Browse Topic: Corrosion

Items (7,675)
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This test procedure defines a laboratory procedure for generating and evaluating filiform corrosion on painted aluminum wheels and painted aluminum wheel trim. While this test was developed specifically for the testing of painted aluminum wheels and wheel trim, it may be applicable to other components. The application owner will need to assess if this test generates filiform similar to that found in the relevant usage to ensure it will provide accurate data for the application.
Wheel Standards Committee
The advancement of wire-arc additive manufacturing (WAAM) presents a significant opportunity to revolutionize the production of automotive components through the fabrication of complex, high-performance structures. This study specifically investigates the metallurgical, mechanical, and corrosion properties of WAAM-fabricated ER 2209 duplex stainless steel structures, known for their superior mechanical properties, excellent corrosion resistance, and favorable tribological behavior. The research aims to optimize WAAM process parameters to achieve high-quality deposition of ER 2209, ensuring structural integrity and performance suitable for both marine and various automotive applications. Microstructural analysis of the produced samples revealed the alloy’s dual-phase nature, with roughly equal amounts of ferrite and austenite phases uniformly mixed across the layers of deposition. This balanced microstructure contributes to the alloy’s excellent mechanical properties. Yield strength
A, AravindS, JeromeKumar, Ravi
The intention of this exploration is to evolve an optimization method for the Electrochemical Machining (ECM) process on Haste alloy material, taking into account various performance characteristics. The optimization relies on the amalgamation of the Taguchi method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Haste alloy is extensively utilized in the aerospace, nuclear, marine, and car sectors, specifically in situations that are prone to corrosion. The experimental trials are organized based on Taguchi's principles and involve three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This examination examines performance indicators, including the pace at which material is removed and the roughness of the surface. It also includes geometric factors such as overcut, shape, and tolerance for orientation. The results suggest that the rate at which the feed is supplied is the most influential element affecting the necessary performance standards
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSomsole, Lakshmi NarayanaSilambarasan, R
The aim of this study is to create an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for the Electrochemical Machining (ECM) process using Nimonic Alloy material, with a specific focus on several performance aspects. The optimization strategy utilizes the combination of the Taguchi method and ANFIS integration. Nimonic Alloy is widely employed in the aerospace, nuclear, marine, and car sectors, especially in situations that are susceptible to corrosion. The experimental trials are designed according to Taguchi's method and involve three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This study investigates performance indicators, such as the rate at which material is removed, the roughness of the surface, and geometric characteristics, including overcut, shape, and tolerance for orientation. Based on the analysis, it has been determined that the feed rate is the main component that influences the intended performance criteria. In order to
Natarajan, ManikandanPasupuleti, ThejasreeC, NavyaKiruthika, JothiSilambarasan, R
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
The objective of this research is to develop an optimization strategy for the Electrochemical Drilling process on Nimonic alloy material, taking into account various performance factors. The optimization strategy relies on the integration of the Taguchi method with Grey Relational Analysis (GRA). Nimonic is extensively utilized in aerospace, nuclear, and marine industries, specifically in situations that are prone to corrosion. The experimental trials are structured based on Taguchi's principle and encompass three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This inquiry examines performance indicators like the rate of material removal, surface roughness, as well as geometric parameters such as overcut, shape, and orientation tolerance. Based on the investigation, it is determined that the feed rate is the primary factor that directly affects the intended performance criteria. In order to enhance the accuracy of predictions, multiple regression
Pasupuleti, ThejasreeNatarajan, ManikandanD, PalanisamySilambarasan, RKrishnamachary, PC
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. Due to the growing need for superior products and the requirement for quick design adjustments, decision-making in production has become more complex. This study focuses on Titanium Grade 7 and suggests creating predictive models utilizing a Taguchi-grey technique to achieve multi-objective optimization in ECM. The trials are structured based on Taguchi's principles, utilizing Taguchi-grey relational analysis (GRA) to simultaneously maximize several performance indicators. This entails optimizing the pace at which material is removed, decreasing the roughness of the surface, and attaining precise geometric tolerances. ANOVA is used to assess the relevance of process variables that affect these measures. The suggested predictive technique for Titanium Grade 7 outperforms current models in terms of flexibility
