturing of OBC-enclosure due to its light weight, easy castability and good thermal conductivity. Although ADC-12 aluminum alloy has high corrosion resistance, specific environment condition or situation may accelerate corrosion with extended storage in rainy and salty environments. Normally
Bhatt, SrishtiBali, ShirishRao, Bhaskar
Items per page:
1 – 50 of 7704