Browse Topic: Air cooled engines
Collaborative research outlined in this paper documents recent engine and emission performance of a newer, more robust small SI engine across a sweeping range of relative humidity (RH) having fixed intake air temperature and pressure. The experimental results will show that power correction references to SAE J1349 as well as humidity correction (Kh) reference in EPA 40 CFR §1065 may generically be applied, but do not accurately compensate for the extent of correction required. The test results shared from this particular performance testing of a Kohler KT745 carbureted engine develops the case for a more diverse and less conservative approach to a one-size-fits all strategy related to humidity corrections within the small SI testing community. Moreover, humidity effects for both observed and corrected power, as well as emission corrected constituents (not just NOx) are generally greater than would otherwise be assumed from the literature. From these results, facilities without intake
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment
Traditionally, most charge air coolers (CACs) have been constructed using the Nocolok aluminum brazing process. The Nocolok process uses flux, some of which remains after the manufacturing process, and migrates through the intake tract to the engine during normal use. This migration and deposition on engine components can cause a variety of issues with engine operation. Currently the only alternative to Nocolok brazed CACs for engines sensitive to flux migration is vacuum brazing, which comes at a significant price increase. In the effort to reduce cost and increase efficiency, there is interest in whether a Nocolok brazed CAC with a reduced amount of flux residue can be successfully applied to flux-sensitive engines. This paper compares the impacts of Nocolok flux migration on engine hardware between a traditional Nocolok brazed CAC versus a Nocolok brazed CAC with a reduced amount of flux residue using a simulated vehicle operation test and its analysis, and examines whether a CAC
This SAE standard defines the most commonly used terms for pistons. These terms designate either types of pistons or certain characteristics and phenomena of pistons
This document discusses formulae considered applicable to aircraft engines having integral supercharging without aftercooling, and using gasoline introduced at the entrance to the supercharger or directly into the cylinders. Such engines are normally designated as single and two speed engines. Correction formulae for engines having two stage or exhaust turbo supercharging will not be discussed. Corrections for engines having a high degree of integral supercharging will be discussed in general terms only and no specific formulae will be presented. The correction formulae and methods listed are empirical and subject to error due to conditions beyond the scope of known corrections. Usage has indicated, however, that the correction formulae listed will provide a satisfactory approximation of power output under standard conditions
In the early 1980's, some promising research and development efforts focused on powder metallurgy revealed that aluminum alloys containing 4 wt% cerium exhibit high temperature mechanical properties exceeding those of the best commercial aluminum casting alloys currently in production. Cerium oxide is an abundant rare earth oxide that is often discarded during the refining of more valuable rare earths such as Nd and Dy. Therefore, the economics are compelling for cerium as an alloy additive. In this paper, we report select results obtained during an investigation of the castability of aluminum-cerium alloys and determine compositional modifications that may be required to ensure the compatibility of the alloy with near net shape casting methods such as advanced sand casting, die casting, permanent mold casting and squeeze casting. Al-Ce alloys were cast in binary composition of 6-16 wt% Ce. Commercially pure aluminum ingots were melted and held at approximately 785°C. Ternary and
The performance and exhaust emissions of a commercially available, propane fueled, air cooled engine with Electronic Fuel Injection (EFI) were investigated by varying relative Air to Fuel Ratio (λ), ignition timing, and Compression Ratio (CR). Varying λ and ignition timing was accomplished by modifying the EFI system using TechniCAL Industries’ engine development software. The CR was varied through using pistons with different bowl sizes. Strong relationships were recorded between λ and ignition timing and the resulting effect these parameters have on engine performance and emissions. Lean operation (λ > 1) has the potential to significantly reduce NOx production (110 g/kW-hr down to 5 g/kW-hr). Unfortunately, it also reduces engine torque by up to an order of magnitude (31 Nm down to 3 Nm). Moving ignition initiation to earlier in the compression stroke, 10o to 40o Before Top Dead Center (BTDC), improved engine performance considerably (25% improvement in brake torque) in the presence
Still today, two-stroke engine layout is characterized by a wide share on the market thanks to its simpler construction that allows to reduce production and maintenance costs respecting the four-stroke engine. Two of the main application areas for the two-stroke engines are on small motorbikes and on handheld machines like chainsaws, brush cutters, and blowers. In both these application areas, two-stroke engines are generally equipped by a carburettor to provide the air/fuel mixture formation while the engine cooling is assured by forcing an air stream all around the engine head and cylinder surfaces. Focusing the attention on the two-stroke air-cooling system, it is not easy to assure its effectiveness all around the cylinder surface because the air flow easily separates from the cylinder walls producing local hot-spots on the cylinder itself. This problem can be bounded only by the optimization of the cylinder fin design placed externally to the cylinder surface. In the present paper
Small power diesel engines are most demanding product in Indian market for stationary applications like power genset, agricultural purpose etc. The upcoming 2013 CPCB emission norms for diesel genset engines below 19 kW power rating are the most stringent one in the world. There is a need not only to upgrade technologies pertinent to the latest emission norms but also to reduce the product cost. This paper presents various design strategies used to meet the desired engine performance and emission levels for development of a series of small power diesel genset engines having bore dia. ranging from 76 mm to 120 mm. Design and development of single and two cylinder NA diesel engines has been carried out with the help of CAD/CAE, design analysis tools, in-house developed algorithms and available statistical database Simulation codes are used for design analysis of engine subsystems like valve train, power train and flow analysis of air cooled engine in order to make the product technically
This document discusses formulae considered applicable to aircraft engines having integral supercharging without aftercooling, and using gasoline introduced at the entrance to the supercharger or directly into the cylinders. Such engines are normally designated as single and two speed engines. Correction formulae for engines having two stage or exhaust turbo supercharging will not be discussed. Corrections for engines having a high degree of integral supercharging will be discussed in general terms only and no specific formulae will be presented. The correction formulae and methods listed are empirical and subject to error due to conditions beyond the scope of known corrections. Usage has indicated, however, that the correction formulae listed will provide a satisfactory approximation of power output under standard conditions
