Browse Topic: Hydrogen engines

Items (188)
Letter from the Focus Issue Editors
Lakhlani, HardikKumar, VivekWenbin, YuBagga, KalyanGundlapally, SanthoshDi Blasio, GabrieleSplitter, DerekRajendran, Silambarasan
Manufacturers of internal combustion engines are changing their focus to non-conventional fuels like hydrogen in response to the worrying global warming situation. When compared to conventional fuels like gasoline or diesel, the use of gaseous hydrogen fuel in an internal combustion engine powered by hydrogen can lessen the engine's negative environmental effects. But occasionally, hydrogen can leak from the high-pressure fuel injection system to the engine top cover and as blowby within the crankcase. Static zones may emerge because of these H2 leaks. Potential explosion or fire can result when the H2 concentration in these stagnation zones is more than 4% and triggers a minimum ignition energy of 0.02 mJ. A CFD simulation methodology incorporating multi-species model, piston, and crank motion to estimate the H2 concentration within crankcase is developed. The simulation development phases has been presented in the paper. The blowby values are determined from the experimental
Sahu, Abhay KumarNagawade, ShubhamVeerbhadra, Swati
The different energy policies and legislations across the globe, unions, or country wise are the key influencer for evaluation of Transport Industry in both advancement of Technologies and Ecosystem development. Accordingly, European Climate law is focusing to achieve net zero greenhouse (or carbon neutral) gas emissions for EU (European Union) countries by 2050. Similarly in India, National Green Hydrogen Mission (NGHM) by Ministry of New and Renewable Energy (MNRE) is aiming for significant decarbonization and to become market leader in Green Hydrogen Transition. Hydrogen is potential fuel for H2-FCEV (Hydrogen Fuel Cell Electric vehicle) and H2-ICE (Hydrogen -Internal combustion Engine) due to its carbon free molecule and other properties. This review paper is focusing on comprehensive study of different aspects of H2- ICE vehicle. Key study areas are mainly Hydrogen (H2) as fuel, Hydrogen Storage System (HSS), H2-ICEs, Hydrogen storge pressure and H2-ICE vehicle architecture. The
Biswas, SanjoyNaik, Amit KumarKashyap, Krishna
Backed by a consortium of companies, Southwest Research Institute's demonstrator vehicle aims to prove the commercial viability of hydrogen engines for on-road trucks. For decades, the running joke around hydrogen being a viable fuel for commercial trucks has been that it's “ten years away from being ten years away.” Though hydrogen-fueled rigs operating at scale has long seemed like a pipe dream, shifting winds around the globe blowing towards decarbonization have finally pushed this technology to be ready for the road. With the demand for the development of new propulsion technologies rising, organizations such as the Southwest Research Institute (SwRI) have ramped up R&D efforts to make this tech commercially viable. SwRI is an independent provider of research services and can rapidly assemble teams to tackle problems. SwRI's main mission is to push the boundaries of science and technology to develop innovative solutions
Wolfe, Matt
Selective catalytic reduction (SCR) technology is currently one of the most effective methods to reduce NOx emissions for engine. NH3-SCR technology is also considered to be the most promising hydrogen engine after-treatment device. This paper used Cu-SSZ-13, which is widely commercially available, as the research object, and explored the relationship between micron and nanoscale grain sizes through experimental methods such as BET, XRD, NH3-TPD, UV-vis-DRS and activity testing, the influence mechanism of micron-scale and nano-scale grain size on the morphology and properties of Cu/SSZ-13 catalyst was explored. The results show that the fresh nanoscale 900F sample has higher low-temperature NOx conversion efficiency, while the micron-scale 1800F sample has poor low-temperature activity and better high-temperature activity. This is closely related to its morphological characteristics, adsorption and desorption characteristics and dual-site properties. The specific surface area and total
Chen, YajuanLou, DimingZhang, YunhuaTan, PiqiangFang, LiangHu, Zhiyuan
Hydrogen as a chemical energy carrier is considered as one of the most promising options to achieve effective decarbonization of the transportation sector, due to its carbon-free chemical composition. This is particularly true for applications that rely on internal combustion engines (ICEs), although much research is still needed to achieve stable, reliable, and safe operations of the engine. To this purpose, direct injection (DI) of gaseous hydrogen during the compression stroke offers great potential to avoid backfire and largely reduce preignition issues, as opposed to port-fuel injection. Recently, much research has been dedicated, both experimentally and numerically, to understanding the physics and chemistry connected with hydrogen’s mixing and combustion processes in ICEs. This work presents a computational fluid dynamics (CFD) study of the hydrogen DI process in an optical engine operating at relatively low tumble conditions. Gaseous hydrogen pressurized at 86 bar is introduced
