Browse Topic: Powertrains

Items (48,986)
A great number of performances of an electric vehicle such as driving range, powering performance, and the like are affected by its configured batteries. Having a good grasp of the electrical and thermal behavior of the battery before the detailed design stage is indispensable. This paper introduces an experiment characterization method of a lithium-ion battery with a coolant system from cell level to pack level in different ambient conditions. Corresponding cell and pack simulation models established in AMESim that aimed to capture the electrical and thermal features of the battery were also illustrated, respectively. First, the capacity test and hybrid pulse power characterization (HPPC) test were conducted in a thermotank to acquire basic data about the battery cell. Next, based on acquired data, first-order equivalent circuit model (1C-ECM) was built for the battery cell and further combined with environmental boundary conditions to check the simulation accuracy. Then, hybrid
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
Different approaches are undertaken to mitigate the impact of the transport sector on climate change. Alongside electrifying powertrains, sustainable e-fuels such as polyoxymethylene dimethyl ethers (OME) are considered a promising bridging technology for different applications. However, this requires that the engines are optimized for the new fuels. Accordingly, this study aims to optimize the numerical spray modeling of OME in CONVERGE. Based on the KH–RT break-up model, the spray simulations of three different commercial injectors for heavy-duty applications are analyzed regarding the predictability of the liquid and gaseous penetration lengths and the total simulation time. A sensitivity analysis is conducted for the turbulence model, mesh size, and spray parameters prior to optimizing the spray model and validating it with experimental results. While each parameter individually influences the different phases of the injection event, the sensitivity analysis reveals that the break
Zepf, AndreasHärtl, MartinJaensch, Malte
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
The use of electric vehicles (EVs) has been on the rise in recent years and this trend is expected to continue in the upcoming years. There are several reasons for the increasing popularity of EVs, including environmental concerns, advances in technology, and government incentives. The 2W/3W EV powertrain comprises components such as the battery, traction motor, motor controller, charger, and DC-DC converter, etc. Essential components which impact the power, efficiency, and range of the vehicle are a motor (generally PMSM or BLDC) and a motor controller. PMSMs can produce more output power than BLDC motors of the same size, making them suitable for high-power applications. While the EV powertrain allows for greater flexibility in designing electric vehicle architectures, it also exhibits new challenges in meeting all the essential requirements. When a motor rotates, as per Lenz’s law, an opposing voltage (Back-EMF) is generated in a motor whose magnitude is proportional to its angular
Mohan, MidhunShinde, RushikeshMagar, PradipDeo, Mayank PramodChaudhary, Pramod
Diesel aftertreatment (AT) systems are critical for controlling emissions of CO, HC, NOX, and PM in the on-road transportation sector. Ensuring compliance with regulatory standards throughout the AT system's lifespan requires precise prediction of various degradation mechanisms under real-world operating conditions and mitigating their impact through proper catalyst sizing and advanced controls. In the SwRI A2CAT-II consortium, a medium-duty diesel engine production aftertreatment system was subjected to full useful life aging, involving chemical poisoning with phosphorus (P) and sulfur (S) species, along with hydrothermal aging following the DAAAC protocol. This study was aimed to model and predict the aging trajectory of this production AT system thereby capturing changes in system dynamics under both steady-state and transient conditions. The system, designed to meet the 0.2 g/bhp-hr standard, comprised a Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective
Balakrishnan, ArunChundru, Venkata RajeshEakle, ScottSharp, Christopher
The long-term performance of powertrain components in energy-efficient vehicles, particularly in Class 8 heavy-duty applications, is crucial for sustaining energy efficiency. However, these components degrade over time, impacting performance and highlighting the need for appropriate aging models to estimate the impact of aging. This study aims to identify and select appropriate aging models for two critical powertrain components: battery and electric machine. Through a comprehensive literature review, the primary aging processes, key influencing factors, and available aging models for these components are identified. A selection matrix is established, considering the model complexity, the model accuracy, and the volume of data required while maintaining the desired precision for the powertrain component models. Based on the selection matrix, an appropriate battery aging model is chosen for the vehicle’s battery. This model was selected for its ability to effectively capture the aging
Rownak, Md RagibHanif, AtharAhmed, QadeerFahim, Muhammad QaisarAnwar, HamzaLi, HuiLe, DatNelson, Matthew
