Browse Topic: Hydrogen engines

Items (259)
The accelerating global shift towards decarbonised energy systems has positioned hydrogen as a highly promising carbon-free fuel. This study comprehensively investigates the macroscopic characteristics and temporal evolution of vortex ring trailing helium jets, serving as a surrogate for hydrogen, injected into a quiescent ambient environment using high-speed Schlieren imaging. This research addresses critical insights into fuel-air mixing dynamics essential for optimising hydrogen direct injection (DI) internal combustion engines. Analysis of helium jet tip’s topology revealed a three-stage evolution from an initial pressure-insensitive phase, dominated by pressure wave structures, to a momentum-driven, vortex-dependent growth stage, then to a fully developed stage. Specifically, the lower-pressure cases showed increased Kelvin-Helmholtz instability and distinct head vortex pinch-off at the final stage. Jet tip velocities transitioned from initial high, rapid pressure wave development
Dong, ShuoShi, HaoZhang, GengxinFeng, YizhuoLu, EnshenWang, XinyanZhao, Hua
Hydrogen internal combustion engines present a promising path towards carbon neutrality, yet their development is challenged by abnormal combustion phenomena like backfire and pre-ignition. These phenomena limit engine torque and reduce component reliability. This study is aimed to elucidate the mechanisms behind these phenomena in hydrogen internal combustion engines. We utilized a multi-cylinder engine with optical access for direct high-speed imaging of in-cylinder processes to visualize backfire and pre-ignition. Initial analysis, combining visualization data with one-dimensional (1D) simulations, indicated that high temperatures of the ground electrode of the spark plug could be a key trigger factor for abnormal combustion. To investigate this hypothesis, the surface temperature of the ground electrode was measured under firing conditions using a two-color thermometry system. The measurements revealed that the electrode temperature exceeded the compressed gas temperature near Top
Muramatsu, KeijiTokuhara, SatoshiKadu, PravinYoshimura, KeiNakama, Kenjiro
This study investigated the knocking characteristics of a hydrogen spark ignition engine for the purpose of increasing efficiency and expanding the operating range. In recent years, research focused on carbon neutrality has been vigorously conducted, and hydrogen has attracted attention as a next-generation fuel for internal combustion engines (ICEs). The combustion characteristics of hydrogen are vastly from those of existing gasoline. It is essential to have a sufficient understanding of the combustion characteristics of hydrogen in order to develop next-generation ICEs designed to operate on hydrogen fuel. There are especially many aspects of the knocking mechanisms of hydrogen that are unclear. Consequently, those characteristics and mechanisms must be clarified for the purpose of expanding the operating range of hydrogen engines and enhancing their efficiency. In this study, experiments were conducted using a single-cylinder hydrogen engine that was operated at a high compression
Ishihara, HiromasaKishibata, ShunsukeMiyake, ShotaIida, TomoyaKuwabara, KentaYoshihara, ShintaroMiyamoto, SekaiIijima, Akira
This study focused on the effects of hydrogen on the flame propagation characteristics and combustion characteristics of a small spark-ignition engine. The combustion flame in the cylinder was observed using a side-valve engine that allowed optical access. The fundamental characteristics of hydrogen combustion were investigated based on combustion images photographed in the cylinder with a high-speed camera and measured cylinder pressure waveforms. Experiments were conducted under various ignition timings and equivalence ratios and comparisons were made with the characteristics of an existing hydrocarbon liquid fuel. The hydrogen flame was successfully photographed, although it has been regarded as being difficult to visualize, thus enabling calculation of the flame propagation speed. As a result, it was found that the flame propagation speed of hydrogen was much faster than that of the existing hydrocarbon fuel. On the other hand, it was difficult to photograph the hydrogen flame
Arai, YutoUeno, TakamoriSuda, RyosukeSato, RyoichiNakao, YoshinoriNinomiya, YoshinariMatsushita, KoichiroKamio, TomohikoIijima, Akira