Pasupuleti, ThejasreeNatarajan, ManikandanKumar, VSagaya Raj, GnanaKrishnamachary, PCSilambarasan, R
Polyaniline (PANI)-polymer based smart paints have emerged as a promising solution for enhancing the durability and performance of automobile surface coatings. These paint coatings offer a superior corrosion resistance, conductivity, and environmental stability, making it an ideal. Here novel copolymers of dodecylbenzene sulfonic acid(DBSA) aided poly (aniline-co-m-chloroaniline) nanocomposites of various compositions were prepared by oxidative method in micellar solution. These nanocomposites were analyzed by using UV-Vis and FT-IR spectroscopic methods. The crystalline nature of the polymer was evidenced through XRD patterns. SEM revealed the presence of particles with spherical morphology 100 nm in diameter. The electrical activity of the doped polymer was found to be content increasing from 3:1 to 3:3 x 10-2 S/cm to 5.64 x 10-7 S/cm with chloroaniline. These copolymers are added as additives in manufacturing of paint. These novel paints offer multiple protective mechanisms
Pachanoor, VijayanandMoorthi, Bharathiraja
This study investigates the wear and hardness properties of AA8011 hybrid metal matrix composites (MMCs) reinforced with silicon carbide (SiCp) and titanium diboride (TiB₂), addressing a significant gap in the existing literature regarding the optimization of reinforcement levels in AA8011. The goal is to enhance the material’s wear resistance and hardness for high-performance applications. While AA8011 is known for its excellent mechanical properties and corrosion resistance, limited research has focused on optimizing both wear behavior and surface hardness through the combination of TiB₂ and SiCp reinforcements. Using the pin-on-disk method, this study explores various compositions, showing that the composite containing 2% TiB₂ and 1% SiCp exhibited the best wear resistance, with a 25% improvement over the base alloy, and an increase in hardness by more than 115%. Developing AA8011-based composites with enhanced durability and hardness for use in demanding environments such as
Thirumavalavan, R.Mugendiran, V.Santhosh, V.Manoj, M.Sundaravignesh, S.
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
The AA2024 aluminum alloy is a precipitate-hardening material renowned for its exceptional strength and corrosion resistance, making it a preferred choice for various applications in industries such as aircraft and automobile manufacturing. However, it is challenging to weld using fusion welding processes due to differences in melting points between the aluminum base material and its oxide layer. Consequently, this often results in issues such as partially melted zones, alloy segregation, and hot cracking. In this investigation, electron beam welding was employed to minimize heat input and prevent the formation of coarse grains in the heat-affected zone. Observations revealed that the joint achieved a maximum strength of 285 MPa, representing 62% of the base material's strength. This improvement in strength can be ascribed to the establishment of fine and recrystallized grains at the weld interface, along with the presence of copper aluminide strengthening precipitates.
Rajesh, A.Karthick, S.Mallieswaran, K.Shanmugam, Rajasekaran
This study presents the mechanical characterization studies on 3 wt.% graphene (Gr) filled magnesium matrix composite reinforced with different weight fractions (4, 8, 12, 16, and 20 wt.%) of titanium carbide (TiC) particles. The matrix is AZ91 alloy, and the nano magnesium composite (NMC) is fabricated via a squeeze casting approach. The lightweight NMC is a potential solution for the automobile industry, as it reduces greenhouse gas emissions and contributes to environmental sustainability. Gr is added to enhance the composite's thermal endurance and mechanical strength. Mechanical and corrosion studies are performed as per the ASTM standards. The inclusion of Gr and 16 wt.% TiC tends to enhance the mechanical durability and corrosion resilience of the NMC when compared with other fabricated composites and cast alloys. The uniform dispersal of NC and TiC and better mould properties lead to better strength. Higher inclusion of TiC (20 wt.%) leads to brittleness, thereby decreasing the
Senthilkumar, N.
Basalt-based products are known to provide substantial wear and corrosion resistance even in harsh environments. This paper aims to explore the stir casting technique as an efficient way to reinforce basalt particulates into Aluminium (AA7075). The properties such as hardness, ultimate tensile strength with corrosion behaviour of the composites were evaluated and compared with as-cast AA7075 fabricated under the same conditions. It is evident from the results that an increase in basalt particulate content significantly increases the ultimate tensile strength of 216 MPa and hardness of 123 VHN. The mechanism of bonding between basalt particulate and aluminum alloy at the interface was studied using scanning electron microscopy (SEM). AA7075 matrix composites exhibited better corrosion resistance and they showed enhancement in thermal and mechanical properties.