Reduction of frictional losses by changing the surface roughness in the form of surface textures has been reported as an effective method in reducing friction in the boundary regime of lubrication. Laser-based micro texturing has been mostly used to create these texture patterns and it is reported that it can reduce the frictional resistance by ~20-50%. However, the use of laser-based techniques for texture preparation led to residual thermal stress and micro cracks on the surfaces. Hence, the current study emphasizes using conventional micromachining on piston material (Al alloy Al4032) to overcome this limitation. Three variations of semi-hemispherical geometries were prepared on the surface of Al alloy with dimple depths of 15, 20 and 40 μm and dimple diameters of 90, 120 and 240 μm. Prepared textured surfaces with untextured surfaces are compared in terms of wear, wettability, and friction characteristics based on Stribeck curve behaviors. Results of this investigation demonstrated
Sahu, Vikas KumarShukla, Pravesh ChandraGangopadhyay, Soumya
The rotor position information is an important variable in the control system of dual three-phase motors, and ensuring the real-time and correct information is a prerequisite for the reliable operation of the dual three-phase motor system. The paper analyzes the structural characteristics of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with a 30°misalignment of dual Y windings, and proposes a new high-frequency symmetrical voltage injection method that can effectively identify rotor position information in a wide speed range. It forms heterogeneous information verification with the hardware signals of the dual three-phase motor rotor position sensors, improving the functional safety level of the control system. Firstly, a DTP-PMSM mathematical model was constructed under high-frequency voltage injection, and the mapping relationship between injection voltage and response current was derived, revealing the characteristic relationship between rotor position
Xu, LuhuiZhao, Zhiguo
Deadbeat Predictive Current Control (DPCC) has emerged as a highly effective control strategy, owing to its outstanding dynamic performance. However, the control effectiveness of traditional methods is limited by the machine parameters set in advance, which inevitably reduces the parameter robustness of the method. When machine parameters change due to factors like temperature, the discrepancy between the actual values and the parameters configured in the controller leads to a decline in DPCC performance, and cause system instability. To tackle the challenge of parameter dependence, this paper proposes an adaptive parameter-free model-free deadbeat predictive current control (PF-MFDPCC) method suitable for interior permanent magnet synchronous motors (IPMSM). The method estimates the actual gain parameters based on the sampled current values and reference values, and determines the required harmonic current injection by minimizing torque ripple. First, the relationship of the
Guo, RongGu, hongyang
A total of 368 frontal New Car Assessment Program (NCAP) tests (including 24 tests with Battery Electric Vehicles (BEVs)) with high-resolution load cell data were analyzed to investigate vehicle crash compatibility, especially between Internal Combustion Engine Vehicles (ICEVs) and BEVs. An Indirect Frontal Crash Model (IFCM) for Full-Overlap (FO) Vehicle-to-Moving Deformable Barrier (V2MDB) using load cell data from frontal NCAP tests was developed to assess vehicle aggressivity. An analytical solution of the IFCM for FO/V2MDB was obtained and used to develop a new aggressivity metric. In addition, the Max. Standard Deviation (SD) of load cell forces was used to assess vehicle front-end homogeneity. In the case studies, vehicle compatibility was assessed by the new aggressivity metric and Max. SD, along with typical frontal crash metrics.
Park, Chung-Kyu
This paper reports on the development of a simulation model to predict engine blowby flow rates for a common rail DI diesel engine. The model is a transient, three-dimensional computational fluid dynamics (CFD) model. Managing blowby flow rates is beneficial for managing fuel economy and oil consumption. In doing so, an improved understanding of the blowby phenomenon is also possible. A mesh for the sub-micron level clearances (up to 0.5 microns) within the piston ring pack is created using a novel approach. Commercial CFD software is used to solve the pressure, velocity, and temperature distributions within the fluid domain. Ring motions within the piston grooves are predicted by a rigorous force balance. This model is the first of its kind for predicting engine blowby using a three-dimensional simulation model while solving the complete set of governing transport equations, without neglecting any terms in the equations. The predicted blowby flow rate has been validated with
Manne, Venkata Harish BabuBedekar, SanjeevSrinivasan, ChiranthDas, DebasisRanganathan, Raj
Structural topology optimization for vehicle structures under static loading is a well-established practice. Unfortunately, extending these methods to components subjected to dynamic loading is challenged by the absence of sensitivity coefficients: analytical expressions are unavailable and numerical approximations are computationally impractical. To alleviate this problem, researchers have proposed methods such as hybrid cellular automata (HCA) and equivalent static load (ESL). This work introduces a new approach based on equivalent static displacement (ESD). The proposed ESD method uses a set of prescribed nodal displacements, simulating the resultant reaction forces of a body subjected to dynamic loading, at different simulation time steps to establish the boundary conditions for each corresponding model—one model for each simulation time. A scalarized multi-objective function is defined considering all the models. A gradient-based optimizer is incorporated to find the optimal
Gupta, AakashTovar, Andres
