Browse Topic: Boost pressure
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
The ported shroud casing treatment for turbocharger compressors is desirable for mitigating broadband/whoosh noise and enhancing boost pressures at low to mid flow rates. Yet, it is accompanied by elevated narrowband noise at the blade-pass frequency (BPF). Compressor BPF noise occurs at high frequencies where wave propagation is often multi-dimensional, rendering traditional planar wave silencers invalid. An earlier work introduced a novel reflective high-frequency silencer (baseline) targeting BPF noise in the 8-12 kHz range using an “acoustic straightener” that promoted planar wave propagation along arrays of quarter-wave resonators (QWRs). The design, however, faced challenges with high-amplitude tonal noise generation at specific flow conditions due to flow-acoustic coupling at the opening of the QWRs, thereby compromising the noise attenuation. The current study explores two QWR interface geometries that weaken the coupling, including linear and saw-tooth ramps on the upstream
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Turbochargers are widely employed in internal combustion engines, in both, diesel and gasoline vehicle, to boost the power without any extra fuel usage. Turbocharger comes in different sizes based upon the boost pressure to increase. Capacity of turbocharger are available in great range in the market which are designed to match the requirement. From structural point of view, key component of an automotive turbocharger is rotor. This rotor consists of compressor wheel, turbine wheel, shaft and bearing (journal/ball) mainly. In industries, design & development of turbocharger rotor for its dynamic characteristics is done using virtual engineering technique (Computer Aided Engineering). Multibody dynamic (MBD) analysis simulation is one of the best approaches which is used to study the rotor in great details. In this current MBD procedure fluid-structure interaction problem is solved by modelling oil film in the journal bearing and solving it using “Reynolds equation”. Shaft displacement
This document describes methodologies to determine the causes blow-by oil consumption caused by the power cylinder.
This research examines the interdependence of the control strategies of a high-pressure exhaust gas recirculation (HP-EGR) and a variable geometry turbocharger (VGT) on a medium-duty diesel engine in transient load operation. The effect on fuel economy, particulate and NO production were investigated through multiple tests of synchronously controlled VGT and EGR positions. An optimal steady-state strategy of the above determinants was defined as a function of the VGT’s boost pressure and EGR percent mass. The optimal steady-state strategy was then used to investigate the interdependence of the VGT and HP-EGR in transient load acceptence events which occurred over a range of 2 to 10 seconds. The faster transients increased deviations of boost and EGR levels from steady-state calibration values which consequently led to corresponding fuel consumption and particulate matter emission increases. These tests established that under the transient conditions the control strategies implemented
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates. This work
Fun to drive and drivability are important issues in modern vehicles, and the propulsion system plays a key role in achieving these goals. Today most engines are characterized by the presence of a turbocharging system to achieve a high level of specific power and efficiency. Unfortunately, turbocharged engines are characterized by a delay in the delivery of toque, especially at low load and low speed, a phenomenon commonly called turbo-lag. In this paper an innovative turbocharging system is studied with the aim of providing a solution to this annoying behavior; a hybrid boosting system consisting of a traditional turbocharger and an electrically assisted compressor is analyzed. This architecture, especially thanks to the good dynamic behavior of the e-compressor, achieves the goal of an important reduction in terms of time-to-boost, providing an important improvement in engine readiness. The experimental campaign is carried out at the test bench for components of the propulsion system
The hydrogen internal combustion engine (H2ICE) has received increasing attention in various industry sectors as it produces nearly zero carbon emissions. However, it has been reported that the power output is lower than the gasoline engine especially for port fuel injection (PFI) type hydrogen engines. It is mainly due to low density of the hydrogen which reduces volumetric efficiency. A turbocharging system can improve the power output by pushing more air into the combustion chamber. However, it was observed that incorrect matching hampers the increment of the power output which results in low specific power (<30kW/L). To achieve the equivalent performance of a turbocharged PFI gasoline engine, the required boosting system for the PFI H2ICE has been numerically investigated using 1D engine simulation. As a base engine, a 1.6L turbocharged PFI gasoline engine was used. The validated base engine model was modified for the hydrogen operation and the simulation was carried out at wide
Items per page:
50
1 – 50 of 521