Torelli, RobertoWu, BifenPark, Ji-WoongPei, Yuanjiang
In order to reduce the pumping loss of low loads and maximize the lean combustion advantage of hydrogen, the paper proposes a load control strategy based on hydrogen mass, called quality control, for improving thermal efficiency and emissions at low loads. The advantages of quality control and the effect of VVT on the combustion performance of hydrogen internal combustion engines under low loads were discussed. The results show that when the relative air–fuel ratio (λ) increases to more than 2.5, the NOx emissions are reduced to less than 3.5 g/kW · h at the brake mean effective pressure (BMEP) below 8 bar, especially when the BMEP is less than 5 bar, the NOx is within 0.2 g/kW · h. Compared to quantity control based on air mass, the quality control strategy based on hydrogen mass achieves over a 2.0% reduction in pumping loss at BMEP levels lower than 4.4 bar. Furthermore, it enhances thermal efficiency by up to 5% at low loads, while maintaining NOx emissions within 0.2 g/kW · h at
Li, YongChen, HongFu, ZhenDu, JiakunWu, Weilong
Letter from the Focus Issue Editors
Lakhlani, HardikKumar, VivekWenbin, YuBagga, KalyanGundlapally, SanthoshDi Blasio, GabrieleSplitter, DerekRajendran, Silambarasan
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. In 2020 direct tailpipe emissions from transport represented around 8 GtCO2eq, or nearly 15% of total emissions. This number increases to just under 10 GtCO2eq when indirect emissions from electricity and fuel supply are added, for a total share of roughly 18%. Following the current trend, direct and indirect emissions in transport could reach above 11 GtCO2eq by 2050. Roughly 76% of transport emissions are related to land-based passenger and freight road transport. Emissions from aviation and shipping account for the remaining 24% of 2020 emissions. Hydrogen (H2) is in this scenario considered to play a key role as a carbon-free and versatile energy carrier. Combustion of hydrogen
Koerfer, ThomasDurand, ThomasVirnich, Lukas
This research paper investigates the implications of Hydrogen Internal Combustion Engine (H2 ICE) technology in the field of automotive thermal management, with a particular emphasis on truck radiator and charged air cooler systems. As the automobile industry works to shift to more sustainable and environmentally friendly solutions, hydrogen-powered vehicles provide a viable alternative to their conventional fossil fuel-powered counterparts. The study investigates the unique thermal characteristics of H2 ICE technology, the modifications required in H2 ICE technology due to specific requirements of air in the combustion, and changes in auxiliary components of the engine, where heating or cooling is required. Based on these changes, assess their impact on radiator and charged air cooler systems, which are critical components in maintaining the thermal equilibrium of internal combustion engines. Few inferences related to the impact on the Radiator and Charge Air Cooler are made after
Menariya, Pravin GaneshShinde, Viraj
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine (ICE) as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigation, due to their reduced emission levels and high thermodynamic efficiency. Lean charge is suitable for passenger car applications, where the demand of mid/low power output does not require an excessive amount of air to be delivered by the turbocharging unit, but can difficulty be tailored in the field of high-performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of feeding conditions near the stochiometric is explored in the field of high-performance engines (20 BMEP), leading to the consequent issue of abatement of pollutant emissions. In this work, a 1D model is applied to the modeling of a four cylinder engine fueled with direct
Marinoni, AndreaMontenegro, GianlucaCerri, TarcisioDella Torre, AugustoOnorati, Angelo
Growing environmental concerns drive the increasing need for a more climate-friendly mobility and pose a challenge for the development of future powertrains. Hydrogen engines represent a suitable alternative for the heavy-duty segment. However, typical operation includes dynamic conditions and the requirement for high loads that produce the highest NOx emissions. These emissions must be reduced below the legal limits through selective catalytic reduction (SCR). The application of such a control system is time-intensive and requires extensive domain knowledge. We propose that almost human-like control strategies can be achieved for this virtual application with less time and expert knowledge by using Deep Reinforcement Learning. A proximal policy optimization (PPO) -based agent is trained to control the injection of Diesel exhaust fluid (DEF) and compared with the performance of a manually tuned controller. The performance is evaluated based on the restrictive emission limits of a
