Browse Topic: Engines

Items (42,918)
The growing demand for decarbonization and reduction of emissions from internal combustion engines used in the agricultural sector is mainly responsible for the utilization of alternative or low-carbon fuels. In this context, in situ biogas production and Dual-fuel technology bring an important opportunity for farmers to use gas with diesel or biodiesel in the agricultural machinery, reducing production costs and carbon emissions. To this end, this work evaluates efficiency, emissions, and economic performance in an internal combustion engine equipped with a Dual-fuel injection for diesel and methane. The tests were carried out on a four-cylinder turbocharged Agrale tractor, model BX6110, with modifications for run on diesel-NGV blends under operating conditions with engine speed from 1500 to 2150 rpm, fuel injection times of 80 to 200, at full load. The results showed that the diesel flow was constant during the tests, therefore, power increases depending on the NGV injected. Maximum
Rincon, Alvaro Ferney AlgarraAlvarez, Carlos Eduardo CastillaFilho, Aldir Carpes MarquesOliveira Faria, RafaelVolpato, Carlos Eduardo SilvaOliveira Notório Ribeiro, Jéssica
Despite the increasing electrification of current vehicles, Diesel engines will continue to be used for several decades to come. There is still a need to introduce emission control technologies, especially those that show good potential and do not require extensive engine modifications. The increasing focus on reducing pollutant emissions and improving energy efficiency has prompted engine manufacturers to continuously strive for technological progress. The aim is to ensure compliance with environmental regulations and the fulfillment of social expectations. Specifically, new Diesel engine projects face the challenge of minimizing both nitrogen oxides (NOx) and soot emissions, which requires significant investiment in research to develop innovative combustion methods and exhaust gas treatment. One of these innovative methods is Ducted Fuel Injection (DFI), which aims to reduce emissions by improving spray development to obtain a better mixture at flame upstream. This study presents an
Dias, Fábio Jairodos Santos, Leila RibeiroRufino, CaioGarcia, Ezio CastejonLomonaco, RaphaelArgachoy, CelsoLacava, Pedro Teixeira
Electric vehicles represent a shift towards sustainability in the automotive industry, with the Brake-by-Wire (BBW) system as an innovation to enhance safety, and performance. This study proposes an electromagnetic BBW system for Formula SAE vehicles, optimizing an electromagnet with a genetic algorithm as the actuator. Through a selection process from a million individuals, the system was modeled. Integrated with electric motors using CarMaker® software, the optimized electromagnet surpassed the minimum required force of 228.08 N without reaching its nominal current of 12.5 A, achieving a force of 231.1 N for 150 W power, indicating an energy efficiency of 0.706 N/Watt. The system also exhibited a response time of 17.92ms for an 80 bar increase, 1.52 times better than compared systems. Simulation under varying braking intensities demonstrated dynamic behavior, with settling times for slow, moderate, and sharp braking at 193 ms, 62 ms, and 21 ms, respectively. Efficiency during
Salgado, Vinícius Batista AlvesGomes, Deilton GonçalvesAndrade Lima, Cláudio
The aim of the present work was to characterize macroscopic spray parameters of a multi-hole direct injection injector for spark ignition engine applications. The geometry, the position of spray boundaries the overall cone angle, the spray vertical penetration and the vertical spray length were evaluated by processing the spray images recorded at 3300 frames per second. The frequency of recording images was suitable for capturing all the spray developments in all tested conditions. The tested fluid was EXXSOL D60 for simulating ethanol spray characteristics due to its similar properties and due to security reasons. The injector was tested outside the engine and into an open acrylic chamber being injected into atmospheric air conditions of the laboratory. The injection pressure was set up in 100 bar and the simulated engine speed were set up in MOTEC ECU in 3000 rpm, 3600 rpm and 4000 rpm. The injection durations were set up in 3,0 ms for 3000 rpm and 2.3 ms for 3600 rpm and 4000 rpm
Guzzo, Márcio ExpeditoFonseca, Lucas GuimarãesDuarte, Thales Henrique RamosBaeta, José Guilherme CoelhoHuebner, RudolfPujatti, Fabrício José Pacheco