Engine life and effectiveness can be improved with effective cooling. In designing and optimization process, simulation plays a vital role. The cooling mechanism of the air cooled engine is mostly dependent on the fin design of the cylinder head and block. The heat is conducted through the engine parts and convected to air through the surfaces of the fins. Insufficient removal of heat from engine will lead to high thermal stresses and lower engine efficiency. To simulate the cooling mechanism of the naturally aspirated engines, Three Dimensional CFD analyses with the SC/Tetra code is done. This gives a good scope in analyzing the existing fin design and proposes the optimized design. The boundary conditions required for carrying the CFD analysis such as the heat transfer co-efficient, cylinder temperature, has been generated by carrying One Dimensional engine cycle simulation. Engine assembly is imported into SC/Tetra code and conjugate heat transfer analysis is conducted to understand
The China III stage today represents the most stringent motorcycle emission rule in the world, mixing the European standards for tailpipe emissions with the United States rules for durability and evaporative emissions. On the other hand Chinese vehicles are based on small engines that ask for affordable, compact and simply solutions. This scenario drove Dell'Orto to develop a tailored engine management system, leading to a new generation of the existing electronic carburation system ECS, that features an oxygen sensor closed-loop control as well as a throttle contactless linear sensor. This paper presents the development of the second generation ECS for two- and three-wheeler Chinese vehicle application. System conceptualization, components design, control strategies, experimental development and durability testing are shown for a single cylinder air cooled engine application. According to the operating condition and the driver demand, the air to fuel ratio AFR is pre-set by means of a
This standard is intended to provide a method to obtain repeatable measurements that accurately reflect true engine performance in customer service. Whenever there is an opportunity for interpretation of the standard, a good faith effort shall be made to obtain the engine’s typical in-service performance and avoid finding the best possible performance under the best possible conditions. Intentional biasing of engine component or assembly tolerances to optimize performance for this test is prohibited
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
With the interest in global environmental issues growing in recent years, the demand for the reduction of exhaust gas emission and improvement in fuel consumption for small motorcycles has increased greatly. Recently, small motorcycles have been marketed equipped with an electronically controlled fuel injection system effective in reducing emissions and enhancing fuel consumption by accurately controlling the air-fuel ratio. The small motorcycles' market comprises mainly ASEAN countries, and the majority of the motorcycles consist of reasonably priced models with air-cooled engines. Fuel injection systems have already been adopted for motorcycles equipped with water-cooled engines in the markets of advanced countries, mostly in EU. Given the above situation, two issues must be addressed to adopt a successful fuel injection system for air-cooled, low-priced small motorcycles. First, the fuel injection systems' components must be protected from the thermal influence of air cooled engines
This standard is intended to provide a method to obtain repeatable measurements that accurately reflect true engine performance in customer service. Whenever there is an opportunity for interpretation of the standard, a good faith effort shall be made to obtain the engine’s typical in-service performance and avoid finding the best possible performance under the best possible conditions. Intentional biasing of engine component or assembly tolerances to optimize performance for this test is prohibited
This standard is intended to provide a method to obtain repeatable measurements that accurately reflect true engine performance in customer service. Whenever there is an opportunity for interpretation of the standard, a good faith effort shall be made to obtain the engine’s typical in-service performance and avoid finding the best possible performance under the best possible conditions. Intentional biasing of engine component or assembly tolerances to optimize performance for this test is prohibited
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations. The existence of other international test cycles
This SAE Standard defines the most commonly used terms for pistons. These terms designate either types of pistons or certain characteristics and phenomena of pistons. The terms and definitions apply to pistons for reciprocating internal combustion engines and compressors working under analogous conditions
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
This SAE Standard has been adopted by SAE to specify: a A basis for net engine power rating b Reference inlet air and fuel supply test conditions c A method for correcting observed power to reference conditions d A method for determining net full load engine power with a dynamometer
This SAE Standard has been adopted by SAE to specify: a A basis for gross engine power rating b Reference inlet air and fuel supply test conditions c A method for correcting observed power to reference conditions d A method for determining gross full load engine power with a dynamometer
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations. The existence of other international test cycles
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
The purpose of this SAE Standard is to define test conditions, describe tests to be made, specify data to be obtained, show formulas and calculations, define terms, and establish a uniform method of reporting so that performance data obtained on various makes and models of tractors, tested in accordance with this document, will be comparable regardless of where the tests are made. Because of the availability of many tractor models and types that can be equipped with a variety of special or optional equipment, the scope of this document must be limited to obtaining and reporting only the most significant of widely used performance data. Tests performed to either the Standard Code as outlined in Section 5 or the Restricted Code as outlined in Section 6 will satisfy requirements of this Agricultural Tractor Test Code. This document is technically equivalent to the OECD Tractor Test Code C(87)53, Annex I and Annex II. It is intended as a guide to development and pretesting of tractors
This document has been adopted by SAE to specify
This document has been adopted by SAE to specify
The methods presented in this document apply to the controlled testing of low temperature charge, air cooled, heavy duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters. b Vehicle testing to determine typical values for these parameters. c Description of the setup and operation of the test cell system. d Validation testing of the test cell system. While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations. The existence of other international test cycles, which can be
Items per page:
50
1 – 50 of 86