In the ongoing Road Load Data Acquisition (RLDA) for engine mounts, a load cell arrangement is being utilized, where the load cell must be placed between the mount arm and an engine mount bracket or an additional tower bracket. This configuration required the design of a custom mount arm with a crank in the Z direction, secured with a single bolt to accommodate the load cell. However, this method has revealed significant load coupling in the X and Z directions, resulting in incorrect load prediction for engine mount testing. This happens due to the architectural packaging of the engine mount on the long member to meet NVH requirements. To mitigate these issues, an alternative strain gauge-based RLDA approach was investigated. The optimal locations for strain gauge placement were determined using the inverse matrix method with the assistance of Computer-Aided Engineering (CAE) analysis. Strain gauges were then installed at these identified locations on the mount arm. The engine mount
Hazra, SandipKhan, ArkadipMohare, Gourishkumar
A diesel engine was run on off-highway cycle sequence on nine (9) fuels and blends. Number-weighted solid particle size distribution (PSD) in the size range from 5.6 nm to 560 nm was measured at inlet and outlet of a diesel particulate filter (DPF) on a sequence of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles (NRSCs). The measurements were used to correlate the fuel properties to the DPF-In concentrations and filtration of different size particles in the DPFs. The data showed an expected trend with the DPF-In emissions. Ultra-low sulfur diesel (ULSD) had the highest solid particle number (SPN) concentrations and biodiesels (soy-based biodiesel (B100) and rapeseed-based biodiesel (RME)) had the lowest concentrations. The geometric number mean diameter (GNMD) of DPF-In PSD correlates with the concentrations. The calculated GNMD was the highest for ULSD and lowest for B100/RME. An opposite trend for the GNMD was observed at the DPF-Out where the
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
Plug-in Hybrid Electric Vehicles (PHEVs) combine the benefits of electric propulsion and storage with the extended range of conventional internal combustion engines to reduce fuel consumption and greenhouse gas emissions. However, optimizing the efficiency of PHEVs in real-world driving conditions remains a challenge due to the uncertainties of environmental and driving conditions. Connectivity and automation technologies can offer a unique opportunity to enhance the efficiency of PHEVs by enabling real-time interaction with surrounding vehicles and infrastructure. By leveraging these technologies, significant reductions in energy consumption for PHEVs can be achieved. However, most existing works primarily rely on simulation-based analyses to evaluate energy savings offered by connected and automated PHEVs. This study advances the understanding of the energy-saving potential of connected and automated PHEVs by incorporating experimental validation alongside simulation-based analyses
Kibalama, DennisOzkan, Mehmet FatihStockar, StephanieCanova, MarcelloRizzoni, Giorgio
Aviation gas turbine engines typically utilize twin-orifice swirl atomizers to achieve a fine spray, widen the spray cone angle, and shorten spray penetration. However, using twin-orifice atomizers complicates the spray structure, and knowledge of the spray, especially in the near-field nozzle zone, remains limited. This study experimentally investigates the morphologies and structure of liquid fragments in the near-field nozzle of a twin-orifice atomizer. A high-speed backlit experimental system was developed to examine the liquid fragment morphologies and structures. The fragments are classified into spherical droplets, ligaments, and other irregular structural fragments. Results show that with increasing the pressure in the near field of the nozzle, the proportion of nearly round fragments decreases with increasing pressure. In contrast, the proportion of ligament-like fragments tends to increase. Besides, the particle size distribution did not change significantly within the 10 to
Pham Vu, NamManh, VuPham, Phuong XuanNguyen, Kien Trung
Minimizing the time needed to achieve light-off temperatures in diesel engine aftertreatment devices is key to mitigate pollutant emissions during the first minutes of operation. Catalyst heating operation typically includes one or multiple post-injections late during the expansion stroke aimed to increase the enthalpy of the exhaust gases. However, post-injection retardability is constrained by low combustion efficiency and the formation of CO and unburned hydrocarbons that cannot be oxidized by a still-inactive oxidation catalyst. In this study, the effects of post-injection strategy on the performance and emissions of a medium duty diesel engine have been investigated experimentally, focusing on the impacts on post-injection retardability. A five injection strategy (two pilot, one main, two post) was implemented in the engine, and the injection duration ratio between the two post-injections has been varied systematically while performing post-injection timing sweeps to identify the
Lopez Pintor, DarioLee, SangukCho, SeokwonBusch, StephenWu, AngelaNarayanan, AbhinandhanAbboud, Rami
To tackle the issue of lacking slope information in urban driving cycles used for vehicle performance evaluation, a construction method for urban ramp driving cycle (URDC) is formulated based on self-organizing map (SOM) neural network. The fundamental data regarding vehicles driving on typical roads with urban ramp characteristics and road slopes were collected using the method of average traffic flow, which were then pre-processed and divided into short-range segments; and twenty parameters that can represent the operation characteristics of vehicle driving on urban ramp were selected as the feature parameters of short-range segments. Dimension of the selected feature parameters was then reduced by means of principal component analysis. And a SOM neural network was applied in cluster analysis to classify the short-range segments. An URDC with velocity and slope information were constructed by combination of short-range segments with highly relevant coefficients according to the