There is growing demand for energy utilization due to stricter environmental emission norms to reduce greenhouse gases and other threats posed due to the emissions are major motivation factors for researchers to adopt on strategic plans to decrease the usage of energy and reduce the carbon contents of fuels, the usage of hydrogen or blend of hydrogen with CNG as a fuel in internal combustion engines is the best option. As hydrogen has lower volumetric energy density and higher combustion temperature, pure hydrogen-fueled engines produce lower power output and much higher NOx emissions than gasoline-fueled engine at stoichiometric air-fuel ratio. Blending of hydrogen with CNG provides a blended gas termed as hydrogen-enriched natural gas (hCNG). hCNG stands for hydrogen enriched compressed natural gas and it combines the advantages of both hydrogen and methane. The addition of Hydrogen to CNG has potential to even lower the CNG emissions and is the first step towards promotion of a
Syed, KaleemuddinChaudhari, SandipKhairnar, GirishSajjan lng, Suresh
Global efforts to mitigate climate change include ambitious long-term strategies by countries to achieve net-zero greenhouse gas emissions by 2050. The automotive sector is exploring carbon-free powertrains, with hydrogen emerging as a key technology. Its zero-emission potential positions it for widespread adoption in power generation, transportation, and industry. Hydrogen engines, particularly direct injection engines offering high power and efficiency, are gaining traction due to their adaptability using existing engine components. However, in a hydrogen direct injection engine, achieving proper mixing of hydrogen and air in the cylinder is challenging, making in-cylinder mixture formation a crucial factor for ensuring stable combustion. To predict hydrogen mixture formation in the cylinder, we conducted a Schlieren visualization experiment of the hydrogen jet. Based on the results, a detailed hydrogen jet model for the direct injection injector was developed. This model was then
Hisano, AtsushiSaitou, MasahitoSakurai, YotaIchi, Satoaki
This paper focuses on the potential application of hydrogen fueled internal combustion engine (HICE) in the off-road market, examining HICE based on a diesel engine. In the transition to HICE, priority was given to compatibility with existing systems, minimizing changes from the base engine. By adopting a PFI (Port Fuel Injection) method for fuel injection, low-pressure hydrogen supply was achieved. To address the issue of backfire associated with PFI, optimization of injection pressure using a variable pressure control valve, along with adjustments to valve timing and injection timing, was implemented to suppress backflow of residual gases into the intake system and minimize hydrogen retention. Regarding pre-ignition, in addition to suppressing hotspots, the relationship between the homogenization of the air-fuel mixture and NOx emissions was examined, revealing a correlation. This engine was mounted on a generator, and efforts were made to improve the important characteristic of
Shiraishi, KentaroKishi, ShinjiKato, DaichiMitamura, KentaMurakami, KeiMikuni, Yusuke
The development of next-generation hydrogen-fueled engines introduces critical challenges related to thermal loads within the combustion chamber, particularly in high-performance applications. To address the extreme temperatures encountered, effective piston cooling strategies, such as oil jet impingement, are essential. Accurately predicting thermal stresses to prevent component failure is therefore crucial. However, numerical simulations often come with significant computational costs. This paper presents a comprehensive multi-fidelity modeling approach to predict the thermal behavior of pistons under these demanding conditions. The model integrates a simplified 3D thermal representation of the piston, a lumped-parameter mechanical model of the piston-liner assembly, and convective boundary conditions obtained at various levels of fidelity, from high-level Computational Fluid Dynamics (CFD) simulations to literature correlations. Additionally, the study examines the influence of
Sassoli, AndreaRomani, LucaFerrara, GiovanniPaolicelli, GiovanniBalduzzi, Francesco
The transition towards sustainable transportation necessitates the development of advanced thermal management systems (TMS) for electric vehicles (EVs), hybrid electric vehicles (HEVs), hydrogen fuel cell vehicles (FCVs), and hydrogen internal combustion engine vehicles (HICEVs). Effective thermal control is crucial for passenger comfort and the performance, longevity, and safety of critical vehicle components. This paper presents a rigorous and comparative analysis of TMS strategies across these diverse powertrain technologies. It systematically examines the unique thermal challenges associated with each subsystem, including cabin HVAC, battery packs, fuel cell stacks, traction motors, and power electronics. For cabin HVAC, the paper explores methods for minimizing energy consumption while maintaining thermal comfort, considering factors such as ambient temperature, humidity, and occupant load. The critical importance of battery thermal management is emphasized, with a focus on