Vallimanalan, A.Murali, M.Mahendran, R.Manivannan, S.
High-strength, lightweight aluminium-based composites show great potential for future weight-reduction applications. The aluminium alloy (AA5052) is commonly used in various engineering applications and serves as the primary matrix material for this study. The objective of this research is to produce and improve the properties of the AA5052 alloy composite by integrating titanium (Ti) and nano silicon carbide (SiC) particles using an advanced vacuum stir casting process. Additionally, an inert atmosphere is used to minimize voids, porosity, and oxidation. The final developed composites include AA5052, AA5052/3wt% Ti, AA5052/5wt% SiC, and AA5052/3wt% Ti/5wt% SiC, which were subjected to metallographic, tensile, elongation, and hardness studies. The mechanical evaluation is carried out following ASTM E8 and E384 standards. Microstructural analysis revealed uniform dispersion of Ti &SiC particles with no significant casting defects. The composite with AA5052/3wt% Ti/5wt% SiC exhibited the
Venkatesh, R.Kaliyaperumal, GopalManivannan, S.Karthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
Magnesium is the lightest material than aluminium and has a better specific strength, which is utilized for weight management applications. This research developed the magnesium (Mg) matrix with 0.1, 0.2, 0.3, and 0.5 percentages in weight (wt%) of zirconium (Zr) particles (grain refinement agent) via the squeeze cast technique. The argon inert gas is limit oxidation during the melting of Mg. The influence of Zr on the functional properties of Mg is studied and related to monolithic Mg without the Zr phase. The microstructural analysis provides the Zr particles are dispersed uniformly in the Mg matrix and exposed to superior mechanical properties. The Mg processed with 0.5 wt% of Zr offered maximum hardness, ultimate tensile strength, and elongation percentage, which are 53, 48.8, and 43.5 % better than the values of monolithic Mg. Besides, the optimum Mg refining with 0.5 wt% Zr microstructure is detailed with EDS and conforms to the contribution of Zr. This is used for automotive
Venkatesh, R.Manivannan, S.Das, A. DanielMohanavel, VinayagamSoudagar, Manzoore Elahi Mohammad
To meet the corrosion target of automotive vehicles, different coated steel sheets are used in various parts of the body in white (BIW), chassis, and powertrain. Hot dip galvanized (GI) and hot hip galvannealed (GA) are the two most commonly used steel sheets worldwide. Other coatings, such as Zn-Ni, Al-Si, Zn plating, and electro-galvanized zinc coating, are application-specific coatings that are used suitably to meet different performance requirements. To meet the robust corrosion and performance requirements, there is a trend of increasing the use of coated steel sheets in automotive vehicles. While different coated steels have different corrosion performance, they also exhibit different joining and paint adhesion performance. Spot welding is one of the most common technique used for joining automotive parts. Joint strength majorly depends on steel base material grade, chemistry and properties. However, coating on base material also influence joining performance. Major challenge is
Jain, VikasMisal, SwapnaliDeshmukh, MansiPaliwal, Lokesh
This specification covers a shampoo type carpet cleaner in the form of a liquid.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
This specification covers a premium aircraft-quality corrosion-resistant steel in the form of bars, forgings, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
The focus on sustainability has encouraged innovation across industries with a growing emphasis on minimizing environmental impact. In the transportation sector, optimizing engine lubricants emerges as a crucial avenue for achieving sustainable performance as used engine oil is the primary lubricants waste stream. Re-Refined Base Oil (RRBO) presents a compelling solution, offering a sustainable alternative to virgin base oils. By reclaiming and reprocessing used oil, RRBO not only minimizes waste but also embodies the ideology of circularity, promoting resource efficiency and environmental conservation. This study presents the collaborative efforts between an Indian Automotive OEM and Lubricant Technology Partner towards the development of engine oil utilizing Re-Refined Base Oil (RRBO) for automotive applications. Specifically, two formulations were targeted: a 5W-30 A5/B5 oil for Bharat Stage IV passenger car usage and a 15W-40 CI4+ oil for Bharat Stage IV commercial vehicle
Tyagarajan, SethuramalingamSingh, SamsherBondre, SushilThanapathy, Saravana RajaDalvi, Preshit
