Browse Topic: Boost pressure

Items (521)
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
In a conventional powertrain driven by Internal combustion (IC) engines, turbocharger (TC) is a key component for enhancing performance and efficiency. Predominantly turbochargers are used to serve multiple purposes of downsizing, increased power, better fuel efficiency, reduced emissions, and improved performance at high altitudes. TC is responsible for fulfilling the air mass requirement of the engine at different operating conditions. Failure of TC system leads to abnormal engine operation. If the TC hardware is beyond repair, the associated replacement cost is very high. Ultimately, a predictive diagnostics approach is required to identify the issue with TC so that the failure of TC could be avoided. The proposed methodology uses advanced artificial intelligence technique called recurrent neural network (RNN) and long short-term memory (LSTM) network for predicting faults in a typical TC system. In this study, actual values of TC speed and boost pressure are obtained from physical
Jagtap, Virendra ShashikantGanguly, GouravMitra, ParthaPatidar, Sachin
The purpose of this work is to highlight the benefits of improved scavenging efficiency for premixed, lean-burn, spark-ignited heavy-duty engines fueled by hydrogen. Scavenging efficiency measures the effectiveness of replacing exhaust gases with fresh air (or an air-fuel mixture) within the cylinder of an internal combustion engine. Enhanced scavenging efficiency reduces residual gas content and increases the proportion of fresh air, resulting in a cooler local mixture temperature. Additionally, it improves heat dissipation within the combustion chamber, cooling potential hotspots and allowing for earlier injections with fewer restrictions due to combustion anomalies, particularly pre-ignitions. To increase scavenging efficiency in a 4-stroke internal combustion engine, valve timing adjustments were made by introducing a valve lift profile with greater overlap of the exhaust valve closing and the inlet valve opening sequences. Additionally, a high-efficiency turbocharger was used to
Schuette, ChristophBorg, JonathanGiordana, SergioRapetto, Nicola
Dual-fuel engines employing alternative combustion concepts have shown promising results in meeting significant emission reductions while maintaining engine performance. In the medium and heavy-duty transport sectors, where electrification remains challenging, developing low-temperature combustion is still a technological solution for reducing carbon impact. However, most of the results in this research field have been presented under stationary conditions, which still positions the transient operation as a challenge. One of the main reasons has been the lack of a dedicated control system to manage the load transitions and the inoperability of stock turbochargers to satisfy the EGR dilution ratios and boost pressure to sustain dual-fuel combustion. This study employs a modified 7.7 L dual-fuel engine for its operation in transient conditions by incorporating a prototype turbocharger system. The study addresses the recalibration of the engine to introduce modifications to the injection
Garcia, AntonioMonsalve-Serrano, JavierMarco-Gimeno, JavierIñiguez, Erasmo
The widespread adoption of battery electric vehicles (BEVs) is progressing more slowly than anticipated, making hybridization crucial for improving efficiency through load point shifting, running the engine at its most efficient operating points and kinetic energy recovery. As the world continues to use fossil fuels, enhancing powertrain efficiency is critical to reducing CO2 emissions. Improved efficiency will also increase the share of renewable e-fuels in the energy mix, supporting the transition to low-carbon mobility. A significant portion of energy in ICEs is lost through exhaust heat, which is a high-grate energy source that can be converted into electricity in hybrid systems. Conventional turbochargers, widely used to enhance volumetric efficiency and drivability, typically incorporate a wastegate (WG) to regulate boost pressure. However, this results in the intentional dumping of excess valuable exhaust energy leading to energy loss. This paper investigates the replacement of
Kodaboina, Raghu VamsiVorraro, GiovanniTurner, James W. G.