K, NeelimaK, AnishaCh, KavyaC, SomasundarSatyam, SatyamP, Geetha
Pre-ignition (PI) is a common issue in internal combustion engines (ICE) with spark ignition. While the various causes have been identified with conventional fuels (such as gasoline or gasoline blends), the causes with hydrogen in ICE are not yet fully understood. This article presents the results of investigations into the influence of seven different lubricating oils on PI in a single-cylinder hydrogen research engine. The variation of two different parameters at two engine speeds were investigated: load and air/fuel mixture. For both variations, the tests start at the same conditions and run until the operating limit of the engine is reached (peak firing pressure, or maximum intake manifold pressure). The PI and knocking PI are investigated, while classifying them according to the peak cylinder pressure. It has been observed that enleanment above λ = 2.4 can lead to higher PI rates, while simultaneously reducing the knocking PI. During the load sweep at 2000 1/min, the highest
Pehlivanlar, BenjaminTorkler, MichaelFischer, MarcusGöbel, ChristophPischinger, StefanMaulbetsch, TheoNübling, FritzNeumann, Stephan
Hydrogen internal combustion engines (H2–ICEs) are being evaluated as a potential pathway for lowering the CO2 emissions intensity of the transportation and the power generation sectors as well as off-road applications such as agriculture and construction industry. H2–ICEs offer several advantages to the Original Equipment Manufacturers (OEMs); such as retaining the existing engine architecture and hardware, whilst achieving a lower emissions intensity than diesel engines. Some of the key challenges for the H2–ICEs operation are managing excessive amounts of water build-up in the oil under certain operating conditions and pre-ignition which have significant impact on the engine life and durability. In the current study, the authors developed a custom test cycle using a 7.4-litre 6-cylinder turbo-charged hydrogen engine designed for combined heat and power applications. The test cycle was created with the purpose of accumulating significant amounts of water (hydration phase) in the oil
Bansal, DineshWeimar, Hans-JoachimBerlet, Peter
Hydrogen Internal Combustion Engines (H2 ICEs) are seen as a viable zero-emission technology that can be implemented relatively quickly and cost-effectively by automotive manufacturers. The changed boundary conditions of a hydrogen-fueled engine in terms of mechanical and thermal aspects require a review and potential refinement of the design especially for the 'piston bore interface' (liner honing, ring and piston design) but also for other engine sub-systems, e.g. the crankcase ventilation system. The influence of oil entry into the combustion chamber is even more important in hydrogen engines due to the risk of oil-induced pre-ignition. Therefore, investigations of the interaction between friction, blowby and oil transfer into the combustion chamber were performed and are presented in this paper. During the investigations, experimental tests were carried out on a single-cylinder engine ('floating liner') and on a multi-cylinder engine. The 'floating liner' concept allows the crank
Plettenberg, MirkoGell, JohannesGrabner, PeterGschiel, KevinHick, Hannes
Hydrogen has been identified as a promising decarbonization fuel in internal combustion engine (ICE) applications in many areas including heavy-duty on- and off-road, power-generation, marine, etc. Hydrogen ICEs can achieve high power density and very low tailpipe emissions. However, there are challenges; designing systems for a gaseous fuel with its own specific mixing, burn rate and combustion control needs, which can differ from legacy products. Being able to determine the thermal distribution and temperatures of the power cylinder components has always been critical to the design and development of ICE. SAE-2023-01-1675 [1] presented an analytical FE-based tool, and validation using both FE and CFD methods for a Euro VI HD Diesel engine converted to operate on hydrogen gas using direct injection. In this study, updated methods and investigations are presented for Hydrogen ICE including applicability of the Woschni heat transfer correlation, use of CFD thermal wall functions and a
Bell, David J.Shapiro, EvgeniyTurquand d Auzay, CharlesHernandez, IgnacioHynous, JanKohutka, JiriOsborne, RichardPenning, RichardTomiska, Zbynek