The Brazilian government encourages the use of renewable fuels in diesel engines through resolutions that define the mandatory addition of biodiesel to automotive diesel oil. The use of biodiesel will reach 15% by 2026. Due to this change in the physicochemical characteristics of commercial fuel, there is a need to deepen studies regarding the combustion process and the effects of this change on engine performance and emissions. With technological advancements, one of the viable techniques for this purpose is high-speed imaging to assess combustion within the cylinder. This paper presents the methodology for constructing a system that allows high-speed imaging, using a high-speed camera, of the combustion process of an MWM 229/4 engine. Other studies published in this area typically involve capturing images inside the cylinder once per cycle and advancing the angular position of capture each cycle. This paper proposes a more refined method, where images are acquired every 2.5°CA
Ferreira, Bruno Eustáquio PiresMoreira, Vinícius GuerraBorges, Débora Maria de O.Morais Hanriot, Sérgio
Autonomous vehicles for mining operations offer increased productivity, reduced total cost of ownership, decreased maintenance costs, improved reliability, and reduced operator exposure to harsh mining environments. A large flow of data exists between the remote operation and the ore haul vehicle, and part of the data becomes information for the maintenance sector which it monitors the operating conditions of various systems. One of the systems deserving attention is the suspension system, responsible for keeping the vehicle running and within a certain vibration condition to keep the asset operational and productive. Thus, this work aims to develop a digital twin-assisted system to evaluate the harmonic response of the vehicle’s body. Two representations were created based on equations of motion that modeled the oscillatory behavior of a mass-damper system. One of the representations indicates a quarter of the ore transport truck’s hydraulic system in a healthy state, called a virtual
Rosa, Leonardo OlimpioBranco, César Tadeu Nasser Medeiros
The aim of this study is to compare possible approaches that support the goal of achieving a carbon-neutral society in the mobility sector, with a specific focus on the two-wheel segment of the mobility sector. One of the key considerations in the mobility sector is the transition from a fossil fuel-based energy mix to a more renewable one. While there are numerous options available for achieving a carbon-neutral society in the four-wheel scenario, the two-wheel sector presents a different challenge due to a smaller number of available options. This study introduces a new comparison between full electric, gasoline, and ethanol-powered two-wheeled vehicles. It suggests that ethanol is a feasible solution for reducing carbon emissions in the two-wheel sector. The study includes an analysis of CO2 emissions for two-wheel vehicles using a life cycle approach, focusing on the technologies of full electric motorcycles, motorcycles with flex-fuel internal combustion engines running on
Pereira, Thaynara K. E.Lima, FlavioUema, Fabio K.Sambuichi, Eduardo M.
The increasing impacts of the greenhouse effect have driven the need to reduce pollutant emissions from internal combustion engines. Renewable fuels are promising alternatives for emission reduction, and enhancing engine efficiency can further decrease specific emissions. This study explores the development of dual-fuel engines to meet these goals, focusing on dual-fuel combustion in spark-ignition (SI) engines using two different bioethanol and natural gas mixtures. A novel methodology for 1-D predictive combustion simulation in dual-fuel SI engines was developed and implemented in GT-Suite software. The approach involves a straightforward estimation of the laminar flame speed of the fuel mixture and the calibration of turbulent combustion parameters using a genetic optimization algorithm, without the need for complex chemical kinetics models. The results indicate that the proposed methodology can reproduce combustion characteristics, achieving satisfactory outcomes across most tested
Pasa, Giovanni DuarteMartins, ClarissaCota, FilipeDornelles, HenriqueDuarte, ThalesRosalen, RodrigoPujatti, Fabrício José Pacheco
A bench was developed with the aim of making it possible to test direct injection fuel system of low-displacement engines (up to 2,000cc) outside of a conventional test bench. It has adjustable supports that make it possible to install various engines of different manufacturers. In addition, the bench has features an electric motor, an external oil pumping system and a programmable ECU. These accessory systems were necessary because the engine for which the bench was initially designed has undergone various adaptations that required external systems such as those mentioned above. The project was designed to provide great ease, agility and low manufacturing costs, so the entire bench chassis was manufactured using just one standardized steel profile that is easily found on the market. Still about manufacturing, the concept of the prototype was also developed around the need for it to be compact and easy to transport so that the tests could be carried out in different environments in an
Zabeu, Clayton BarcelosPires, Gustavo CassaresJesus, Renato VieiraOliveira Polízio, Yuri Alves