Itzen, DirkAngerbauer, MartinHagenbucher, TimoGrill, MichaelKulzer, Andre
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe’s formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes. The
Osetrov, OleksandrHaas, Rainer
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE Classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known Schlieren technique and use helium as a safe substitute for H2. They reveal how the jet properties
Cassone Potenza, Magda ElviraGaballo, Maria RosariaGeiler, Jan NiklasIacobazzi, MarinoCornetti, GiovanniKulzer, Andre Casal
Current GHG emissions are rebounding from an intermediate decline during the economic downturn caused by the Covid-19 pandemic. To get back on track to support the realization of the formulated goals of the Paris Agreement, scientific communities suggest that worldwide GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century. Carbon neutrality imposes substantial changes in our energy mix. Hydrogen (H2) is considered to play a key role as a carbon-free and versatile energy carrier for all kinds of applications and use cases. Considering the high technological maturity of internal combustion engines (ICEs), the interest in ICEs powered by hydrogen as a CO2-free solution is rising worldwide. The content of this publication displays the necessary engineering steps to successfully convert a diesel-based engine to H2 DI operation. In this context, upfront simulations work dictated the newly designed combustion system layout and the associated
Koerfer, ThomasDurand, ThomasBusch, Hartwig
Heavy duty engines for long-haul trucks are quite difficult to electrify, due to the large amount of energy that should be stored on-board to achieve a range comparable to that of conventional fuels. In particular, this paper considers a stock engine with a displacement of 12.9 L, developed by the manufacturer in two different versions. As a standard diesel, the engine is able to deliver about 420 kW at 1800 rpm, whereas in the compressed natural gas configuration the maximum power output is 330 kW, at the same speed. Three possible alternatives to these fossil fuels are considered in this study: biodiesel (HVOlution by Eni), bio-methane and green hydrogen. While the replacement of diesel and compressed natura gas with biofuels does not need significant hardware modifications, the implementation of a hydrogen spark ignition combustion system requires a deep revision of the engine concept. For a more straightforward comparison among the alternative fuels, the same engine platform has
Volza, AntonelloPisapia, AlfredoCaprioli, StefanoRinaldini, CarloMattarelli, Enrico
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine (ICE) as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations, due to their reduced emission levels and high thermodynamic efficiency. Lean charge is suitable for the purpose of passenger car applications, where the demand of mid/low power output does not require an excessive amount of air to be delivered by the turbocharging unit, but can difficulty be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of feeding conditions near the stochiometric value is explored in the field of high performance engines, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model is applied to the modeling of a V8 engine fueled with direct
Montenegro, GianlucaMarinoni, AndreaDella Torre, AugustoD'Errico, GianlucaOnorati, AngeloCerri, Tarcisio
In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations. A commonly used multicomponent exhaust gas analyzer on FTIR principle can suffer from higher volumetric water shares in the exhaust gas of the hydrogen engine, influencing the emission analysis
Armbruster, FelinaKraus, ChristophPrager, MaximilianHärtl, MartinJaensch , Malte
A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions. Stable engine operations could be achieved
Mohamed, MohamedMirshahi, MiladJiang, ChangzhaoZhao, HuaHarrington, AnthonyHall, Jonathan
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied. From this analysis, it was found that the volume of the pre-chamber and the
Maas, RalphBekdemir, CemilSomers, Bart