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
The increasing importance of hydrogen as alternative energy source to reduce CO2 emissions in the transport sector makes its adoption in spark-ignited engines an attractive and cost-efficient alternative to fuel cell-powered vehicles. Lean combustion is the preferred operating strategy for H2-engines in order to achieve performance targets, enhance efficiency and at the same time avoid critical knocking and pre-ignition phenomena. Additionally, an effective approach to lower cylinder temperatures, relevant engine-out NOx emissions and boost pressure requirements at the same time, is an external exhaust gas recirculation (EGR) system. The aim of this work is to analyze and compare the effects of exhaust gas recirculation on the combustion of a lean hydrogen mixture in a turbocharged 4-cylinder H2-ICE with direct injection. For this investigation a load point at 18 bar BMEP and 4000 rpm is selected with and without the utilization of additional external EGR. In this case, a BTE of 38
Schmelcher, RobinKulzer, Andre CasalGal, ThomasVacca, AntoninoChiodi, MarcoGrabner, PeterGschiel, Kevin
A former diesel heavy-duty engine was retrofitted to hydrogen operation to simultaneously facilitate the shift from fossil to renewable fuels and maximize the quantity of reusable engine parts. Simply changing the fuel in this case does not make a properly working engine; the burning process needs to be realized in a premixed flame regime, rather than a diffusional flame regime. Therefore, an additional ignition source is necessary. A well-known characteristic of hydrogen is the low need for ignition energy and the wide range of ignitable air/ fuel ratios. Both must be considered to reach a diesel engine equivalent performance. Port fuel injection (PFI) and direct injection (DI) are commonly used in spark-ignited internal combustion engines. Some disadvantages, such as weak volumetric efficiency and combustion abnormal phenomena like backfire, are connected to PFI. To further improve the volumetric efficiency, high boost pressures are needed. To maximize volumetric efficiency with DI
Rößlhuemer, RaphaelFellner, FelixFitz, PatrickPrager, MaximilianJaensch, Malte
Waste Heat Recovery is one of the most investigated and promising technologies for energy efficiency in the transportation sector. It consents to maintain the high-level technology of the present propulsion systems, based on Internal Combustion Engines, while increasing the overall engine and vehicle system efficiency. At the same time, the use of alternative fuels, like hydrogen, has the same crucial role to reduce harmful and greenhouse emissions, without overturn the existing mature technology. A hydrogen-fueled Internal Combustion Engine is proposed in this paper, equipped with waste heat recovery consisting in an additional radial turbine downstream the turbocharger of the engine (Turbo-Compound). The aim is to have a reduction of the specific consumption in most of the operating points of the engine, considering the effect of the recovery and the engine equilibrium rearrangement. The use of hydrogen increases recoverable enthalpy at the engine exhaust, which is intended to be
Di Battista, DavideCipollone, RobertoCorti, EnricoBrancaleoni, Pier PaoloDi Prospero, FedericoRavaglioli, Vittorio
Hydrogen is a promising fuel for internal combustion engines, offering the potential for efficient, environmentally friendly, and reliable operation. With a large number of technical challenges, there is currently no mass production of hydrogen-powered engines despite great efforts. One of the key challenges is the complexity of optimizing hydrogen combustion and its control. Despite the variety of proposed operation strategies, questions regarding their comparative efficiency, interrelation, and mutual influence remain open, particularly in turbocharged engines with direct multi-injection. To explore various hydrogen operation strategies, a mathematical simulation of a turbocharged hydrogen-powered engine was performed over its full range of loads and speeds. This study employed a modified mathematical model based on Wiebe functions, which describes the combustion of a premixed mixture in the flame front, diffusion combustion, and relatively slow combustion occurring behind the flame
Osetrov, OleksandrHaas, Rainer
The ported shroud casing treatment for turbocharger compressors is desirable for mitigating broadband/whoosh noise and enhancing boost pressures at low to mid flow rates. Yet, it is accompanied by elevated narrowband noise at the blade-pass frequency (BPF). Compressor BPF noise occurs at high frequencies where wave propagation is often multi-dimensional, rendering traditional planar wave silencers invalid. An earlier work introduced a novel reflective high-frequency silencer (baseline) targeting BPF noise in the 8-12 kHz range using an “acoustic straightener” that promoted planar wave propagation along arrays of quarter-wave resonators (QWRs). The design, however, faced challenges with high-amplitude tonal noise generation at specific flow conditions due to flow-acoustic coupling at the opening of the QWRs, thereby compromising the noise attenuation. The current study explores two QWR interface geometries that weaken the coupling, including linear and saw-tooth ramps on the upstream
Sriganesh, PranavSelamet, Ahmet
The future potential of an opposed-piston two-stroke (OP2S) engine has attracted the attention of researchers worldwide as it offers a high thermal efficiency and power-to-weight ratio with a simple engine configuration. This engine can be used with low-carbon fuels and hydrogen to reduce greenhouse gas emissions. However, the two-stroke operation has always been limited by its low scavenging efficiency and short-circuit of fresh charge. The current work is focused on optimizing scavenging efficiency and short-circuit in a small 200 cc single-cylinder OP2S SI engine using 3-D computational fluid dynamic (CFD) simulations. The effect of four parameters, namely, area of intake ports, area of exhaust ports, and angular orientations of intake ports (swirl and tilt) on scavenging efficiency and short-circuit, has been assessed and optimized. A Latin-hypercube based Design of Experiments (DoE) methodology is used to sample the design space spanning over a range of four parameters. A response
Singh, SaurabhBoggavarapu, PrasadHimabindu, M.Ravikrishna, R.V.