Otto Cycle can operate with both gasoline and ethanol; however, these fuels have different properties that will result in different performance parameters. This work aims to compare the thermal energy balance of an internal combustion engine fueled with gasoline and ethanol. The experimental tests were carried out on a dynamometer bench varying engine speed between 1500 and 6000 rpm and at full load condition. The results showed that the engine’s maximum thermal efficiency ranged from 30.51% with gasoline to 31.72% with ethanol. The percentage of energy dissipated to the cooling system varied from 16.93% with gasoline from 16.12% with ethanol. The percentage of energy dissipated to the exhaust system ranged from 32.82% with gasoline from 34.64% with ethanol. The percentage of energy wasted due to incomplete fuel combustion varied from 3.50% with gasoline from 10.00% with ethanol. The percentage of energy dissipated to the lubrication system ranged from 3.95% with gasoline from 3.76
Santana, Claudio MarcioSantana, Linicker Lopes BrunoAlmeida, Helder Giostri Alves
In the global scenario marked by the increasing environmental awareness and the necessity on reducing pollutant emission to achieve the decarbonization goals, action plans are being proposed by policy makers to reduce the impact of the climate change, mainly affecting the sectors that most contribute to CO2 emissions such as transportation and power generation. In this sense, by virtue of the National Energy Plan 2050, the Brazilian market will undergo the decommissioning of thermal power plants fueled by diesel and heavy fuel oil (HFO) by 2030, compromising about 6.7 GW of power capacity according to the Brazilian Electricity Regulatory Agency (ANEEL) database. An alternative to the scrapping of these engine power plants is their conversion to operate with fuels with a lower carbon footprint, such as the natural gas. This work, therefore, aims to numerically assess the conversion feasibility of a HFO large bore four-stroke turbocharged engine to operate with natural gas by means of a
Gonçalves, Vinícius FernandezZabeu, Clayton BarcelosAntolini, JácsonSalvador, RobertoAlmeida, RogérioValiati, Allan SoaresFilho, Guenther Carlos Krieger
Hybrid Electric Vehicles (HEVs) combine combustion and electric propulsion means to achieve key objectives, such as: reducing fuel consumption, minimizing pollutant emissions, and enhancing the overall energy efficiency of the Powertrain System. The series hybrid electric vehicles, in special, have a topology compound by four Subsystems, which are: Traction, Storage, Energy Generation, and Energy Management. The Energy Generation Subsystem is responsible for the power supply of the electric traction motors and batteries, depending on the control strategy promoted by the Energy Management Subsystem. The Energy Generation Subsystem is essentially made by an Internal Combustion Engine (ICE) and a Generator. Effective control of the power output from the Energy Generation Subsystem necessitates precise regulation of the engine speed. Thus, it is necessary to control the engine speed because this is directly related to the power demand of the consumers of other subsystem components. This
Júnior, João Marcos Hilário Barcelosde Sousa Oliveira, Alessandro BorgesTeixeira, Evandro Leonardo SilvaPereira, Bruno LuizPinheiro, Leandro Soaresdos Santos Ribeiro, Eduardodos Santos de Oliveira, Jordano
In recent years, the use of ethanol fuel in internal combustion engines has gained importance due to environmental and commercial factors, since ethanol produces lower emission rates at similar performance parameters compared to gasoline fuel. The objective of this study is to evaluate and compare the effects of engine performance parameters on the vibration level of the engine block operated with gasoline and ethanol fuel. The experimental tests consisted of operating an Otto cycle engine on a bench dynamometer under full load conditions varying rotation and correlating the vertical, longitudinal and transverse vibration levels of the block engine with the engine performance parameters. The results showed that the engine vibration level was influenced by engine speed, load, type of fuel and performance parameters of the engine. The combustion process is primarily responsible for the highest level of vibration reached when using ethanol as a fuel. Under all operating conditions, the
Santana, Claudio MarcioSantana, Linicker Lopes BrunoAlmeida, Helder Giostri Alves
Mobility in Brazil, dominated by road transportation, is responsible for consuming around a third of the energy matrix and for emitting approximately half of the energy-related emissions in the country. Among the alternatives to reduce its greenhouse gas emissions, the use of low-carbon hydrogen has a strong potential for decarbonization and improvement of engine efficiency. Thus, this study experimentally investigated the partial replacement of commercial diesel (with 12% of fatty acids methyl esters (FAME) biodiesel) by hydrogen in a commercial vehicle equipped with a compression-ignition internal combustion engine. To investigate the effects of this substitution on performance and emission profile, the vehicles was adapted for dual-fuel operation and hydrogen was injected together with air into the MB OM 924 LA engine of a Mercedes-Benz Accelo 1016 vehicle. Tests were carried out on a chassis dynamometer with 0%, 2% and 4% slope and at speeds equal to 50, 60 and 70 km/h to simulate
