Browse Topic: Electric motors

Items (1,959)
The technology in the automotive industry is evolving rapidly in recent times. An electric vehicle is a complex and dynamic system consisting of numerous components interacting with each other. With increase in number of EVs on Indian roads, EV makers to produce innovative and pragmatic concept of electric vehicle features. This electrification in automobile has brought new dimension to Electro Magnetic Compatibility (EMC). Considering all these, EMC Testing of all power train components with real case scenarios is utmost important. This paper will put a light on applicability of various EMC tests for EV components like Traction Battery, Traction Motor and Inverter, DC to DC Converter, 3 in 1 Unit, 4 in Unit, BTMS unit, HVAC system, On Board Charger etc. With ICE vehicles, all components were connected to only 12V battery but with the EV era, Components are getting connected to HV battery or LV battery or sometimes both. With this change, all ISO and CISPR standards were undergone with
Yeola, MayurMulay, Abhijit BSwaminathan, Ganeshan
Modern automotive systems are becoming increasingly complex, comprising tightly integrated hardware and software components with varying safety implications. As the demand for ISO 26262 compliance grows, performing efficient and consistent Hazard Analysis and Risk Assessment (HARA) across these layers presents both methodological and practical challenges. Traditional approaches often involve performing HARA for an item (where item maybe a system or a combination of systems), which can lead to update of HARA for every new feature addition in an item, which in turn may lead to analysis of same functions in multiple HARAs leading to inconsistent risk categorization, redundancy, or even conflicting safety goals. Therefore, this paper proposes a unique HARA methodology which consolidates the list of functions from various systems and performs the HARA for the grouped functions (hereby referred to as Cluster HARAs). For example, Electrical power steering, Electric pump powered hydraulic
Somasundaram, ManickamVijayakumar, Melvin
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
Patil, VinodKulkarni, MalharSoni, Asheesh Kumar
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
Agricultural operations in hilly, uneven & slopy terrains demands high levels of operator focus, effort and skill. However, todays farming ecosystem across the globe is affected by 2 major scenarios: the aging workforce in the agricultural sector and the ever-growing problem of distraction due to mobile device and social media use. These issues compromise safety during operations such as start stop maneuvers, parking on slopes, and maneuvering in confined & narrow areas. Stringent emission norms are also being mandated across developed and developing countries as a measure to reduce Global Greenhouse house gas emissions. These measures are indeed necessary for sustainability but has increased overall tractor purchase and operating costs without improving safety & operator comfort. There has been a trend seen around the world in terms of poor sales post Emission implementation. Registration of Older tractors without these stringent emission norms were also witnessed in Developed
M, RojerT, GanesanP, VelusamyNatarajan, SaravananV, Mathankumartripathi, ShankarNarni, KiranHaldorai, RajanDevakumar, Kiran
Conventional ICE (internal Combustion Engine) tractors have single mechanical drivetrain used for propulsion of wheels, hydraulic and PTO drive and are designed to deliver power across range of operational zones leading to power wastage, reducing efficiency. This happens during Low Power Mode or low load operation. Extensive validation in Mahindra tractors reveal that such operations contribute to overall loss of 18–20%. Out of all factors, losses due to hydraulics is predominant and is close to 7–10 % of total power loss. In contrast, Hybrid tractors with Engine for propulsion of wheels alone and a dedicated Electric motor for PTO, Hydraulic functions. We have designed the system to offer enhanced operational flexibility through three distinct modes: Low Power Mode, Lift Assist Mode, and Implement Drive Mode. These modes ensure delivery of optimised performance while reducing the hydraulic losses & increased efficiency of the overall system. Low Power mode - powers essential vehicle
Natarajan, SaravananP, ShanmugavelJoshi, PriyankaSundaram, PavithraSameer, KamatSingh, RubyArvind, KumaranT, Senthil Kumar