Yin, XiaofengWu, ZhiminLiang, YimingWang, PengXie, Yu
Simulated distillation (SimDis) uses wide bore capillary gas chromatography (GC) to provide a detailed volatility profile of blended gasoline. The boiling point distribution from SimDis analysis is correlated to the hydrocarbon contents of spark ignition fuels and provide the resolution necessary to characterize the compositions of the fuel. Recent publications on simulated distillation applied to spark ignition fuel reveal the merits of indexing a gasoline fuel so that it can be correlated to the tendency of particulate emissions from vehicles. With this in mind, SimDis can be a useful and quick tool in assessing the PM-formation potential of market gasolines. Heavy aromatic compounds are compounds identified as having at least 10 Carbons and 1 aromatic ring. These compounds that are present in spark ignition fuels are major contributors to vehicle particulate emissions. These compounds can be found in the higher boiling portion (T70+) of the distillation profiles. As demonstrated in
Goralski, SarahGeng, PatDozier, JonButler, Aron
This paper introduces an innovative digital solution for the categorization and analysis of fractures in Auto components, leveraging Artificial Intelligence and Machine Learning (AI/ML) technologies. The proposed system automates the fracture analysis process, enhancing speed, reliability, and accessibility for users with varying levels of expertise. The platform enables users to upload images of fractured parts, which are then processed by an AI/ML engine. The engine employs an image classification model to identify the type of fracture and a segmentation model to detect and analyze the direction of the fracture. The segmentation model accurately predicts cracks in the images, providing detailed insights into the direction and progression of the fractures. Additionally, the solution offers an intuitive interface for stakeholders to review past analyses and upload new images for examination. The AI/ML engine further examines the origin of the fracture, its progression pattern, and the
Sahoo, PriyabrataRawat, SudhanshuGarg, VipinNaidu, GarimaSharma, AmitNarula, RahulBindra, RiteshKhera, PankajGoel, PoojaMondal, Arup
The trends of intelligence and connectivity are continuously driving innovation in automotive technology. With the deployment of more safety-critical applications, the demand for communication reliability in in-vehicle networks (IVNs) has increased significantly. As a result, Time-Sensitive Networking (TSN) standards have been adopted in the automotive domain to ensure highly reliable and real-time data transmission. IEEE 802.1CB is one of the TSN standards that proposes a Frame Replication and Elimination for Reliability (FRER) mechanism. With FRER, streams requiring reliable transmission are duplicated and sent over disjoint paths in the network. FRER enhances reliability without sacrificing real-time data transmission through redundancy in both temporal and spatial dimensions, in contrast to the acknowledgment and retransmission mechanisms used in traditional Ethernet. However, previous studies have demonstrated that, under specific conditions, FRER can lead to traffic bursts and
Luo, FengRen, YiZhu, YianWang, ZitongGuo, YiYang, Zhenyu
Hybrid vehicles are driven by the vehicle controller, engine controller and motor controller through torque control, and there may be unexpected acceleration or deceleration of the vehicle beyond the driver's expectation due to systematic failure and random hardware failure. Based on the torque control strategy of hybrid vehicles, the safety monitoring model design of torque control is carried out according to the ISO 26262 safety analysis method. Through the establishment of safety goals and the analysis of safety concepts, this paper conducts designs including the driver allowable torque design for safety monitoring, the driver torque prediction design for safety monitoring, the rationality judgment design of driver torque for safety monitoring, the functional safety degradation design, and the engine start-stop status monitoring, enabling the system to transition to a safe state when errors occur. Firstly, the design of the driver's allowable torque includes the allowable requested
Jing, JunchaoWang, RuiguangLiu, YiqiangHuang, WeishanDai, Zhengxing
Cam gear is a critical component of the timing system in an internal combustion engine, ensuring the synchronized opening of the engine valves, pistons, and rotating parts, but their unavailability may result in long-term downtime or expensive replacement. Reverse engineering (RE) systems also play an important role in promoting sustainable practices projects in automotive technologies. The study focuses on presenting a proposed method for redesigning damaged parts in engines using image processing technology by creating an-accurate CAD model. In addition to clarifying of the expected causes that led to cam gear damage. The proposed method involves taking a high-resolution image of the damaged part, then applying advanced image processing algorithms to analyze and reconstruct the geometry of the part. The data is then converted into a high-resolution 3D CAD model. This approach aims to address the challenges of replicating worn or broken parts, providing a cost-effective maintenance
Ali, Salah H. R.Ehab, EslamBarakat, EbrahimYounes, AbdelrahmanAli, Amr S.H.R.