Assis, GuilhermeSánchez, Fernando ZegarraBraga, Sergio LealPradelle, Renata Nohra ChaarSouza Junior, JorgePradelle, FlorianTicona, Epifanio Mamani
Given the recent increase in exhaust gas emission restrictions, electrification has become the major development focus in the transportation industry. Like combustion vehicles, electrified ones must also undergo homologation tests. According to the Battery Electric Vehicle (BEV) homologation standard, SAE J1634, the vehicle must be subjected to a minimum 1600 km break-in cycle. This standard also allows the battery to undergo an equivalent cycle that results in the same level of degradation. Since the recommended break-in cycle duration exceeds the vehicle’s battery autonomy, at least one recharge is necessary to accomplish the break-in normalization. This requirement implies more time allocated to a dynamometer, which represents additional costs to the manufacturer. As in any industry, cost reduction is crucial to enable the development of new technologies in the automotive industry. To contribute to this, a faster battery break-in cycle is proposed. As validated in several literature
Souza, Rafael BarbosaJunior, Rodrigo Alonso PiresRodrigues, Luiz Fernando AlvesBecker, Giovana StopanovskiFernandes, HederMaia, Thales Alexandre CarvalhoPontes, Diego Augusto
The objective of this study is to investigate the root cause of cracks detected in the Turbocharger bracket belonging to the engine Mercedes-Benz OM471 (Power: 390kW, Torque: 2600Nm) from Vehicle Truck Mercedes-Benz Actros 2651LS 6x4 Euro V. The investigation started with the instrumentation of every related component (besides the bracket itself, the charge air pipe, the exhaust pipe and also the crankcase for reference) in order to perform a vibration measurement. The necessary equipment to execute this procedure, included accelerometers, temperature sensors, strain gages and an inductive engine speed sensor. All data had to be acquired directly from real application conditions in vehicle, maximum load of 74 ton in a previously defined mountain road track, due to the impossibility to generate similar results in comparison to the ones detected on road through bench tests (or any other in-door experiment). The bracket position is located on the right side of a diesel combustion engine
Feijó, Igor SommerfeldGonçalves, Carlos Aurélio Bustamante
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, MarceloSantos, Luciano Amaury
The twin challenges of the automotive industry namely petroleum dependence and environmental pollution paved way for the development of an environmentally friendly and feasible substitute for diesel, possessing power characteristics equivalent to those of a diesel engine. Biofuel has potential as a renewable energy source, offering a more sustainable alternative to traditional fossil fuels. However, it does come with some challenges, such as varying quality and combustion properties. To enhance its performance, engines can be fine-tuned by adjusting fuel injection parameters, such as timing, pressure, and duration. Accordingly, this research article focuses on optimizing the fuel injection parameters for a CRDi engine powered by D+LPO (20% lemon peel oil and 80% diesel) biofuel, with the goal of improving both performance and emission characteristics. The experimental design matrix was generated using Design Expert-13 software, employing the I-optimal technique. Utilizing response
Saiteja, PajarlaAshok, B.
An inwardly-opening pressure swirl injector for direct injection spark ignition engine applications was used in this work for injecting EXXSOL D60 into laboratory gaseous atmospheric conditions into an open chamber. The EXXSOL D60 fluid was used due to its some similar physical properties to Ethanol fuel. Four injection pressures were used in this work: 50 bar, 60 bar, 70 bar and 80 bar and the simulated engine speed was set up in 2000 rpm in all cases using the injector outside the engine. Shadowgraph technique associated to a filming process with a rate of acquisition of 3300 frames per second was used for acquiring the spray images. The spray images were treated running scripts in Matlab software. The scripts were written for this present analysis. The injector used in this work produced hollow cone sprays. With the image treatment performed in Matlab software, the vertical penetration length and the external cone angle were obtained. The main results showed that penetration length
Guzzo, Márcio ExpeditoFonseca, Lucas GuimarãesBaeta, José Guilherme CoelhoFilho, Fernando Antonio RodriguesPujatti, Fabrício José Pacheco