In the domain of new energy vehicles, the role of the bidirectional DC/DC converter holds great significance. Based on the two-phase interleaved parallel BOOST topology, this paper adopts the approach of combining the double-loop PI controller with the feedforward control algorithm respectively from the aspects of following the target voltage and response speed, and conducts research on the performance of the DC/DC converter in BOOST mode in terms of output voltage overshoot, steady-state error, and system adjustment time. The test results fully validate the feasibility and effectiveness of the design scheme. The test results indicate that the double-loop PI control + feedforward control method accelerates the circuit response speed, reduces the steady-state error, and significantly reduces the input/output current ripple, fully verifying the feasibility and effectiveness of the control method. Furthermore, regarding the overvoltage issue that occurs after a large accelerator pedal in
Jing, JunchaoLiu, YiqiangZuo, BotaoHuang, WeishanDai, Zhengxing
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
Dexing, LaoLuping, YanQinghai, SuiLong, CaoShang, GaoZhigang, ChenMingxing, RenZhicheng, Chen
A comprehensive experimental study of hydrogen–diesel dual-fuel and hydrogen-hydrotreated vegetable oil (HVO) dual-fuel operations was conducted in a single-cylinder diesel engine (bore 85.0 mm, stroke 96.9 mm, and compression ratio 14.3) equipped with a common rail fuel injection system and a supercharger. The hydrogen flow rate was manipulated by varying the hydrogen excess air ratio from 2.5 to 4.0 in 0.5 increments. Hydrogen was introduced into the intake pipe using a gas injector. Diesel fuel and HVO were injected as pilot fuels at a fixed injection pressure of 80 MPa. The quantity of pilot fuel was set to 3, 6, and 13 mm3/cycle. The intake and exhaust pressures were set in the range of 100–220 kPa in 20 kPa increments. The engine was operated at a constant speed of 1,800 rpm under all conditions. The pilot injection timing was varied such that the ignition timing was constant at the TDC under all conditions. The results demonstrated that smoke was lower when HVO was used as the
Mukhtar, Ghazian AminTange, KotaNakatani, SatoshiHoribe, NaotoKawanabe, HiroshiMorita, GinHiraoka, KenjiKoda, Kazuyuki
The Single Cylinder Research Engine (SCRE) at the Institute of Internal Combustion Engines and Powertrain Systems is equipped with a variable valve train that allows to switch between regular intake valve lift and early intake valve closing (Miller). On the exhaust side, a secondary exhaust valve lift (SEVL) on each valve is possible with adjustable back pressure and thus the possibility of realizing internal EGR. In combination with alternative fuels, even if they are Drop-In capable as HVO, properties differ and can influence the emission and efficiency behavior. The investigations of this paper are focusing on regenerative Drop-In fuel (HVO), fossil fuel (B7), and an oxygenate (OME), that needs adaptions at the engine control unit, but offers further emission potential. By commissioning a 2-stage boost system, it is possible to fully equalize the air mass in Miller mode compared to the normal valve lift. This enables a comprehensive analysis of the behavior of the fuels under
Knost, FriedemarBeidl, Christian
The fast acceleration of GHG (CO2 in particular) emitted by human activities into the atmosphere is accelerating the average temperature increase of our globe causing heavy climate change. This phenomenon has triggered a strong pressure on GHG emission reduction in all the human activities including the transportation sector which contributes for the 29% to the total emissions in EU [1]. A mitigation to this tendency can come from synthetic fuels: when produced by using clean energy, they can be considered CO2 neutral. H2 is the building block of synthetic fuels and can be used in spark ignited engines where releases the energy accumulated during its production. This solution is particularly attractive for HD applications thanks to the high energy density. H2 can be burned in a quite wide range of λ, but staying on 2,2 the amount of engine out NOx will be low enough for the use on a 13L engine with a relatively simple aftertreatment system. This λ value is difficult to maintain in the
Andrisani, NicolaBagal, Nilesh
This work aims at investigating the optimal configuration of an internal combustion engine fueled with bio-ethanol for improving its brake power and efficiency as well as for reducing the NOx emissions, in stationary applications. A turbocharged spark ignition engine characterized by a single-point injection was preliminarily considered; subsequently, a direct injection configuration was investigated. For both cases, a 1-D numerical model was developed to compare the injection configurations under stoichiometric conditions and different spark timings. The analysis shows that the direct injection guarantees: a limited improvement of brake power and efficiency when the same spark timing is adopted, while NOx emissions increases by 20%; an increase of 6% in brake power and 2 percentage points in brake thermal efficiency by adopting the knock limited spark advance, but an almost double NOx emissions increase. In order to exploit the advantages of the direct injection, an engine