Hydrogen engines have gained interest recently, as they present a promising alternative for decarbonizing heavy-duty transport, aligning with carbon neutrality regulations. This study investigates the effects of inlet manifold water injection on a heavy-duty hydrogen-fueled spark ignition single-cylinder engine, focusing on moderating abnormal hydrogen combustion and its impact on performance, thermal efficiency, and exhaust emissions. Water injection has been identified as a potential solution to mitigate the challenges associated with hydrogen combustion, such as pre-ignition and knock, by reducing the reactivity of the mixture (lowering temperature and increasing the dilution). The lower reactivity of the mixture allows running richer lambdas or higher compression ratios without spontaneous preignition, mitigating boosting requirements for full load and transient performance. Experimental results demonstrate that water injection significantly improves engine performance, thermal
Peñin Garcia, Alfonso JoseValls Claramunt, CarlesRivas, ManuelBirnstingl, JohannesWieser, MartinMartin, JaimeNovella, Ricardo
Hydrogen internal combustion engines (H2ICE) have shown enormous potential for zero-carbon emissions, aligning with the European zero-carbon targets in 2050. Adopting hydrogen as a zero-carbon fuel offers a time- and cost-effective approach to directly replacing carbon-based and fossil fuel-powered ICEs. The study aims to provide comprehensive data on the H2ICE engine during steady-state operations of a single-cylinder spark ignition engine with a direct hydrogen injection system. It focuses on emissions, including carbon monoxide (CO) and unburnt hydrocarbons (HC), utilising ultra-fast analysers positioned close to the exhaust valves to minimise signal delay. Particulate matter (PM) emissions are also measured to evaluate the potential for zero-carbon emissions from the H2ICE. Additionally, NO and NO2 emissions are analysed against air-fuel ratios (AFR) to estimate combustion temperature and NOx mechanisms. Water vapour and oxygen emissions are captured to assess their quantities
Mohamed, MohamedZaman, ZayneWang, XinyanZhao, HuaHall, Jonathan
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
One of the emerging technologies to effectively decarbonize the transportation sector in the Heavy-Duty and Non-Road segment is the Hydrogen fueled Internal Combustion Engine (H2-ICE). Although completely free of carbon content, and therefore CO2, the H2-ICE exhaust still releases NOx as harmful byproducts of the combustion process. Furthermore, it is well known that H2-ICE NOx emissions are very sensitive to combustion air-to-fuel ratio (λ) and hence are much higher during load increase when λ is lowered (λ<2) to reach the target level of performance. Therefore, to comply with most stringent emission regulations, it is paramount to equip the H2-ICE with an aftertreatment system capable to handle the NOx peaks generated during transient operations with extremely high efficiency. The present work provides indication for the transposition of catalyst formulations well-known for compression-ignited ICE to Direct Injection H2-ICEs for effectively storing and converting NOx within their
Blangetti, NicolaPozzi, ChiaraCiaravino, ClaudioDeorsola, FabioGalletti, Camilla
The development of hydrogen fueled engines has dramatically accelerated in recent years. They have gained much in operating reliability and the specific power outputs is at least comparable to those of current natural gas engines. This has been made possible by combining specific development tools derived from the development of compression-ignition and spark-ignition engines. These include jet visualization techniques (Schlieren, PIV, and LIF), video endoscopy on engine, and 3-D fluid dynamics simulations. In hydrogen engines for commercial vehicles, efforts have so far been made to keep engine components as unchanged as possible from similar diesel or gasoline versions. Similarly, some manufacturers have favored the port fueled injection (PFI) solution because it is easier to implement than the in-cylinder (DI) injection one. The present work concerns the evaluation of the further improvement potential made possible by using direct injection (DI) technology, and intervening on both
Gaballo, Maria RosariaIacobazzi, MarinoBurtsche, ThomasCornetti, Giovanni
The transportation industry seeks sustainable alternatives to fossil fuels, and hydrogen internal combustion engines (H₂ICE) have emerged as a practical solution. They offer near carbon-free operation while integrating with existing engine technology and infrastructure. Thanks to hydrogen’s specific properties, lean combustion can be achieved, significantly reducing NOx emissions. However, operating a commercial engine under ultra-lean conditions at high load presents challenges, particularly in maintaining volumetric efficiency and power density. This study analyzes the combustion behavior, NOx emissions, and loss mechanisms in a four-cylinder, direct-injection, hydrogen-fueled engine, equipped with a variable geometry turbine (VGT). The engine was tested at three BMEP levels (8, 10, and 12 bar) under ultra-lean conditions, with lambda varied between 2.2 and 3.6. Unlike conventional approaches, fuel mass was held constant at each load, and lambda was adjusted by varying intake air