The integration of low-octane gasoline with a compression ignition combustion system has been proposed as a strategy to reduce Well-to-Wheel CO2 emissions from automobiles using petroleum-based fuel. In the current situation where low-octane gasoline is not widely available in the market, onboard reforming of commercial gasoline to increase the cetane number (lower the octane number) allows for compression ignition combustion even with commercial gasoline. This requires “Cetane on Demand” technology, which enables compression ignition combustion with both commercial gasoline and low-octane gasoline. It is known that the ignition property of fuel is enhanced when the fuel is oxidized to generate hydroperoxides. Moreover, the use of N-hydroxyphthalimide (NHPI) as a catalyst promotes hydroperoxide generation at low temperatures. The objective of this study is to develop a device that enhances the ignition properties of gasoline through onboard fuel reforming. Initially, from the seven
Hashimoto, KohtaroYamada, YoshikazuMatsuura, KatsuyaKudo, TomohideChishima, HiroshiAl-Taher, MaryamKalamaras, ChristosAlbashrawi, Reem
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
This work is part of a production-intent program at Cummins to develop a 6.7L direct injection (DI), lean burn H2 spark ignition (SI) engine for medium- and heavy-duty commercial vehicles that are intended to be compliant with global VII criteria pollutants emissions standards. The engine features a low-pressure DI fuel injection system, a tumble-based combustion system with a pent-roof combustion chamber, two-stage boosting system without EGR, and dual overhead cams (DOHC) with cam phasers. The paper focuses primarily on the performance system architecture development encompassing combustion system, air-handling system, and valve strategy. Comprehensive 3D-CFD guided design analysis has been conducted to define the tumble ports, injection spray pattern, and injection strategy to optimize charge homogeneity and turbulence kinetic energy (TKE). In addition, the boosting system architecture and the valve strategy have been thoroughly evaluated through 1-D system-level engine cycle
Liu, LeiZhang, YuQin, XiaoHui, HeMin, XuLeggott, Paul
This study evaluates the impacts of the gasoline compression ignition (GCI) engine on heavy duty long-haul trucks in both the Chinese and US markets. The study examines various aspects such as vehicle performance requirements, fuel consumption, emissions, and ownerships costs, and how they influence the implementation and impact of new technologies in these markets. By considering a wide variety of drive cycles, including standard regulatory cycles and real-world cycles, the study aims to identify the impact of varying degrees of powertrain electrification using diesel and GCI engines on fuel consumption and emissions. Additionally, this paper explores the viability of powertrain electrification in long-haul trucks by analyzing factors such as levelized cost of driving (LCOD), manufacturing costs, and energy costs. These considerations play a crucial role in determining the economic feasibility and attractiveness of electrification technologies in various driving scenarios and market
Nieto Prada, DanielaVijayagopal, RamYan, ZimingSari, RafaelHe, Xin
Internal combustion engines (ICEs) will continue to be critical propulsion systems for certain applications in the coming decades. It is, therefore, extremely important to further develop environmentally friendly and sustainable internal combustion engines. These developments include, but are not limited to, improved tribology and reduced mechanical losses, higher mean effective pressures, compatibility with carbon-free or -neutral fuels, improved exhaust gas aftertreatment systems, and condition-based maintenance. Due to the increased stress on engine components associated with these changes, accurate, online data with high temporal resolution is required from inside the engine. Acquisition of this data can be achieved with a wireless telemetry system in order to minimize the influence of measurement devices on the measurement itself. This paper describes challenges in the development of telemetry systems for internal combustion engines. Systems for measuring the piston temperature
Higgs, AnselRossegger, BernhardMarzemin, FrancescoWermuth, Nicole
Internal combustion engines are expected to continue to play an important on-going role in the future of transportation, particularly in long haul transit and off-road applications. Substantially reducing criteria emissions of heavy-duty (HD) commercial vehicle engines while also reducing fuel consumption is the quickest way to achieve more sustainable transportation. The opposed-piston (OP) engine developed by Achates Power has demonstrated the ability to meet the most stringent ultralow NOx emissions requirements using only a conventional, underfloor aftertreatment system, offering reduced cost, complexity and compliance risk compared to other diesel engines. This paper is focused on the measurement results of Achates Power heavy-duty engine achieving CARB proposed ultralow NOx emission for 2027 and 2031+ full useful life requirements while also meeting the EPA Greenhouse Gas (GHG) Phase 2 limits with a conventional aftertreatment system (ATS), which was aged to 435k, 600k and 800k
Kale, VaibhavBako, Zoltan