Perrone, DiegoFalbo, LuigiFalbo, BiagioCastiglione, Teresa
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine (ICE) as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations, due to their reduced emission levels and high thermodynamic efficiency. Lean charge is suitable for the purpose of passenger car applications, where the demand of mid/low power output does not require an excessive amount of air to be delivered by the turbocharging unit, but can difficulty be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of feeding conditions near the stochiometric value is explored in the field of high performance engines, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model is applied to the modeling of a V8 engine fueled with direct
Montenegro, GianlucaMarinoni, AndreaDella Torre, AugustoD'Errico, GianlucaOnorati, AngeloCerri, Tarcisio
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed. The dynamic effects of diesel engine intake boost pressure, rotated speed, and intake pipe geometrical
Yang, ShuaiYan, KaiLiu, HaifengFu, YahaoLiu, HairanLi, Tong
A potential route to reduce CO2 emissions from heavy-duty trucks is to combine low-carbon fuels and a hybrid-electric powertrain to maximize overall efficiency. A hybrid electric powertrain can reduce the peak power required from the internal combustion engine, leading to opportunities to reduce the engine size but still meet vehicle performance requirements. Although engine downsizing in the light-duty sector can offer significant fuel economy savings mainly due to increased part-load efficiency, its benefits and downsides in heavy-duty engines are less clear. As there has been limited published research in this area to date, there is a lack of a standardized engine downsizing procedure. This paper uses an experimentally validated one-dimensional phenomenological combustion model in a commercial engine simulation software GT-SUITE™ alongside turbocharger scaling methods to develop downsized engines from a baseline 6cyl (2.1 L/cyl, 26 kW/L) pilot-ignition, direct-injection natural gas
Balazadeh, NavidMunshi, SandeepShahbakhti, MahdiMcTaggart-Cowan, Gordon
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA. In this study, a comparative study has been conducted to investigate the efficacy of multi-coil and multi-core ignition
Yu, XiaoLeblanc, SimonWang, LinyanZheng, MingTjong, Jimi
Diesel-fueled heavy-duty vehicles (HDVs) can be retrofitted with conversion kits to operate as dual-fuel vehicles in which partial diesel usage is offset by a gaseous fuel such as compressed natural gas (CNG). The main purpose of installing such a conversion kit is to reduce the operating cost of HDVs. Additionally, replacing diesel partially with a low-carbon fuel such as CNG can potentially lead to lower carbon dioxide (CO2) emissions in the tail-pipe. The main issue of CNG-diesel dual-fuel vehicles is the methane (CH4, the primary component of CNG) slip. CH4 is difficult to oxidize in the exhaust after-treatment (EAT) system and its slip may offset the advantage of lower CO2 emissions of natural gas combustion as CH4 is a strong greenhouse gas (GHG). The objective of this study is to compare the emissions of an HDV with a CNG conversion kit operating in diesel and dual-fuel mode during highway operation. Road tests were conducted on a three-axle Class-8 highway semi-trailer tractor
Dev, ShouvikQi, AiduAnderson, AndrewDahlseide, AustinSmith, BrettLussier, Simon-AlexandreGuo, HongshengRosenblatt, Deborah
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions. The key advantage of six-stroke engine operation is the ability to switch the combustion mode among kinetical controlled mode (KCM), kinetically-driven mixing control mode (K-MCM) and mixing controlled mode (MCM) in the second power stroke (PS2) providing a wider
Purushothaman, Ashwin KarthikRa, YoungchulHa, Kyoung PyoZhu, ShengrongUllal, Ankith
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation. This work covers the baseline
Pope, AaronKim, KennethSchroen, ErikClerkin, PeterMusser, MarshallMattson, JonathanMeininger, RikGibson, JosephKang, Sang-GukKruger, KurtHepp, KyleKweon, Chol-Bum
The fuel economy and emission of the hybrid vehicle depend largely on the selected engine. And the dedicated hybrid engine (DHE) can be controlled to operate in the optimal operating range because DHE can be decoupled from the vehicle transmission system. The main purpose of this paper is to improve the thermal efficiency of the diesel engine under common operating conditions combined with high compression ratio (CR) and early or late intake valve closing (IVC) angle. According to the vehicle road spectrum data, the optimal operating range of the engine is determined to be 1200-1400 rpm and 70%-90% load. Then CR and IVC angle are optimized by using the calibrated one-dimensional thermodynamic model of the engine under limited peak combustion pressure (Pmax). The results show that the adjustment of IVC angle and CR can control the thermal state at the end of compression stroke. The combination of CR and IVC angle can achieve the optimal fuel consumption improvement. The minimum brake