This study investigates the effects of replacing a 6-speed gearbox with a 5-speed gearbox in a sports vehicle, while keeping all other parameters constant. Through computational simulations, data is collected for comparative performance analysis. The study aims to understand the potential implications of this change on acceleration, fuel efficiency, engine response, as well as aspects such as driver comfort. The results may provide valuable insights for the automotive industry, guiding future transmission design and engineering decisions
Marinho, Gabriel Jannuzzide Campos, Josué QueirozLopes, Elias Dias RossiRodrigues, Gustavo Simão
Otto cycle internal combustion engines have undergone technological developments that can be fueled by various types of fuels in different mixture proportions. To achieve this, a detailed study of the main factors that influence the engine combustion process is necessary. The objective of this study is to evaluate the effects of varying the ignition advance on the performance parameters and vibration level of the engine operated with regular gasoline, premium gasoline, ethanol and a mixture of ethanol with regular gasoline. The experimental tests consisted of operating an Otto cycle engine on a bench dynamometer under full load conditions, varying rotation and ignition advance by 5, 10 and 20% in relation to the original ignition advance and correlating the levels of pre-ignition, knock, engine vibration levels with engine performance parameters. The results showed that the engine vibration level was influenced by the type of fuel used, engine performance parameters and the presence of
Santana, Claudio MarcioSantana, Linicker Lopes BrunoAlmeida, Helder Giostri Alves
During accelerations and decelerations of a race car whose engine has a wet sump, the forces generated by the vehicle’s motion cause the engine oil to vigorously shift towards the walls of the oil pan and crankcase, contributing to the phenomenon known as ‘sloshing.’ This phenomenon often leads to fluctuations in oil pressure, resulting in oil pressure surge, when the oil is pushed away from the pump pickup point. Via the logged data, the Formula UFSM FSAE Team had witnessed a recurrent lack of oil pressure in the race track during the 2023 Brazilian FSAE competition. In the AutoCross Event, the recurrence of this problem was 80% of the right corners on lateral accelerations between 0.80G and 1.30G. The average oil pressure in this condition was 0.80 bar, even reaching 0.10 bar above 5000 RPM. Therefore, it was necessary to develop a new set of baffles for the oil pan, capable of minimizing the effects of sloshing and, consequently, the oil surge. As a method of research, a test bench
Zimmermann, Natalia DiovanaJunior, Luiz Alfredo CoelhoMartins, MarioHausen, Roberto
Throughout the years, the legislations which drive the vehicle development have experimented constant evolutions. Especially when it comes about pollutant emissions and NVH ( Noise, Vibration & Harshness). However, it is complex to understand which calibration strategy promotes the best balance about lowest levels of emissions, vibrations, and noise if considered the number of inputs to be explored, becoming the searching for the optimum calibration a huge challenge for the development engineering team. This work proposes a methodology development in which complex problems can be solved by model based solutions regarding the best balance finding of emissions reduction and noise attenuation. The methodology is based in machine learning approach which provides a virtual behavior of engine phenomena making possible a wider comprehension of the problem and hence the opportunity to explore enhanced solutions. The study case scenario used to apply the method was a 6.4 liters engine which
Ruiz, Rodrigo Peralta MoraesSantos, Lucas ResendeNascif, Gabriel Nobre AlvesOliveira Ribeiro, DouglasPereira, Willyan
Society in actual engineering must promote sustainable developments in new renewable technologies in the transport sector, with resiliency and low greenhouse gas emissions produced. Pollutant emissions must be reduced to obtain an environmental equilibrium and stabilize part of the world’s climate change. With this, the principal objective of this research is to do different blends of diesel- biodiesel and diesel-hydrogenated biodiesel in proportions of 10, 20, 40, 80, and 100% to evaluate the performance of these samples of fuels in the internal combustion engine (ICE) diesel, model BD 5.0, connected to dynamometer XL43, located in the engines laboratory of University UFVJM, in Diamantina MG- Brazil at 1384 MASL, to obtain torque and power in different conditions of rotation. These tests were performed with blends of diesel-biodiesel and biodiesel- diesel with bubbling hydrogen (H2). The obtained data were developed with different comparisons, and results showed a positive influence
Barón Pinilla, José D.Silva, N. S.Melo, R. A. A.Santos, Alexandre S.Nery, M. C.Junqueira, H. H. B.