The hydrogen internal combustion engine technology, with its potential for almost full carbon emissions reduction and adaptability to a wide range of fossil fuel-based internal combustion engine (ICE) platforms, offers a promising future. However, as with any innovative technology, it also presents challenges, such as abnormal combustion phenomena. These challenges, including intake backfire, which is more common when using port fuel injection (PFI), and pre-ignition in the combustion chamber, which can be experienced with PFI or direct injection (DI), require detailed investigation to understand and optimize the engine’s performance and efficiencies. This study comprehensively investigates the main abnormal combustion events that could happen in a spark ignition (SI) hydrogen engine. It examines both direct and port fuel injection systems and uses high-resolution in-cylinder, intake, and exhaust pressure measurements alongside a suite of fast-response gas analyzers. The study provides
Mohamed, MohamedMirshahi, MiladWang, XinyanZhao, HuaHarrington, AnthonyHall, JonathanPeckham, Mark
Low-carbon alternatives to diesel are needed to reduce the carbon intensity of the transport, agriculture, and off-grid power generation sectors, where compression ignition (CI) engines are commonly used. Acid-catalysed alcoholysis produces a potentially tailorable low-carbon advanced biofuel blend comprised of mixtures of an alkyl levulinate, a dialkyl ether, and the starting alcohol. In this study, model mixtures based on products expected from the use of n-butanol (butyl-based blends) as a starting alcohol, were blended with diesel and tested in a Yanmar L100V single-cylinder CI engine. Blends were formulated to meet the flash point, density, and kinematic viscosity limits of fuel standards for diesel, the 2022 version of BS 2869 (off-road). No changes to the engine set-up were made, hence testing the biofuel blends for their potential as “drop-in” fuels. Changes in engine performance and emissions were determined for a range of diesel/biofuel blends and compared to a pure diesel
Wiseman, ScottLi, HuTomlin, Alison S.
Combustion engines and hybrid systems remain important in sectors like light- and heavy-duty vehicles, where performance, range, or cost limitations play a major role. Optimizing diesel engine efficiency and reducing emissions is critical. However, classical physics-based 0D/1D models are computationally demanding and are hardly applicable for real-time purposes. In this study, a calibrated 1D diesel engine model is suggested for transformation into a neural network architecture to enable real-time optimization. The model divides the engine into intake, exhaust, and combustion sections, each modeled by different neural networks. One of the advantages of this modular and layered approach is the flexibility to change individual components without needing to retrain every single model. Long Short-Term Memory (LSTM) networks are used to capture transient phenomena, such as thermal inertias that arise in the combustion process and gas flow dynamics. The training data was generated by
Frey, MarkusItzen, DirkSautter, JohannesWeller, LouisHagenbucher, TimoYang, QiruiGrill, MichaelKulzer, Andre Casal
The Environmental Protection Agency’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was initially created to simulate the Greenhouse Gas emissions from light-duty vehicles. ALPHA is used to predict tailpipe CO2 emissions and energy consumption from advanced automotive technologies. ALPHA is a physics-based, forward-looking vehicle computer simulation tool capable of analyzing various vehicle types with different powertrain technologies while replicating realistic vehicle behavior. ALPHA version 3.0 is the current version of the MATLAB/Simulink based software. Key changes made for ALPHA v3.0 include the addition of new light- and medium-duty vehicle models to support simulation of electrified vehicle architectures (hybrid, plug-in hybrid, and battery electric vehicles) aligning with the automotive industry transition towards electrified fleets. Each electrified vehicle model was tuned to replicate operational behavior of components (such as engine
Kargul, JohnMoskalik, AndrewBarba, DanielButters, Karla
This paper describes an optimal control method utilizing a Linear Quadratic Regulator (LQR) to control the torque during the gear shift on a multispeed electrified transmission to optimize for clutch actuator durability and shift performance. The dynamic state-space model of the system has been obtained using System-Identification. An LQR controller is formulated to minimize driveline oscillations and transmission-input-torque using the model by manipulating the electrical torque applied by the traction motor at the transmission input. The LQR controller is implemented in a simulation framework wherein the impact of vehicle parameters on the shift quality metrics is also assessed. Subjective and objective requirements are considered in the tuning process for the LQR controller. The LQR controller is utilized to generate profiled torque table calibrations. These calibrations are then deployed onto a production ready Transmission Control Unit and experimentally validated on a Class-8
Koli, RohitSmith, Nathan