Wang, XiaosaLin, ZhiqiangWang, HuHe, HuaWang, XiaohuiLiang, Depu
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
Rönn, KristianLarmi, MarttiPehlivanlar, BenjaminGöbel, ChristophPischinger, StefanKarvo, AnnaLehto, KalleFryjan, Johannes
In order to achieve the climate targets, a mix of different powertrain technologies must be pursued to effectively reduce emissions. By producing hydrogen based on renewable energy sources, it becomes a reasonable choice for fueling internal combustion engines. The specific molecular properties of hydrogen thereby open up new possibilities for favorably influencing the combustion process of engines. The present paper deals with the analysis of a single-cylinder engine with passive pre-chamber ignition and a port fuel injection system, which was adapted for lean hydrogen operation. In this way, the test unit was operated in various load and speed ranges with lambda values from 1.5 to 2.5 and achieved up to 23 bar indicated mean effective pressure. The focus of this work is on the numerical investigation of the hydrogen combustion and its effects on the engine system. Special attention is hereby paid to the influence of different lambda operations. Simulations were carried out to
Gal, ThomasVacca, AntoninoChiodi, MarcoSchmelcher, RobinKulzer, AndreBucherer, SebastianRothe, PaulSobek, FlorianGottwald, TheoKraljevic, Ivica
The race towards zero carbon emissions is ongoing with the need to reduce the consumption of fossil energy resources. This demands immediate and reliable developments regarding technical environmentally friendly solutions for the power and transportation sectors. An alternative way to achieve a carbon-free powertrain is the use of green hydrogen for internal combustion engines. In this work the self-designed Fraunhofer single-cylinder engine with a displacement volume of 430 mm3 developed for extreme lean combustion and passive pre-chamber ignition was adapted for hydrogen engine operation. With hydrogen combustion, the customized cooling system resulting in low metal temperatures is simulated and optimized to avoid hot spots in the combustion chamber. The investigated single-cylinder engine is characterized by a compression ratio of 12.2, port fuel injection and a conventional spark plug. Based on the results, the engine is operated with a passive pre-chamber to investigate its
Bucherer, SebastianRothe, PaulSobek, FlorianGottwald, TheoKraljevic, IvicaVacca, AntoninoGal, ThomasChiodi, MarcoKulzer, Andre
With the objective of further enhancing the engine performance of the Acura brand and the environmental performance of the Honda brand in relation to the North American market, where there is a need for powertrains with driving force margin for SUVs and pickup trucks, Honda has developed a 3.0 L turbocharged engine and a 3.5 L naturally aspirated engine. Both engines adopt the same newly developed valvetrain structure and share main engine geometries. These newly developed engines are equipped with a compact new valvetrain structure combining Hydraulic Lash Adjusters and roller rocker arms with a valve-lifter based Variable Cylinder Management system which has an internalized switching mechanism. This newly developed valvetrain made it possible to incorporate dual overhead cam structure without enlarging the cylinder head shape relative to the single overhead cam structure. It further achieves this while permitting application of a Variable Cylinder Management system and of a Variable
Taki, ShotaroKonishi, YukioTomitani, YukiIshii, KazumasaImakita, AkioKawawa, Satoshi
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. As CO2 emission has been reduced through electrification such as hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), internal combustion engines (ICEs) equipped in those powertrain systems are still necessary for the foreseeable future, and continuous efforts to improve fuel efficiency are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been researched as a next generation of turbocharged gasoline engines. Further utilization of turbochargers is expected. Compared with turbocharged downsized gasoline engines available in the current market, much higher boost pressure must be utilized to realize the super lean-burn engines. As a result, compressor housing temperature will be very high compared with the current market one. Blow-by gas
Ishizaki, NoriyaHirano, SatoshiKuma, HiroshiUra, Haruto
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low. In this paper, the methodology was constructed to predict compressor efficiency