Azizianamiri, SobhanTauzia, XavierMaiboom, AlainPerrot, Nicolas
Hydrogen direct injection is a promising strategy for enabling high-efficiency, low-emission powertrains. However, challenges related to mixture stratification and jet modeling persist, particularly under engine representative conditions. This study numerically investigates a simplified injector model, focusing on the downstream hydrogen jet behavior from of a hydrogen low-pressure direct-injection jet-forming cap under both constant-volume chamber (CVC) and engine conditions. The primary objective is to evaluate numerical methodologies and explore model simplification strategies that remain computationally feasible while preserving physical fidelity—particularly relevant for early-stage hydrogen injector development. Experimental data serve as validation benchmarks across operating regimes. In the CVC platform, large eddy simulations (LES) provide turbulence-resolving insights that inform the refinement of Reynolds-averaged Navier–Stokes (RANS) models. RANS simulations are then
Menaca, RafaelLiu, XinleiSilva, MickaelWu, HaoBen Houidi, MoezMohan, BalajiCenker, EmreAlRamadan, AbdullahSyed, IlteshamPei, YuanjiangRoberts, WilliamIm, Hong G.
In order to minimize tailpipe emissions of vehicles with combustion engines, highest conversion rates of exhaust gas aftertreatment systems are indispensable. At low ambient temperatures, gaseous emissions increase due to inhomogeneous mixture formation and incomplete combustion. Simultaneously, formation of condensate on exhaust gas-carrying components is stimulated due to temperatures dropping below the dew point. The acidic condensates contain more than 95 vol.-% water and a small fraction of aliphatic and aromatic hydrocarbons. In acidic environments these hydrocarbons can be polymerized, forming insoluble deposits that become progressively less reactive with time. These deposits may harm components of exhaust systems by fouling. As low temperature conditions are particularly promoting condensate formation, the aim of this study is to investigate condensate formation and composition during cold start and early warm-up phases in the exhaust duct of state-of-the-art internal
Knapp, SebastianHagen, Fabian P.Wagner, UweBockhorn, HenningTrimis, DimosthenisKoch, Thomas
As the individual and commercial vehicle industries seek sustainable alternatives to conventional internal combustion engines (ICEs), hydrogen-fueled rotary engines are emerging as a promising solution for several applications. This paper presents an innovative approach for the development of a hydrogen rotary engine that is integrated within a hybrid system. By exploiting the unique characteristics of rotary engines, such as compact size and high power-to-weight ratio, the electric machine, the battery and the rotary engine can be accommodated in the installation space of a conventional ICE with comparable power, despite the reduced power density of hydrogen as a fuel in ICEs. As a first step, the hydrogen engine is naturally aspirated and equipped with direct injection. To develop a suitable calibration for the engine’s application, the influence of calibration parameters such as ignition and injection are investigated. The study examines the influence of these on operating behavior
Endres, JonasBeidl, ChristianHofmann, Silas
The reduction of the overall greenhouse gas and pollutant emissions from ground vehicles is mandatory to fight against global warming and health issues. Moreover, regarding the increasing demand related to the population growth, the energy requirement for mobility may significantly increase during coming years. Meeting greenhouse gas emission targets is not only about commitment to regulations but also fundamentally about enhancing human well-being. Consequently, the diversification of low-carbon energy sources is of huge interest. The use of Hydrogen (H2) as a sustainable energy source in ground transportation is an alternative or a complementary solution to the full electric vehicles. Hydrogen for mobility can be used in two types of energy converters: The Proton-Exchange Membrane Fuel Cell or the H2 adapted Internal Combustion Engine (H2-ICE). This last has the advantage of its strong maturity with the reuse of existing production infrastructures from conventional ICE and low raw