Urea-based selective catalytic reduction (SCR) systems are widely used to meet stringent NOx emission standards in industrial diesel engines. However, suboptimal design of the urea-water solution (UWS) mixing pipes in SCR systems can lead to the formation of urea-derived solid deposits, which may adversely affect the system performance and reliability. Although recent advancements in deposit simulation technology using three-dimensional Computational Fluid Dynamics (3D CFD) have significantly improved the performance and compactness of mixing pipes, assessing deposit formation across all operating and environmental conditions remains challenging due to high simulation costs. This study introduces a novel computational method for predicting the formation and temperature of permanent liquid films from UWS injection which are closely related to deposit formation, along with new deposit evaluation criteria based on them. This proposed method integrates a one-dimensional heat transfer model
Sugimoto, KazumaKawabe, Ken
The pollutant emission regulation for Non-Road Mobile Machinery (NRMM) is currently under consideration, both in the European Union (EU) and the United States (US). In Europe a Stage V review is expected within 2025 and in the US, the California Air Resource Board (CARB) has released their Tier 5 proposal in late 2024. It is expected that there will be further focus on covering a wide variety of operation conditions in actual use cases, including continuous low load scenarios. In addition, CO2-neutral fuels are being investigated to reduce the carbon footprint of NRMM Internal Combustion Engines (ICE), which remains an important powertrain for the sector. The objective of the work presented is to assess the potential for emissions reductions in the future, both NOx and CO2. A simulation study is conducted, modelling a 9l class engine with 8-10 g/kWh engine-out NOx emission level. Three different emission control systems are investigated: an enhanced stage V system with single SCR, a
Demuynck, JoachimBosteels, DirkMichelitsch, PhilippNoll, Hannes
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
The Tour engine is a novel split-cycle internal combustion engine (ICE) that divides the four-stroke Otto cycle of a conventional ICE between two separate cylinders, an intake and compression cylinder and a second expansion and exhaust cylinder, interconnected by an innovative charge transfer mechanism. The engine working fluid, air and fuel, is inducted into the engine and compressed by a dedicated compression cylinder, transferred with minimal pressure loss via an input port to a specifically designed combined spool shuttle transfer mechanism and combustion chamber. It is then ignited and then transferred from the combustion chamber via an exit port to a separate expansion cylinder where it is expanded and exhausted from the engine. The primary advantage of the Tour engine is that it provides the engineering freedom to independently design, control and optimize the compression, combustion, and expansion processes within a slider-crank piston engine. By decoupling the compression
Tour, OdedCho, KukwonHofman, YehoramAnderson, BradleyKemmet, RyanMorris, DanielWahl, MichaelBhanage, PratikSivan, EhudTour, GiladAtkinson, ChrisTour, Hugo
The transport sector is responsible for about one third of the global CO2 emissions. To align to the net zero emission scenario, the transportation sector needs the implementation of policies aimed to reduce as much as possible the highly emitting transport options and, at the same time, the use of new technologies to reduce the environmental impact of transport methods whose emissions cannot be entirely eliminated. An exploitable solution for the internal combustion engine (ICE), even in the nearest future, would be to use hydrogen as a fuel in these engines. This is supported by the fact that H2-ICE is the only ICE technology currently capable of meeting the standards imposed by the European Union for 2035. Due to the possibility of different injection strategies as well as the variation of in-cylinder back pressure, the comprehensive knowledge of hydrogen injection jet behavior and characteristics is fundamental for improving the combustion process in direct injection H2-ICE. In
Montanaro, AlessandroMancaruso, EzioMeccariello, GiovanniAllocca, Luigi
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
The heat transfer processes occurring in a compression ignition engine are complex, especially considering flame-wall interaction on the piston crown from impinging jets. To study the heat flux occurring on the piston in a heavy-duty diesel engine, a piston was instrumented with fifteen thermocouples and a wireless telemetry system. Eight of the thermocouples are high speed surface thermocouples placed primarily in regions with significant flame-wall interaction, providing crank-resolved surface temperature data. This work presents the first experimental datasets collected with this instrumented piston, describing in detail the thermocouple location selection process as well as data processing and uncertainty quantification for the high-speed surface thermocouples with a particular emphasis on cyclic variability and sensor-to-sensor variability. With this methodology established, data from this piston can be used for modeling and simulation studies as well as for studying the impact of
Gainey, BrianDatar, AdityaRavikumar, AvinashBhatt, AnkurVedpathak, KunalKumar, MohitGingrich, EricTess, MichaelKorivi, VamshiLawler, Benjamin