Ura, HarutoKuma, HiroshiHirano, SatoshiIshizaki, Noriya
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Cooling Systems Standards Committee
The current market demand and ever tightening global legislation mandate automotive OEMs to improve vehicle fuel consumption and reduce carbon based emissions. One approach to do so is by downsizing of gasoline engines. The reduced engine displacement causes lesser pumping and frictional losses and lower gas to wall heat transfer making engine more efficient. While downsizing an engine can enhance fuel economy it also brings down the power output. The power lost can be compensated by integrating a turbocharger to the engine to increase the boost pressure however, this again may create an abnormal combustion event known as low-speed pre-ignition (LSPI). The increase of pressure and temperature inside the combustion chamber at high loads also leads to a pre-ignition induced super knock and in severe cases, LSPI leads to broken piston rings, damaged pistons and bent connecting rods. Thus LSPI has become a great concern since it operates in a very common driving pattern of rapidly
Deva, DineshDhyani, VipinKansara, ShekharMuralidharan, M.
Single-cylinder engines in mass production are generally not turbocharged due to the pulsated and intermittent exhaust gas flow into the turbocharger and the phase lag between the intake and exhaust stroke. The present work proposes a novel approach of decoupling the turbine and the compressor and coupling them separately to the engine to address these limitations. An impulse turbine is chosen for this application to extract energy during the pulsated exhaust flow. Commercially available AVL BOOST software was used to estimate the overall engine performance improvement of the proposed novel approach compared to the base naturally aspirated (NA) engine. Two different impulse turbine layouts were analyzed, one without an exhaust plenum and the second layout having an exhaust plenum before the power turbine. The merits and limitations of both layouts are compared in the present study. An optimum nozzle area ratio of 50% for the first layout was arrived, which provided better net engine
Ramkumar, JKrishnasamy, AnandRamesh, A
Over the years, much progress has been made in automotive vehicle technology to achieve high efficiency and clean combustion. Reactivity controlled compression ignition (RCCI) is one of the most widely studied high-efficiency, clean combustion strategies. However, complex dual-fuel injection systems and associated controls, high unburned hydrocarbon (UHC), and carbon monoxide (CO) emissions limit RCCI use in practical applications. Recently, single fuel RCCI strategies are gaining more attention as the above shortcomings are effectively addressed. Homogeneous charge with direct injection (HCDI) is a single fuel RCCI strategy that results in high thermal efficiency and lower UHC and CO emissions. In HCDI, the port-injected diesel fuel vapour and air are inducted during the intake stroke and ignited with direct-injected diesel fuel near the end of the compression stroke. However, high oxides of nitrogen (NOx) make HCDI less viable for practical applications. Water vapour dilution proved
Chaurasiya, RishabhKrishnasamy, Anand
Super-knock is a phenomenon triggered by pre-ignition and has limited the design envelope of internal combustion engines (ICEs) in terms of power density. This poses a huge challenge for the automotive industry where engine sizes have been continuously decreasing due to the demand for weight savings and integration with electrified powertrains. Such downsized engines typically require increased boost pressure, availing conditions conducive to pre-ignition, which in turn may trigger super-knock. Traditionally, this and other forms of knock have been managed by way of a “detection and mitigation” approach in place of “perdition and avoidance” due to an evolving understanding of corresponding combustion dynamics, as well as the incapability of emerging real-time computational methods to perform and actuate over the timescale required. In this study, a data-driven algorithm is used to extract (and adapt) a globally linearized system representation using eigen-time-series, isolating the
Manzoor, Waqas A.Rawashdeh, SamirMohammadi, Alireza
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model. The in-cylinder pressure results show that, across the range of input conditions, the physics-based
Pan, WangBekdemir, CemilWillems, Frank
Turbochargers are widely employed in internal combustion engines, in both, diesel and gasoline vehicle, to boost the power without any extra fuel usage. Turbocharger comes in different sizes based upon the boost pressure to increase. Capacity of turbocharger are available in great range in the market which are designed to match the requirement. From structural point of view, key component of an automotive turbocharger is rotor. This rotor consists of compressor wheel, turbine wheel, shaft and bearing (journal/ball) mainly. In industries, design & development of turbocharger rotor for its dynamic characteristics is done using virtual engineering technique (Computer Aided Engineering). Multibody dynamic (MBD) analysis simulation is one of the best approaches which is used to study the rotor in great details. In this current MBD procedure fluid-structure interaction problem is solved by modelling oil film in the journal bearing and solving it using “Reynolds equation”. Shaft displacement