Laget, OlivierBardi, MicheleQuintens, HugoGiuffrida, VincentBramoullé, ClémentSikic, Ivan
Premature self-ignitions in hydrogen internal combustion engines have been associated with the presence of hot spots. However, local increases in charge reactivity may be triggered not only by elevated temperatures but also by composition inhomogeneities. Such non-uniformities, in addition to imperfect mixing (e.g., in the case of direct hydrogen injection), may result from external contamination by more reactive components, such as lubricant oil. The present study aims to shed light on the mechanism through which lubricant oil contamination leads to the formation of sensitive spots, by analysing the behaviour of an isolated droplet suspended in a hydrogen/air environment. The “HyLube” chemical kinetic mechanism was employed to reproduce the chemical behaviour of lubricant oil, as it was specifically developed for this purpose. A one-dimensional numerical model was used to simulate the heating, vaporization, and combustion of the droplet. Zero-dimensional simulations were also
Distaso, EliaBaloch, Daniyal AltafAmirante, RiccardoTamburrano, Paolo
To curb global warming and meet stricter greenhouse gas emission standards all over the globe, it is essential to minimize the carbon footprint of applications in the mobility and transport segment. The demands on mobility, transportation and services are constantly increasing in line with worldwide population growth and the corresponding need for economic prosperity. This ongoing trend will lead to a significant increase in energy requirements for mobility-related applications in the upcoming time, despite all efficiency improvements. The timely introduction and accelerated spread of low-carbon/carbon-neutral energy sources is therefore of crucial importance. In addition to the switch to electric propulsion systems, particularly in the light-duty vehicle sector, the use of advanced and optimized hydrogen (H2)-powered internal combustion engines (ICE) represents a parallel, compatible technical option, as these applications will also meet the most stringent requirements in terms of
Koerfer, ThomasZimmer, PascalLi, ZhenglingPischinger, StefanLückerath, Moritz
The reduction of CO2 emissions from anthropogenic activities is pushing the green energy transition, prompting the search for alternative and more environmental-friendly solutions compared to traditional technologies based on fossil fuels. One of the most affected sectors is transportation, which is undergoing a significant change to increase sustainability. To achieve this goal, development of hybrid and electric propulsion systems has taken hold over the past decade, but electrification is proceeding slower than expected due to many challenges related to charging infrastructure, cars range and cost, thus pushing the European automotive sector into a potential crisis. To reverse this trend and simultaneously accelerate the transition to sustainable transportation, further development of ICEs technology aimed at enhancing efficiency when using alternative fuels like hydrogen, is staging a comeback. Thanks to the possibility to retrofit existing units, benefiting from a strong know-how
Madia, ManuelBoehm, BenjaminFontanesi, StefanoYe, PedroMagnani, MauroBreda, Sebastiano
Waste Heat Recovery is one of the most investigated and promising technologies for energy efficiency in the transportation sector. It consents to maintain the high-level technology of the present propulsion systems, based on Internal Combustion Engines, while increasing the overall engine and vehicle system efficiency. At the same time, the use of alternative fuels, like hydrogen, has the same crucial role to reduce harmful and greenhouse emissions, without overturn the existing mature technology. A hydrogen-fueled Internal Combustion Engine is proposed in this paper, equipped with waste heat recovery consisting in an additional radial turbine downstream the turbocharger of the engine (Turbo-Compound). The aim is to have a reduction of the specific consumption in most of the operating points of the engine, considering the effect of the recovery and the engine equilibrium rearrangement. The use of hydrogen increases recoverable enthalpy at the engine exhaust, which is intended to be
Di Battista, DavideCipollone, RobertoCorti, EnricoBrancaleoni, Pier PaoloDi Prospero, FedericoRavaglioli, Vittorio
