Browse Topic: Auxiliary power units
This SAE Recommended Practice covers the design and application of a 120 VAC single phase engine based auxiliary power unit or GENSET. This document is intended to provide design direction for the single phase nominal 120 VAC as it interfaces within the truck 12 VDC battery and electrical architecture providing power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off.
This SAE Aerospace Standard (AS) provides a performance station designation system for aircraft propulsion systems and their derivatives.
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level at source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels.
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
This SAE Aerospace Standard (AS) defines implementation requirements for the electrical interface between: a Aircraft carried miniature store carriage systems and miniature stores b Aircraft parent carriage and miniature stores c Surface-based launch systems and miniature stores The interface provides a common interfacing capability for the initialization and employment of smart miniature munitions and other miniature stores from the host systems. Physical, electrical, and logical (functional) aspects of the interface are addressed.
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of APU (auxiliary power unit) engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. The baseline performance is generally determined at the original equipment manufacturer (OEM) designated test facility. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
This SAE Aerospace Information Report (AIR) has been compiled to provide information on hydraulic systems fitted to the following categories of military vehicles. Attack Airplanes Fighter Airplanes Bombers Anti-Sub, Fixed Wing Airplanes Transport Airplanes Helicopters Boats
This specification covers all aspects in Electrical Wiring Interconnection Systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods.
The primary focus of this document is to provide information on the impacts hard landings and abnormal load conditions on landing gear and related systems. However, because hard landings potentially affect the entire aircraft, this document also includes information for non-landing gear areas. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP4915 and ARP5600 for information on dispositions relating to landing gear components or wheels involved in accidents/incidents.
This SAE Aerospace Recommended Practice (ARP) provides design guidelines for aircraft mechanical control systems and components. Topics contained in this document include design requirements, system design and installation guidelines, and component design practices for primary flight controls, secondary flight controls, and utility controls.
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available. NOTES 1 For some aircraft, the description is incomplete, due to
This SAE Aerospace Recommended Practice (ARP) provides a guide for the preparation of a helicopter engine/airframe interface document and checklist. This document and checklist should identify the information needed by the engine manufacturer and the aircraft manufacturer to integrate the engine design with the aircraft design and either provide this information or give reference to where this information is located. The intent is to assure that the engine manufacturer and the airframe manufacturer identify and make provision for this information so it can be easily accessible to either manufacturer as needed in the development stages of an engine-airframe integration project. A related document, SAE Aerospace Information Report AIR6181, provides guidance on creating an interface control document (ICD) which addresses a subset of the aircraft-engine interface information concerning the physical and functional interfaces of the electronic engine control system (EECS) with the aircraft
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids.
Suppose we have two identical variable-inertia flywheels and we connect them to the inputs of a differential. The output is connected to the driveline of a vehicle. There are several types of three-element mechanical differentials (e.g. ring-gear/carrier, epicyclic, etc.). The specific type of 3-element mechanical differential is inconsequential in the following analysis except to say there are two inputs (e.g. side gears) and one output (e.g. carrier/ring-gear). What’s important is simply the relationship - For example, using the notation ‘a’ for the first side gear and ‘b’ for the second side gear and ‘c’ for the carrier, then the relationship is: c=(a+b)/2. Understand that ‘a’, ‘b’, and ‘c’ can each be an input or an output. Using the designation ‘omega’ (ω) then the relationship looks like this: ωc=(ωa+ωb)/2. So, we have one variable inertia flywheel (VIFa) and a second variable inertia flywheel (VIFb) connected to two side gears, a and b, and a vehicle driveline connected to the
This document deals with ground and flight test of airplane installed Environmental Control Systems (ECS), Figure 1. The ECS provide an environment, controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include the following: pressure, temperature, humidity, ventilation air velocity, ventilation rate, wall temperature, audible noise, vibration, and environment composition (ozone, contaminants, etc.). The ECS are composed of equipment, controls, and indicators that supply, distribute, recycle and exhaust air to maintain the desired environment.
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
This document summarizes types of heat sinks and considerations in relation to the general requirements of aircraft heat sources, and it provides information to achieve efficient utilization and management of these heat sinks. In this document, a heat sink is defined as a body or substance used for removal of the heat generated by thermodynamic processes. This document provides general data about airborne heat sources, heat sinks, and modes of heat transfer. The document also discusses approaches to control the use of heat sinks and techniques for analysis and verification of heat sink management. The heat sinks are for aircraft operating at subsonic and supersonic speeds.
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery. Simulation results indicate that our strategy closes the technology gap that is not addressed by the
This specification details requirements and procedures for the detection of defects in aircraft structural and engine components during maintenance and overhaul operations.
The port-logistic industry has a significant impact on the urban environment nearby ports and on the surrounding coastal areas. This is due to the use of large auxiliary power systems on ships operating during port stays, as well as to the employment of a number of fossil fuel powered road vehicles required for port operations. The environmental impact related to the use of these vehicles is twofold: on one hand, they contribute directly to port emissions by fuel consumption; on the other hand, they require some of the ship auxiliary systems to operate intensively, such as the ventilation system, which must operate to remove the pollutants produced by the vehicle engines inside the ship. The pathway to achieve decarbonization and mitigation of energy use in ports involves therefore the adoption of alternative and cleaner technology solutions for the propulsion systems of such port vehicles. This paper presents the performance analysis of a hydrogen powered cargo-handling vehicle for
Items per page:
50
1 – 50 of 539