Browse Topic: Gases
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
In today’s medical equipment market, reliability is not a luxury — it is a necessity. Every adjustment, every movement, and every interaction with the equipment must be performed flawlessly to ensure patient safety, caregiver efficiency, and long-term service life. Behind this design and precision are highly engineered motion control components, such as gas springs, electric linear actuators, and dampers, that ensure safe, ergonomic operation of medical equipment across a wide range of healthcare applications.
NASA’s Glenn Research Center has developed a method of using entangled-photon pairs to produce highly secure mobile communications that require mere milliwatts of power. Conventional gas Argon-ion laser sources are too large, expensive, and power-intensive to use in portable applications. By contrast, Glenn’s patented optical quantum communication method produces entangled-photon pairs approximately a million times more efficiently than conventional sources, in a system that is small and light enough to be portable.
Hydrogen is a clean-burning fuel that could help to replace fossil fuels in transportation, the chemicals industry, and many other sectors. However, hydrogen is also an explosive gas, so it is essential to have safety systems that can reliably detect leaks in a variety of circumstances.
Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D printer. It can also be printed in one go, from one material.
A long-lasting, 3D-printed, adhesive-free wearable provides a more comprehensive picture of a user’s physiological state. The device, which measures water vapor and skin emissions of gases, continuously tracks and logs physiological data associated with dehydration, metabolic shifts, and stress levels.
The race is on for leadership in cislunar space, considered a gateway to the future of space exploration. Yet operating in this domain introduces unique challenges for propulsion systems. In contrast to low-Earth orbit (LEO), the cislunar environment requires higher precision propulsion solutions; these are necessary to enable rapid and accurate maneuvering of spacecraft and long-term sustainability. Propellants like hydrazine and nitrogen tetroxide offer the high energy density required for cislunar missions, but they must be handled very differently from the inert, non-reactive gases at play in LEO systems.
Plasma is a state of matter, like a solid, liquid, or gas. When sufficient energy is applied to a gas, it becomes ionized, transitioning into the plasma state. With precise application and control, plasma can alter surface properties of a metal or plastic part without compromising the underlying material.
NASA's Cryogenic Flux Capacitor (CFC) capitalizes on the energy storage capacity of liquefied gases. By exploiting a unique attribute of nano-porous materials, aerogel in this case, fluid commodities such as oxygen, hydrogen, methane, etc. can be stored in a molecular surface-adsorbed state. This cryogenic fluid can be stored at low to moderate pressure densities, on par with liquid, and then quickly converted to a gas, when the need arises. This solution reduces both safety-related logistics issues and the limitations of complex storage systems.
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
R-1234yf is used in almost every new car sold in the U.S., but the EU is discussing a ban and the industry is investigating alternatives like CO2 and propane. According to its manufacturer, Chemours, use of R-1234yf has grown so much since the refrigerant replaced the long-established R-134a that it's now used in 95% of new cars sold in the U.S. An estimated 220 million cars on global roads are also using it. The problem with R-134a, which came in cars and trucks in the 1990s, is that it's a gas with “a global warming potential (GWP) that is 1,430 times that of CO2,” according to the EPA. Since 2017, EU legislation has banned the use of any refrigerant in new vehicles with a GWP higher than 150. That rule doomed R-134a but opened the door for R-1234yf, which has a GWP of only four. The EU is currently revisiting R-1234yf emissions rules and may ban the substance in a few years. In the U.S., the EPA stands by its use.
Details of combustion — the chemical reactions that take place when, for example, a flame is lit — are fleeting and therefore, difficult to study. But scientists would like to better understand the complex processes that occur in those billionths of seconds, not only to make engines more efficient but also to shed light on how candle flames, cars, and airplanes produce gases and particles that are harmful to humans and the environment.
Ultrasound imaging and ultrasound-mediated gene and drug delivery are rapidly advancing diagnostic and therapeutic methods; however, their use is often limited by the need for microbubbles, which cannot transverse many biological barriers due to their large size. A team of researchers from Rice University have introduced 50-nm gas-filled protein nanostructures derived from genetically engineered gas vesicles(GVs) that are referred to as 50 nmGVs.
American drivers have long been accustomed to quickly filling up at a gas station with plenty of fuel available, and electric vehicle drivers want their pit stops to mimic this experience. Driver uncertainty about access to charging during long trips remains a barrier to broader EV adoption, even as the U.S. strives to combat climate change by converting more drivers.
To understand effect of thermal hazards of LIBs during TR event, it is important to study flame propagation behaviour of LIBs during storage and transport applications. The process of flame propagation involves complex phenomena of gas phase behavior of LIBs. Present paper attempts a numerical investigation to portray this complex phenomenon. This paper investigates 18650 lithium cell considering two different chemistries NMC and LFP. A 3D numerical CFD model has been constructed to predict the gas phase behavior, threshold internal pressure, and cell gas venting of an 18650-lithium cell under thermal runaway conditions. The gas phase processes are modelled using the 4-equation thermal abuse model, while the cell's venting mechanism is modelled using Darcy's equation. Present work is divided into two parts: 1) Venting gas Internal pressure prediction 2) modeling thermal runaway event. Both procedures are implemented on two different cell chemistries to understand and evaluate following
Items per page:
50
1 – 50 of 3878