Heavy-duty vehicles powered by hydrogen internal combustion engines (H2-ICEs) present a compelling solution for sustainable transportation. When optimized for ultra-lean operation, H2-ICEs are capable of meeting the most stringent contemporary legislative emission standards. However, achieving optimal drivability necessitates occasionally an enriched operating mode, thereby presenting significant challenges in maintaining ultra-low emissions. In this context, the implementation of advanced exhaust after-treatment technologies becomes essential to ensure near-zero tailpipe emissions with minimal impact on fuel efficiency and drivability. This paper investigates the potential of a passive Selective Catalytic Reduction (SCR) exhaust configuration for a heavy-duty hydrogen (HD H₂) engine, employing testing and modeling of a Lean NOx Trap, utilized as an ammonia (NH3) generator, in conjunction with a downstream Selective Catalytic Reduction system. We underscore the complexities associated
Zafeiridis, MenelaosAlexiadou, PanagiotaKoltsakis, Grigorios
Direct injection hydrogen internal combustion engine (ICE) has emerged as a promising alternative fuel due to its potential to enable clean and sustainable energy systems. However, the rapid injection of low-density hydrogen leads to strong mixture stratification and strong flame-turbulence-wall interactions. This challenge is exacerbated in the high-performance engine under study operating at a high engine load (indicated mean effective pressure of about 20 bar) and speed (7500 revolutions per minute). Furthermore, to target high efficiencies, restrict abnormal combustion behaviors, and inhibit oxides of nitrogen emissions, a lean-burn combustion strategy with a global equivalence ratio of 0.4 was applied, where diffusive-thermal (DT) instability effects further complicate the flame characteristics. Additionally, to promote engine performance, the pre-chamber (PC) combustion concept was applied, further complicating the turbulent flame dynamics. To address the modeling challenges and
Mortellaro, Fabio SantiMenaca, RafaelLiu, XinleiIm, Hong G.Tonelli, RobertoMedda, Massimo
Achieving a robust ignition with minimal spark plug wear is challenging in heavy duty engines fueled with gaseous fuels like biogas and hydrogen. Thermal energy deposition from the spark to the gas was studied in a 10.9 milliliter custom-built spark calorimeter. An AC capacitive ignition system was used along with a dual-nickel standard J-gap spark plug and the influence of multiple physical and electrical parameters was investigated in an experimental design including five factors: spark plug center electrode diameter, electrode gap, glow current, glow duration, and gas density. The aim was to maximize energy transfer to the gas and reduce heat losses to the spark plug electrodes, thus extending spark plug service life and reducing the risk of pre-ignition in hydrogen engines caused by overheated electrodes. The results show that the electrode gap has the dominating influence on energy transfer to the gas. Both the gas density and the glow current contribute to increased energy
Saha, AnupamTunestal, PerAengeby, JakobAndersson, Oivind
This paper deals with the hydrogen-to-helium jets comparison within the framework of the assessment of helium as a potential hydrogen surrogate. The comparison is centred on the assessment of the combined action of pressure ratio with gas properties on the dynamics of the jet exiting an outward-opening injector. The shots are performed at injection pressures and backpressures ranging from 21 to 36 bar and from 1.2 to 5 bar, respectively. The Schlieren technique is deployed to capture the jets images. The study demonstrates that at certain pressure ratios helium is an appealing solution bridging the lab safety with fidelity to hydrogen-like jet behaviour. Decreasing pressure ratio minimizes the hydrogen-to-helium difference in axial penetration and area, enabling helium to yield a hydrogen-like development. The findings underscore the impact of the pressure ratio on how the gas properties, such as density and diffusivity, dictate the evolution of the axial propagation and area
Coratella, CarloTinchon, AlexisHespel, CamilleDober, GavinFoucher, Fabrice
The roadmap towards carbon neutrality by 2050 makes necessary drastic reduction of road vehicle tailpipe carbon emissions. One viable approach to reach the abatement of carbon monoxide and dioxide is to fuel internal combustion engines (ICEs) with hydrogen. The burning of a hydrogen-air mixture inside the combustion chamber reduces to minimal amount the production of carbon emissions and particulate matter that are only produced by the presence of lubricant oil. However, the high temperatures reached by the end-gases promote the formation of nitrogen oxides. In high-performance ICEs, the pursuit for high-specific power by means of the adoption of stoichiometric mixtures is hindered by the need to reduce NOx - as this pollutant drastically drops when moving towards ultra-lean mixtures. The paper aims to present a CFD-3D framework to simulate the full engine-cycle of a high-performance Spark-Ignited (SI) Direct-Injection (DI) ICE fuelled at stoichiometric conditions. The methodology is