The hydrogen (H2) internal combustion engine (ICE) is emerging as an attractive low life-cycle carbon powertrain configuration for applications that require high power, high duty cycle operation. Owing to the relative ease of conversion of heavy duty (HD) diesel ICEs to H2 and the potential for low exhaust emissions, H2 ICEs are expected to play a strong role in rapidly decarbonizing hard-to-electrify markets such as off-road, rail, and marine. The conversion of HD diesel ICEs to spark ignited H2 with port fuel injection is typically accompanied by a de-rating of engine power and torque. This is due to several fuel- and system-related challenges, including the high risk of abnormal combustion resulting from the low auto-ignition energy threshold of H2, and boost system requirements for highly dilute operation that is used to partially mitigate this abnormal combustion risk. However, HD ICEs must be adapted to a diverse range of vehicle applications, and so increasing ICE displacement
Bunce, MichaelSeba, BouzidAndreutti, RobertoYan, ZimingPeters, Nathan
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions. Furthermore, load
Mohamed, MohamedLongo, KevinZhao, HuaHall, JonathanHarrington, Anthony
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation. System model validation involved comparing the model against real-world data from production diesel engine after-treatment systems for transient cycles, including Federal Test
Chundru, Venkata RajeshSharp, ChristopherRahman, Mohammed MustafizurBalakrishnan, Arun
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine. The results show that the port water injection can effectively reduce the knock intensity of the argon
Tang, YongjianDeng, JunXie, KaienJin, ShaoyeLi, Liguang
Recent legislation banning the sale of new petrol and diesel vehicles in Europe from 2035 has shifted the focus of internal combustion engine research towards alternative fuels with net zero tailpipe emissions such as hydrogen. Research regarding hydrogen as a fuel is particularly pertinent to the so-called ‘hard-to-electrify’ propulsion applications, requiring a combination of large range, fast refuelling times or high-load duty cycles. The virtual design, development, and optimisation of hydrogen internal combustion engines has resulted in the necessity for accurate predictive modelling of the hydrogen combustion and autoignition processes. Typically, the models for these processes rely respectively on laminar flame speed datasets to calculate the rate of fuel burn as well as ignition delay time datasets to estimate autoignition timing. These datasets are generated using chemical kinetic mechanisms available in the literature. However, these mechanisms have typically been developed
Ribnishki, AleksandarCharles, CameronEsposito, StefaniaAkehurst, SamYuan, Hao
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine. The findings suggest that these naïve models are effective in identifying and flagging operating conditions with high potential for an anomaly
Guzmán Mendoza, María GabrielaGarcia, AntonioMolina, SantiagoOlcina-Girona, MiguelPesce, FrancescoGessaroli, DavideVassallo, AlbertoGolisano, RobertoSacco, Nicola
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio. Simultaneously, the structural
Ki, YoungminKim, Jungho JustinLee, Seong-YoungHwang, JoonsikBae, Choongsik
In order to scrutinize the timing variables impacting the combustion performance and emissions of the Port Fuel Injection hydrogen engine (PFI-H2ICE), a model of a four-cylinder hydrogen engine is meticulously built utilizing the 1D software GT-POWER. The effect of excess air coefficients and timing strategies (including the intake valve opening timing (IVO), the start of injection timing (SOI), and ignition timing) is analyzed in this study. The main conclusions are as follows: The hydrogen engine remold from the Isuzu JE4N28 nature gas engine manifests a lean combustion threshold ranging between 2.0 and 2.5. Notably, advancing intake valve opening timing by 20°CA has proven beneficial to the brake thermal efficiency (BTE) of the hydrogen engine while reducing the NOx emissions by a substantial margin, and advancing intake valve opening timing bears the virtue of strengthen the positive influence of the start of injection timing upon the engine's combustion performance. The longer the
Hu, ZhiyuanYin, LiZhang, YunhuaLou, DimingTan, PiqiangLiu, Dengcheng
The European Union aims to be climate neutral by 2050 and requires the transport sector to reduce their emissions by 90%. The deployment of H2ICE to power vehicles is one of the solutions proposed. Indeed, H2ICEs in vehicles can reduce local pollution, reduce global emissions of CO2 and increase efficiency. Although H2ICEs could be rapidly introduced, investigations on hydrogen combustion in ICEs are still required. This paper aims to experimentally compare a flat piston and a bowl piston in terms of performances, emissions and abnormal combustions. Tests were performed with the help of a single cylinder Diesel engine which has been modified. In particular, a center direct injector dedicated to H2 injection and a side-mounted spark plug were installed, and the compression ratio was reduced to 12.7:1. Several exhaust gas measurement systems complete the testbed to monitor exhaust NOx and H2. Results were obtained for a specific operating point, 2000 rpm as engine speed and 13 bar as