In cost- effective P2 hybrid vehicles with low voltage electric machines connected to the engine, an interesting control problem arises during the transition to a locked driveline state. This occurs when the engine connects to the wheels via a separation clutch. The two primary torque sources, the engine and the clutch, are traditionally imperfect estimators of applied and transferred torques. The Hybrid Supervisor’s feedforward constraints model relies on these imperfect inputs to determine torque and acceleration limits for the engine’s desired acceleration profiles and to specify engine feedforward commands, aiming for synchronization speed. Due to the inaccuracies in the torque estimates of the engine and clutch, the Hybrid Supervisor is susceptible to control windup, increased jerk to the driveline during synchronization, and inaccurate computation of its target acceleration profile, speed, and torque targets for the engine to achieve synchronization speed. This paper presents a
Banuso, AbdulquadriSha, HangxingKarogal, IndrasenMadireddy, Krishna ChaitanyaPatel, Nadirsh
Since the obvious difficulties in realizing a lightweight long-range full electric powertrain, Internal Combustion Engines (ICEs) are still the most suitable solution for heavy-duty mobility. In a fossil fuel free scenario, bioethanol is one of the most interesting alternative fuels. Its high-octane number, high latent heat of vaporization and high laminar flame speed guarantee high performance with reduced pollutant emissions compared to other Spark Ignition (SI) engine fuels. However, ethanol evaporation and corrosivity represent quite serious challenges. This work aims at investigating the actual performance of a heavy-duty turbocharged SI ICE fueled with ethanol at full load and different engine speeds. A 1-D numerical model that includes fuel evaporation sub-models was developed in order to evaluate the engine performance, ensuring ethanol evaporation in each operating condition. The 1-D numerical model was validated through an experimental campaign carried out with the above
Falbo, BiagioPerrone, DiegoCastiglione, Teresa
The future heavy duty powertrain market is expected to be more diverse, with a gradual shift towards cleaner and more sustainable alternative fuels. Among various options, the hydrogen Internal Combustion Engine (ICE) holds the promise of significantly reducing carbon emissions while leveraging existing ICE technology. However, it also faces substantial challenges related to engine performance, fuel storage and delivery, infrastructure development, economic feasibility, safety and market acceptance. This paper focuses on performance challenges of hydrogen engine, including knock and pre-ignition, as well as low thermal efficiencies, and introduces the Opposed-Piston Two-Stroke Hydrogen ICE (OP2S-H2ICE) as a potential solution. The study demonstrates that OP2S-H2ICE can operate using direct injection, compression-ignition (CI) combustion solely with hydrogen, under various low-load to partial load conditions. Specifically, as the load increases, the combustion transitions from partial
Huo, MingEl-Hannouny, EssamLongman, Douglas
An experimental study was conducted on a multi-cylinder engine equipped with both intake and exhaust continuously variable valve duration (CVVD). Due to CVVD and continuous variable valve timing (CVVT), valve closing and opening timings of both intake and exhaust sides became decoupled, so that four valve timings (opening and closing timings of intake as well as exhaust sides) can be optimized under each engine condition. Theses independent valve timings allowed reductions of fuel consumption as well as particle number (PN) and stoichiometry combustion under full-load condition without compromise of performance. In addition, to reduce raw gaseous emissions and shorten light-off time of catalyst under catalyst heating condition, various valve timings were tested in the engine test bench. As results, nitrogen oxides (NOx) – total hydrocarbon (THC) trade-off relation was relieved by optimal valve timings including negative valve overlap duration compared to the base engine. As the last
Jung, JinyoungHan, SangyeonPark, SangjaeKwon, Ki YoungSon, YousangKim, Back-SikKim, Youngnam
The hydrogen internal combustion engine (H2-ICE) is an attractive powertrain solution for decarbonization of heavy equipment. This paper presents the development of a lean burn spark ignited (SI) H2-ICE with Port Fuel Injection (PFI). The targeted application is STAGE V fixed speed power generation realized without the need for NOx aftertreatment. A 13L EURO VI diesel engine is used as a base. The engine conversion process to hydrogen fuel is presented in detail discussing key aspects regarding both hardware and control software adaptations to fulfill the performance, emission, and safety requirements. In the development process, measurements have been performed on a single-cylinder and a multi-cylinder engine setup supported by detailed CFD computations to quantify operational limits and specify development directions. These results are translated into updated hardware and software of the fixed speed SI H2-ICE. The resulting H2-ICE is shown to comply with the requirements for power
Seykens, XanderDoosje, ErikBekdemir, CemilWezenbeek, Peter
Items per page:
1 – 50 of 48986