Baudone, Antonio DennyMarini, AlessandroSfriso, StefanoFalcinelli, FrancescoMortellaro, FabioTonelli, RobertoBreda, Sebastiano
This paper presents an integrated methodology for the analysis of hydrogen-fueled 2-Stroke engines, combining experimental data, 1D-CFD simulations, and 3D-CFD combustion calculations. The proposed approach aims to enhance the understanding of scavenging, injection, and combustion processes in a 50 cm3 loop-scavenged engine with low-pressure direct hydrogen injection, experimentally studied on a test bench. The hydrogen-fueled engine was capable of achieving a maximum power output of 3.1 kW, using a slightly lean air-to-fuel ratio (lambda = 1.3). The maximum engine speed for stable combustion without knocking was achieved at wide open throttle at 7119 RPM. The developed 1D-CFD model, based on the engine layout at the test bench, was calibrated using average experimental data and specific full load operating points. 3D-CFD simulations were performed for one full load operating point, focusing on combustion dynamics and fuel distribution within the chamber, with combustion model
Caprioli, StefanoFerretti, LucaScrignoli, FrancescoFiaschi, MatteoD'Elia, MatteoOswald, RolandSchoegl, OliverNambully, Suresh KumarRothbauer, RainerMattarelli, EnricoKirchberger, RolandRinaldini, Carlo
The paper reports an investigation into employing a “lambda leap” (λ leap) strategy for hydrogen internal combustion engines (H₂ICEs), wherein inherently low emissions of oxides of nitrogen (NOx) are afforded at light load via operation at lambda 2.5, and at higher load by operation at stoichiometry utilizing a three-way catalyst (TWC) for NOx control. This approach means it is necessary under transient operation to “leap” between high values of lambda and stoichiometry from one cycle to the next, in order to avoid completely the λ ≈ 1.3 area where high combustion NOx is generated away from lambda equal to 1; this is because lean catalysis of NOx will be extremely challenging at the rate that it is generated there. To achieve this, a short cam profile was introduced to reduce air mass flow by 57.5%, enabling this leap without changing the fuel injection amount, while preserving favorable combustion characteristics via an early Miller cycle. The study models a 2.0 L inline four-cylinder
Fong Cisneros, Eric J.Kodaboina, Raghu VamsiVorraro, GiovanniTurner, James W. G.
Hydrogen has emerged as a promising alternative fuel due to its potential to enable clean and sustainable energy systems. Direct injection is the preferred fueling strategy for hydrogen engines, as it enhances power density while addressing safety concerns. However, the low density of hydrogen necessitates a large molar quantity of fuel, leading to strong fuel-air stratification and posing challenges for mixing in a confined chamber with complex turbulent flow and jet/wall interactions. This challenge is exacerbated in the present study, where the evaluated high-performance engine operates at a high engine load (indicated mean effective pressure of about 20 bar) and an extremely high speed (7500 revolutions per minute). Furthermore, to target high efficiencies, restrict abnormal combustion behaviors and inhibit oxides of nitrogen emissions, a lean-burn combustion strategy with a global equivalence ratio of 0.4 was applied, where diffusive-thermal (DT) instability effects would matter
Menaca, RafaelLiu, XinleiMortellaro, FabioMedda, MassimoIm, Hong G.
The commercial vehicle industry continues to move in the direction of lower emissions while reducing its carbon footprint. This study focuses on hydrogen internal combustion engines (H2-ICE) since it offers a zero-carbon solution to the industry while showing very low NOx emissions when coupled to a conventionally sized aftertreatment SCR system. This work highlights modeling efforts for analyzing key boosting configurations to operate a hydrogen engine at high lambda (relative air–fuel ratio) for lowering NOx, maintain the aftertreatment system reasonable in size, and improving brake thermal efficiency (BTE). GT-Power was used to model H2-ICE engines from 13L to 19L in displacement with different boosting architectures. Key configurations include a variable geometry turbine (VGT) turbocharger coupled with a supercharger (SC), a VGT with higher engine displacement, and a VGT coupled in series with a fixed geometry turbine (FGT) turbocharger. An exhaustive study comparing these boosting
Gurjar, ShubhamMcCarthy, Jr., James E.Manickavasagan, ThirumoolanChaudhari, Amol S.Nimeshkumar, ParmarBachu, PruthviBitsis, Christopher
Items per page:
1 – 50 of 259