Masurier, Jean-BaptisteLOW-KAME, JeanOung, RichardFoucher, Fabrice
Hydrogen-fuelled internal combustion engines (ICEs) offer a zero-carbon fuel option for many applications. As part of the global effort to study hydrogen ICEs Ricardo has developed single-cylinder and multi-cylinder heavy-duty engines. The engines are representative of a 13 litre Euro VI heavy-duty production application converted to run on hydrogen fuel with limited changes. The engine is fitted with direct hydrogen injectors which enable flexible injection strategies and reduce hydrogen in the intake system. Steady-state testing was carried out over an array of speed and load points covering a typical heavy-duty drive-cycle area. Engine test results are presented and analysed in this paper. The combustion system can run to values exceeding lambda 5 and 40% exhaust gas recirculation (EGR) can be tolerated. The impact of lambda, EGR, injection and ignition timing variations are presented and demonstrate how the system responds to the corresponding changes in specific heat capacity
Osborne, RichardHughes, JohnLoiudice, AngelaPenning, RichardValenta, Lukáš
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°. When the jet angle is 160°, the flame jet is positioned too
Ma, ZheWang, ChenxuDeng, JunShang, QuanboTang, YongjianChen, HaieHuang, YiLi, Liguang
Hydrogen has recently become a primary focus as a future carbon-free fuel for transportation, especially for heavy duty commercial vehicles. The hydrogen internal combustion engine (H2 ICE) shows promise, as current manufacturing facilities and vehicle architectures can be largely maintained while keeping the initial purchase price of the vehicle relatively low. However, hydrogen combustion engines have challenges to overcome. One of the main challenges is to provide transient response on par with current diesel engines while maintaining low NOx emissions from the engine. Previously, simulations were performed by AVL List GmbH and SuperTurbo Technologies of a mechanically driven turbocharger, the SuperTurbo, on a 13L H2 ICE. This paper covers follow on work of actual engine testing of the H2 ICE with the SuperTurbo in an effort to reproduce the simulation results with engine test data. The primary focus of the engine testing was to demonstrate low engine out NOx emissions through
Brin, JaredWaldron, Thomas
This paper is part of a broader research project aiming at studying, designing, and prototyping a hydrogen-powered internal combustion engine to achieve fast market implementation, reduced greenhouse gas emissions, and sustainable costs. The ability to provide a fast market implementation is linked to the fact that the technological solution would exploit the existing production chain of internal combustion engines. Regarding the technological point of view, the hydrogen engine will be a monofuel engine re-designed based on a diesel-powered engine. The redesign involves specific modifications to critical subsystems, including combustion systems, injection, ignition, exhaust gas recirculation, and exhaust gas aftertreatment. Notably, adaptations include the customization of the cylinder head for controlled ignition, optimization of camshaft profiles, and evaluation of the intake system. The implementation incorporates additive manufacturing for the production of new intake manifolds and
Malagrinò, GianfrancoAccardo, AntonellaCostantino, TrentalessandroPensato, MicheleSpessa, Ezio
Hydrogen internal combustion engines (H2ICE) offer a cost-effective solution to decarbonize transport by combining a lower carbon intensity fuel with mature and established internal combustion engine technology. While vehicles running with hydrogen have been demonstrated over the years, this fuel's physical and chemical properties require modifications and upgrades on the vehicle from an engine and system-level perspective. In addition, market-specific regulatory and economic factors can also constrain the realization of optimal hydrogen powertrain architectures. Therefore, this paper reviews the impact of hydrogen use on combustion, injection, air management, and after-treatment systems, indicating the different strategies used to enable effective H2ICE strategies from an efficiency, cost, and safety standpoint. Specifically, swirl and tumble-based combustion systems using port fuel injection, low-pressure, and high-pressure direct injection are discussed to review performance, cost
Sari, RafaelShah, AshishKumar, PraveenCleary, DavidRairikar, SandeepSonawane, Shailesh BalkrishnaThipse, Sukrut S
Items per page:
1 – 50 of 188