Browse Topic: Hybrid engines
ABSTRACT This paper will incorporate product development methodology from the FED program where AVL is responsible in collaboration with World Technical Services Inc., for delivering a fully developed hybrid propulsion system integrated into the demonstrator vehicle. Specifically, the paper will discuss via case study the unique methodology employed by AVL Powertrain to develop, validate, and integrate our hybrid propulsion system into the FED vehicle. Content will include traditional and virtual powertrain development methodologies that maximize product development efficiency, ensure a robust final design, and minimize development costs. Hybrid controls development, calibration techniques and vehicle design issues will also be discussed
ABSTRACT This paper will discuss via case study both military and civilian hybrid vehicle development focusing on the processes required from the selection of the hybrid propulsion system architecture, component down-selection using advanced modeling and simulation tools, body/chassis development and integration, design verification testing using an advanced dynamometer test facility, and final full vehicle validation on the test track. The paper will incorporate results from the FED (Fuel Efficiency Demonstrator) program where AVL is responsible in collaboration with World Technical Services Inc., for delivering a fully developed hybrid propulsion system integrated into the demonstrator vehicle
After three years away from the U.S. market with its range-topping SUV, the Land Cruiser, Toyota unveiled the redesigned 2024 Land Cruiser in Salt Lake City on Aug. 1. The model, long known around the world for its durability and offroad credentials, arrives with the SUV competition hotter than ever. The company said the new model will start at around $55,000. The new Land Cruiser has just one engine option, the i-Force Max turbo 2.4-L four-cylinder hybrid that generates 326 hp and 465 lb-ft (630 Nm) that is routed through an 8-speed automatic transmission. All models are equipped with what Toyota classifies as a “full-time four-wheel-drive system” with a lockable center differential and an electronically controlled 2-speed transfer case to impart high- and low-range capability. Also standard is a lockable rear differential to apportion power in a 50/50 ratio across the rear axle
As part of its path to carbon neutrality, Kubota Engine engineers have developed a new 3.8-liter hydrogen engine that was introduced at CONEXPO 2023 in Las Vegas. The 4-cylinder spark-ignited engine employs port fuel-injection and provides 85 kW (114 hp), which is the output required for a 45-kVA generator, the company notes. Kotaro Shiozaki, PR manager, Industrial Engine at Kubota Corp., said that hybrid powertrains also are an effective solution for reducing CO2 from industrial engines, and he's confident they will be more than just an interim solution. Kubota displayed three hybrid solutions: a P0 micro-hybrid that will be available later this year, a P1 hybrid that provides brief periods of motor assist when high output is required and a P2 hybrid engine scheduled for production in 2025 that offers electric-motor drive
Allison Transmission Indianapolis, IN 317-242-5000
Although the brake thermal efficiency of the state-of-the-art Atkinson-cycle hybrid engines have reached 41%, such engines typically have a low specific power. The ideal hybrid engines for SUVs should have a high thermal efficiency as well as a high specific power. Jiangling Motors recently developed a 4-cylinder, 1.5L TGDI hybrid Miller engine for powering mid-size SUVs, which has achieved 42% brake thermal efficiency, 19.3-bar BMEP, and 73.3-kW/L specific power. The engine has a high compression ratio, a long stroke, and is equipped with a low-pressure EGR system. It can operate with the stoichiometric mixture on the full engine map, with the help of the water-cooled exhaust manifold and the intelligent thermal management system
Benchmark Space Systems Burlington, VT 678-576-6126
Vehicle manufacturers are experiencing a shift in legislation and customer attitudes towards powertrain technologies. To support the pathway towards net-zero emissions by 2050, technologies that significantly reduce CO2 emissions will be needed. This will require increasing levels of electrification, and in the areas of compact cars and urban transportation, the adoption of pure battery electric powertrains is expected to become the dominant technology. For large passenger cars and light commercial vehicles (LCVs) meeting all customer requirements, including range, payload, towing capability, and purchase cost with a pure electric vehicle is challenging and requires the use of heavy and expensive battery packs, which have a high embedded CO2 content. The study builds on the work previously presented on the MAHLE modular hybrid powertrain (MMHP) concept and examines the suitability of this powertrain configuration to meet the future needs of large passenger cars and LCVs. In the MMHP