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.000 inch (25.40 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers bonded honeycomb core made of aluminum alloy and supplied in the form of blocks, slices, or other configurations as ordered (see 8.5).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Standard (AS) establishes the requirements for heat-cured solid film lubricants. For other general or high-temperature applications, refer to AS1701. This document requires qualified products.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
The work investigates the penetration depth of a low environmental impact Cr(III)-based sealing on two anodized Aluminum-Silicon alloys (i.e., EN AC-42200 and EN AC-43200) for brake system applications. EN AC-42200 and EN AC-43200 specimens are: 1) obtained by sectioning of gravity cast components; 2) anodized using different process times to obtain different anodic layer thicknesses; and 3) sealed in a Cr(III)-based proprietary sealing solution at low temperature. The obtained sealed anodic layers are characterized using several techniques including: Glow Discharge Optical Emission Spectroscopy (GDOES), metallographic analyses and Eddy current thickness measurements. Results demonstrate that: a) the Cr(III) concentration within the anodic layers shows an exponentially decreasing trend from the specimen surface toward the anodic layer-substrate interface; b) the typical thickness of the sealing layer is in the order of 1.5μm; and c) the Cr(III) penetration depth is only marginally
Pavesi, AriannaFumagalli, LucaAbello, Mary AngelBonfanti, AndreaMancini, AlessandroVedani, MaurizioBertasi, Federico
To combat corrosion and wear issues of automotive brake discs, many manufacturers have introduced various surface treatment technologies, such as thermal spraying, laser cladding, and ferritic nitrocarburizing (FNC). Besides those surface treatment technologies, a plasma electrolytic aluminating (PEA) process has also shown to be effective in producing alumina-based ceramic coatings on cast iron substrates, providing an enhanced corrosion resistance. In this study, the PEA-coated brake rotor and FNC-treated brake rotor were comparatively tested in various corrosion conditions, including an electrochemical corrosion test and simulative corrosion experiment, before and after a road driving test. A scanning electron microscope (SEM) and an energy-dispersive X-ray (EDX) were used to observe and analyze morphology and chemical compositions of the surfaces and cross-sections of the tested rotors. The results showed that the new PEA-coated brake rotor demonstrated the best corrosion
Liu, YintingNie, Xueyuan
Niobium (Nb) alloyed Grey cast iron in combination with Ferritic Nitrocarburize (FNC) case hardening heat treatment is proposed to improve wear resistance and reduce brake dust generation of brake rotors. Standard Eutectic and Hypereutectic Grey irons alloyed with Niobium were evaluated in comparison to baseline unalloyed compositions. Brake speed snub sensitivity tribological testing was performed on a matrix including Niobium alloyed, Unalloyed, FNC, Non FNC, Non-Asbestos Organic (NAO) friction and Low metallic (Low Met) friction materials. Full size brake rotors were evaluated by Block Wear and Corrosion Cleanability. Improved wear, corrosion resistance and reduced brake dust debris were demonstrated by the Niobium alloyed FNC brake rotor combinations. Corrosion is an important consideration when evaluating brake performance. Combining cyclic corrosion and brake rotor testing provides the best comparison with field exposure.
Holly, Mike
The most used rotor material is gray cast iron (GCI), known for its susceptibility to corrosion. The impact of corrosion on the braking system is paramount, affecting both braking performance and the emission of particulate matter. The issue becomes more severe, especially when the brakes are left stationary or unused for extended durations in humid conditions, as seen with electric vehicles (EVs). Brake disc corrosion amplifies the risk of corrosion adhesion between contacting surfaces, leading to substantial damage, increased quantity and mass of non-exhaust particulate emissions, and decreased braking effectiveness. In addition, brake pads' friction material plays a crucial role in generating the necessary stopping force, creating friction that transforms kinetic energy into heat. However, heightened pressure during braking elevates rotor temperatures, contributing to the degradation of the friction material. This degradation manifests in decreased mechanical strength, heightened
Nousir, SaadiaWinter, Karl-Michael
Today, advancements in industrial laser cleaning automation show great promise in boosting productivity and safety when rust and contaminant removal or surface preparation is required for higher volumes of components and equipment.
