Browse Topic: Gas engines
The efficiency of combustion has a major impact on the performance and emission characteristics of a spark-ignited LPG (Liquified Petroleum Gas) engine. The shape of the combustion chamber determines the homogeneous charge intake velocity, which is crucial for the turbulent motion that encourages flame propagation and quickens combustion. It need the right amount of compression ratio, charge squish velocity and turbulent kinetic energy to sustain combustion and propel laminar flames. There are a number of names for the motion of the charge within the cylinder: swirl, squish, tumble and turbulence. All of these terms affect how air and fuel are mixed and burned. Piston shape affects in-cylinder motion, which in turn reduces fuel consumption and improves combustion characteristics. The shape of the piston quench zone has a substantial impact on the charge velocity inside the combustion chamber. The impact on charge motion was analyzed using computer modeling using STAR-CD on pentroof
Hexagon Agility announced a collaboration with Norwegian EV transmission supplier Brudeli Green Mobility at the 2024 ACT Expo in Las Vegas. The partnership's goal is the integration of Hexagon Agility's CNG/RNG (compressed/renewable natural gas) systems with Brudeli's plug-in PowerHybrid system. This technology will reportedly offer fleets the capability to maintain diesel ICE duty cycles while providing fuel cost savings and help OEMs achieve global decarbonization goals. “The Brudeli PowerHybrid enables fleet owners to retain the power, performance and fuel cost savings offered by natural gas engines, while simultaneously harnessing the efficiencies of electric,” said Eric Bippus, EVP sales & systems development, Hexagon Agility. “We believe hybrids could play a role in commercial trucking in the future, and we are excited to take an active role bringing that to the market.”
The study demonstrates the possibility and in particular the method to derive the efficiency of the entire fuel cell power system by measuring specific data of the recirculation path of the anode circuit of a fuel cell system. The results demonstrate the capabilities of the existing test rig and enable investigations on the suitability of auxiliary components. This study focuses on the hydrogen recirculation path equipped with multiple sensors and a needle valve to enable the required operating conditions of the fuel cell. Running a startup load profile without reaching the equilibrium state at all steps, the dynamic of the system and the requirements to the sensor parameters, such as sampling rate and precision, was seen. Additionally, it became obvious that the recirculation pump used is oversized, but a load point shift compensated this artifact. In detail, the stoichiometry and the efficiency of the entire system was evaluated. It was seen that the hydrogen concentration is
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, hybridization and lower carbon-intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions. The development included the conversion of a 5.2 L diesel engine to
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine. A new combustion chamber was designed based on a commercial 11-liter natural gas
Items per page:
50
1 – 50 of 593