In Plug in hybrid electric vehicles (PHEVs), the management of the main drivetrain components and the shift between pure electric and hybrid propulsion is decided by the on-board energy management system (EMS). The EMS decisions have a direct impact on CO2 emissions and need to be optimized to achieve as low emissions as possible. This paper presents optimization methods for EMS algorithms of a parallel P2 PHEV. Two different supervisory control algorithms are examined, employing simulations on a validated PHEV platform. An Equivalent Consumption Minimization Strategy (ECMS) algorithm is implemented and compared to a rule-based one, the latter derived by back-engineering of available experimental data. The different EMS algorithms are analyzed and compared on an equal basis in terms of distance, demanded energy and state of charge levels over different driving cycles. A sensitivity analysis on component sizing interaction with algorithm performance is conducted to check robustness of
Accurate determination of driveshaft torque is desired for robust control, calibration, and diagnosis of propulsion system behaviors. The real-time knowledge of driveshaft torque is also valuable for vehicle motion controls. However, online identification of driveshaft torque is difficult during transient drive conditions because of its coupling with vehicle mass, road grade, and drive resistance as well as the presence of numerous noise factors. A physical torque sensor such as a strain-gauge or magneto-elastic type is considered impractical for volume production vehicles because of packaging requirements, unit cost, and manufacturing investment. This paper describes a novel online method, referred to as Virtual Torque Sensor (VTS), for estimating driveshaft torque based on Machine-Learning (ML) approach. VTS maps a signal from Inertial Measurement Unit (IMU) and vehicle speed to driveshaft torque. The unique advantage is that VTS does not explicitly rely on the first principles
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions. In this paper, a
To achieve higher brake thermal efficiency (BTE) and improve vehicle economy, the new development of dedicated hybrid engine (DHE), adopting the Atkinson or Miller cycle, has been becoming the current development trends. A base 1.5L natural aspiration (NA) engine with deep Atkinson cycle has been developed for dedicated hybrid vehicle application, which can achieve the highest BTE of 41.19%. In order to achieve higher BTE, several potential technologies which are easy for mass production application have been studied progressively, such as, higher compression ratio (CR), optimized exhaust gas recirculation (EGR) pick point, lower EGR temperature, higher EGR rate, higher RON number fuels, heat transfer reduction by polishing valve head, light boost, lower viscosity oil. The results show the combined technology application can achieve the highest engine BTE of 42.59%. This paper provides the studied technical routine and the achieved benefits step by step
BYD recently introduced its new DM-i (Dual Mode-Intelligent) plug-in hybrid architecture with a new dedicated 1.5NA (Naturally Aspirated) high-efficiency engine, which can reach a peak of 43% brake thermal efficiency. With this architecture, the vehicle is mainly driven by motors and engine only starts when required. This requires that once started, the engine can reach its best working temperature as quick as possible. To achieve this target, a new intelligent thermal management system was designed. This system adopted an advanced split cooling strategy to control the flow ratio between cylinder block and head, which was realized by the combination of one electronic thermostat and one wax thermostat. An electronic water pump was used to actively control the coolant flow rate. Together with the intelligent control of thermal needs under all working conditions, the new thermal management system realized the following benefits: faster engine warm-up, better fuel economy and lower
Individual transport plays a considerable role in global greenhouse gas emissions. Hence, worldwide legislation increases the demands on the automotive industry with regard to emissions. Because internal combustion engines will likely play an important role in the future transport, particularly in hybrid propulsion systems, further improvement of the combustion system is necessary. Therefore, the potential of lean burn combustion in combination with other technologies is investigated. The primary focus is on the improvement of SI engine efficiency. For the investigations conducted, an extremely downsized SI single cylinder research engine is upgraded with various engine technologies. The stroke-to-bore ratio is increased to 1.5, leading to higher piston speeds. The resulting increase in tumble and hence turbulent flame speed supports the combustion performance of highly diluted mixtures. In order to further increase the thermodynamic efficiency, miller timings are realised in the form
Sky Power Bad Homburg, Germany +49 (0) 6172-2654258
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment. Three key off-road applications were
Items per page:
50
1 – 50 of 155