High and ultra-high pressure direct injection (UHPDI) can enhance efficiency gains with flex-fuel engines operating on ethanol, gasoline, or their mixtures. This application aims to increase the engine’s compression ratio (CR), which uses low CR for gasoline due to the knocking phenomenon. This type of technology, involving injection pressures above 1000 bar, permits late fuel injection during the compression phase, preventing auto-ignition and allowing for higher compression ratios. UHPDI generates a highly turbulent spray with significant momentum, improving air-fuel mix preparation, and combustion, resulting in even greater benefits while minimizing particulate matter emissions. This study aims to develop ultra-high-pressure injection systems using gasoline RON95 and hydrated ethanol in a single-cylinder engine with optical access. Experimental tests will be conducted in an optically accessible spark ignition research engine, employing thermodynamic, optical, and emission results
Malheiro de Oliveira, Enrico R.Mendoza, Alexander PenarandaMartelli, Andre LuizDias, Fábio J.Weissinger, Frederico F.dos Santos, Leila RibeiroLacava, Pedro Teixeira
Engines subject to dust, industrial pollution, saltwater contamination or other chemically laden atmosphere (including pesticides and herbicides) lose performance due to deposits of contaminants on surfaces in the aidgas flow path. Engine wash and engine rinse procedures are utilized to restore turbine engine performance. These procedures are generated by the engine manufacturer and are included in the Engine Maintenance/Service Manuals. For most turbine engines these procedures are similar in concept and practice; however, application details, choice of solvents and many other service features can vary from engine manufacturer to engine manufacturer and may even vary within the range of engine models produced by any manufacturer. The intent of this SAE Aerospace Information Report (AIR) is to outline the general nature, considerations, and background of engine wash and engine rinse and is directed towards the needs of the entry level engineer, service engineer, and those involved in
S-12 Powered Lift Propulsion Committee
As a part of an automobile suspension structure, fatigue durability performance of the automotive stabilizer bar linkage is crucial to the safety and reliability of the suspension system. In this study, the modeling and simulation analysis methods of the stabilizer bar linkage were described in detail, especially for the welded positions between the connecting rod and the spherical shells (or sleeves). Based on the equivalent structural stress method and the theory of critical distances, damage values of welded positions in the stabilizer bar linkage were solved. For the spherical shell end, the simulation reproduced the bench test; and for the sleeve end, the analysis approach was determined by comparing in several different modeling ways. Mooney-Rivlin model was adopted to fit the constitutive relationship of rubber material in the bushing. The above methods were applied to predict the fatigue durability performance of the stabilizer bar linkage product, and the effectiveness was
Wang, XuHan, ChaoDeng, Jianjiao
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
Dexing, LaoLuping, YanQinghai, SuiLong, CaoShang, GaoZhigang, ChenMingxing, RenZhicheng, Chen
As regulations become more stringent, engine manufacturers are adopting innovative technologies to reduce emissions while maintaining durability and reliability. One approach involves optimizing air handling systems. Eaton developed a 48 V electric exhaust gas recirculation pump (EGRP) to reduce NOx and CO2 emissions while improving fuel efficiency when paired with a high-efficiency turbocharger. This study integrates an electric EGRP and a high-efficiency turbocharger onto a 13.6L John Deere off-road diesel engine to evaluate the impact on fuel efficiency and NOx emissions across various drive cycles including the nonroad transient cycle (NRTC), the low load application cycle (LLAC), the constant speed–load acceptance (CSLA) test, and the ramped modal cycle (RMC). The study highlights the benefits and limitations of the prototype EGRP on an off-road engine. Since the setup did not include aftertreatment systems, engine-out emissions were analyzed. Experiments were conducted at
Willoughby, AudreyAdekanbi, MichaelKakani, RaghavAhmad, Zar NigarShaver, GregHolloway, EricHaaland, EricEvers, MatthewLoesch, AdamMcClurg, JosiahBagal, NileshMcCarthy, JamesCoates, Michael
This study examines performance metrics and emission profiles of Kirloskar TV1 CI engine fuelled with blend containing waste transformer oil (WTO) biodiesel (40%), n-Heptane (10%), and diesel (50%) by volume (referred to as WTO40H10D50), with additional 10 lpm of hydrogen induction in the intake manifold. Effects of varied injection of fuel timing (19°, 21°, and 23°bTDC) and injection pressure (170, 210, and 240 bar) of WTO40H10D50 on diesel engine were analyzed at 100% engine loading condition. The findings indicate that an injection timing of 23°bTDC and an IP of 240 bar yield the highest BTE and lowest BSEC, suggesting optimal energy conversion efficiency. The influence of inducted H2 resulted in the lowest smoke opacity and HC emissions, demonstrating more complete and cleaner combustion. The results indicate at 23° bTDC of injection timing and 240 bar injection pressure produced best overall performance, with highest brake thermal efficiency and the lowest brake specific energy
Veeraraghavan, SakthimuruganPalani, KumaranDe Poures, Melvin VictorMadhu, S.
Items per page:
1 – 50 of 42918