Shrivastava, SandeepSinha, AnkurRay, SudiptoDu, IsaacBegin, Louis
Numerical simulation represents a fundamental tool to support the development process of new propulsion systems. In the field of large-bore dual-fuel (DF) engines, the engine simulation by means of fast running numerical models is nowadays essential to reduce the huge effort for testing activities and speed up the development of more efficient and low-emissions propulsion systems. However, the simulation of the DF combustion by means of a zero-dimensional/one-dimensional (0D/1D) approach is particularly challenging due to the combustion process evolution from spray autoignition to turbulent flame propagation and the complex interaction between the two fuels. In this regard, in this activity a 0D/1D multi-zone DF combustion model was developed for the simulation of the combustion process in large-bore DF engines. The model combines a multi-packet approach for tracking the evolution and the autoignition of the pilot fuel with an entrainment and burn-up approach for the simulation of the
Millo, FedericoAccurso, FrancescoPiano, AndreaFogla, NavinCaputo, GennaroCafari, AlbertoHyvönen, Jari
This document describes methodologies to determine the causes blow-by oil consumption caused by the power cylinder.
Piston and Ring Standards Committee
This research examines the interdependence of the control strategies of a high-pressure exhaust gas recirculation (HP-EGR) and a variable geometry turbocharger (VGT) on a medium-duty diesel engine in transient load operation. The effect on fuel economy, particulate and NO production were investigated through multiple tests of synchronously controlled VGT and EGR positions. An optimal steady-state strategy of the above determinants was defined as a function of the VGT’s boost pressure and EGR percent mass. The optimal steady-state strategy was then used to investigate the interdependence of the VGT and HP-EGR in transient load acceptence events which occurred over a range of 2 to 10 seconds. The faster transients increased deviations of boost and EGR levels from steady-state calibration values which consequently led to corresponding fuel consumption and particulate matter emission increases. These tests established that under the transient conditions the control strategies implemented
Pennington PhD, JustinPuzinauskas, Paulius V.Cook, James
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates. This work
Curran, ScottSzybist, JamesKaul, BrianEaster, JordanSluder, Scott
Fun to drive and drivability are important issues in modern vehicles, and the propulsion system plays a key role in achieving these goals. Today most engines are characterized by the presence of a turbocharging system to achieve a high level of specific power and efficiency. Unfortunately, turbocharged engines are characterized by a delay in the delivery of toque, especially at low load and low speed, a phenomenon commonly called turbo-lag. In this paper an innovative turbocharging system is studied with the aim of providing a solution to this annoying behavior; a hybrid boosting system consisting of a traditional turbocharger and an electrically assisted compressor is analyzed. This architecture, especially thanks to the good dynamic behavior of the e-compressor, achieves the goal of an important reduction in terms of time-to-boost, providing an important improvement in engine readiness. The experimental campaign is carried out at the test bench for components of the propulsion system
Usai, VittorioMarelli, Silvia
The hydrogen internal combustion engine (H2ICE) has received increasing attention in various industry sectors as it produces nearly zero carbon emissions. However, it has been reported that the power output is lower than the gasoline engine especially for port fuel injection (PFI) type hydrogen engines. It is mainly due to low density of the hydrogen which reduces volumetric efficiency. A turbocharging system can improve the power output by pushing more air into the combustion chamber. However, it was observed that incorrect matching hampers the increment of the power output which results in low specific power (<30kW/L). To achieve the equivalent performance of a turbocharged PFI gasoline engine, the required boosting system for the PFI H2ICE has been numerically investigated using 1D engine simulation. As a base engine, a 1.6L turbocharged PFI gasoline engine was used. The validated base engine model was modified for the hydrogen operation and the simulation was carried out at wide
Kim, JeyoungRajoo, Srithar
Items per page:
1 – 50 of 521