This study examined the effects of lubricant viscosity and metallic content on the oxidation reactivity of diesel particles. In the first part, the factors affecting thermogravimetric analysis (TGA) experiments was discussed and confirmed. The influences of initial soot mass, heating rate, and airflow rate on soot oxidation rate and experimental reproducibility were investigated to develop an optimized TGA method. On the basis of these experiments, an initial soot mass of 2.0 mg, airflow rate of 4.8 L/h, and heating rate of 2.5°C/h were used for all subsequent TGA tests. It could be found that the TGA experiments had high repeatability, and the differences were less than 0.1%. In the second part, a four-cylinder diesel engine was lubricated with seven kinds of lubricant with different viscosity and metallic content by the use of viscosity index improver (VII), antioxidant and corrosion inhibitor (ACI), and ashless dispersant (AD). Particle samples were subjected to TGA to test their
Meng, HaoYang, HeZhang, WeiliXing, JianqiangXu, YanWang, Yajun
This SAE Aerospace Information Report (AIR) provides guidance on using environmental, electrochemical, and electrical resistance measurements to monitor environment spectra and corrosivity of service environments, focusing on parameters of interest, existing measurement platforms, deployment requirements, and data processing techniques. The sensors and monitoring systems provide discrete time-based records of (1) environmental parameters such as temperature, humidity, and contaminants; (2) measures of alloy corrosion of the sensor; and (3) protective coating performance of the sensor. These systems provide measurements of environmental parameters, sensor material corrosion rate, and sensor coating condition for use in assessing the risk of atmospheric corrosion of a structure. Time-based records of environment spectra and corrosivity can help determine the likelihood of corrosion to assess the risk of corrosion damage of the host structure for managed assets and aid in establishing
HM-1 Integrated Vehicle Health Management Committee
This recommended practice provides recommendations for minimizing high temperature oxidation (HTO) during the heat treatment of aluminum alloy products and parts. HTO leads to deterioration of properties.
AMS D Nonferrous Alloys Committee
The present work highlights the significance of nanocomposite coatings for their ease of processing and applicability in combating corrosion. Ongoing research is dedicated to the development of an effective nanocomposite hydrophobic coating. A hydrophobic nanocomposite coating was deposited on galvanized iron (GI) using a sol-gel route with polymethylsiloxane (PDMS) reinforced with nano-SiO2. Surface morphology and chemical composition analysis, conducted with scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR), revealed the coating’s structural and compositional attributes. The resulting hydrophobic coating exhibits a water contact angle (WCA) of 104.1°, indicating a 30.45% increase compared to bare GI. Subsequent to these characterizations, the adhesion of the coated GI, rated as 4B per ASTM D3359, is followed by commendable resistance to corrosion, as evidenced by electrochemical tests. The corrosion rate
Kumar, PrakashRamesh, M.R.Doddamani, Mrityunjay
Demands for new materials with superior properties are rising as technological advancement is speeding up globally. Composite materials are gaining popularity due to their enhanced mechanical properties over metal and alloys. Aluminum metal matrix composites (MMCs) are becoming popular in several areas of application such as aerospace, automobile, armed forces, and other commercial applications due to their lightweight, increased strength, better fracture toughness, stiffness, corrosion resistance, and cost-effectiveness. The present study reviews the effects of different reinforcements on MMC materials. The main aim of the present work is to give a clear idea to the readers about the role of individual reinforcement in Al7075-based MMCs. Also, the details of weight% and size of different reinforcement are provided, which will help the readers in their future works. It has been observed that inorganic reinforcements give better mechanical and wear properties to composite materials. For
Kumar, RandhirMondal, Sharifuddin
This specification covers a rust removing compound in the form of a solid, generally powdered, to be dissolved in water, and heated.
AMS J Aircraft Maintenance Chemicals and Materials Committee
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpart
Balasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
This procurement specification covers aircraft-quality solid rivets made from a corrosion resistant nickel-copper alloy of the type identified under the Unified Numbering System as UNS N04400 and of 46 ksi minimum shear strength.
E-25 General Standards for Aerospace and Propulsion Systems
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling. DESS is a text-based
Steuteville, RobinBaker, Chad
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Liu, YiHess, DevinWang, QiguiCoryell, Jason
Items per page:
1 – 50 of 7675