The demand for electrified vehicles has been increasing over the last few years, near to 180 thousand units were sold only in 2024, which represented around 7% of total sales of this type of vehicle in Brazil. By the year 2030, it is expected that at least 40% of sales volume will be electrified vehicles, considering mild hybrids. These results show that vehicle manufacturers are moving towards electrification and reducing carbon emission rates. Different levels of electrification are applied in their portfolio: from mild hybrid or rechargeable vehicles to fully electric vehicles. When analyzing the number of components in each automotive system, it is possible to notice a huge reduction. Electric vehicles have 90% fewer moving parts in the engine than combustion vehicles. In brake systems, the reduction can be up to 20% in hybrid and electric vehicles, which can use the same solutions. This paper aims to present the changes in the sets of braking components from combustion vehicles to
Romão, BrunoBatagini, EmersonHorschutz, Everton
Powertrain architecture is being reshaped by the electrification of heavy-duty military vehicles using hydrogen fuel cell technology, particularly in transmission systems. Unlike conventional internal combustion engines, hydrogen fuel cell electric vehicles (FCEVs) typically use single-speed or direct-drive configurations due to the high torque of electric motors. This paper examines the impact of hydrogen electrification on military vehicle transmissions, focusing on armored multi-role models such as the VBMT-LSR, Guarani, and Leopard 1A5 of the Brazilian Army. The study compares traditional gearboxes with alternative solutions optimized for fuel cells, analyzing the trade-offs in efficiency, durability, and operational adaptability. Additionally, it explores adaptations required for hydrogen internal combustion engines (H2-ICEs), considering their distinct characteristics and demands. The study employs a three-step validation methodology combining computational simulations, technical
Biêng, Ethan Lê QuangPontes, Guilherme AyrosoConrado, Guilherme Barreto RollembergLopes, Elias Dias RossiRodrigues, Gustavo Simão
This study presents the development of a mini power plant prototype designed to convert solar energy into mechanical energy through the use of green hydrogen. The system comprises a photovoltaic panel, an electrolyzer, a hydrogen fuel cell, and a DC motor with a propeller. The main objective is to assess the technical feasibility of generating and consuming green hydrogen in real time for clean energy applications. The process begins with water electrolysis powered by solar energy, producing hydrogen to be fed into the fuel cell, which in turn supplies electrical energy to the DC motor. The results demonstrate the potential of this approach for sustainable energy conversion and highlight the importance of optimizing system components such as electrodes, membranes, and energy storage. Future improvements include enhancing hydrogen purity, implementing modular designs, and integrating process automation.
Grandinetti, Francisco Josédos Santos Guedes, Thiago ThiagoCastro, Thais SantosMartins, Marcelo Sampaiode Souza Soares, Alvaro Manoelde Faria Neto, Antonio dos Reis
TOC
Tobolski, Sue
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
One of the most important components of an electric vehicle is the drive motor. Induction motors are often used for this purpose. During operation of these motors, power loss occurs, especially at high speeds. This power loss corresponds, among other things, to the sum of winding losses, iron core losses and mechanical losses. The power losses generate heat, which causes the temperature in the rotor and stator to rise. The increase in temperature of the components inside the motor can lead to premature wear and fatigue failure. To prevent overheating, the motors are air- or water-cooled. Water cooling can be achieved, for example, by means of jacket cooling. Here, the heat generated is dissipated directly by forced convection. However, the cooling jacket makes it difficult to determine the temperature inside the motor. Determining these temperatures is necessary to protect the motor from premature fatigue. The temperatures inside the motor during operation are of particular interest
Schamberger, StephanieReuss, Hans-Christian
To tackle persistent operational instability and excessive energy consumption in marine observation platforms under wave-induced disturbances, this paper introduces a novel ultra-low-power stabilization system based on pendulum dynamics. The system employs an innovative mechanical configuration to deliberately decouple the rotation axis from the center of mass, creating controlled dynamic asymmetry. In this behavior, the fixed axis serves as a virtual suspension pivot while the camera payload functions as a concentrated mass block. This configuration generates intrinsic gravitational restoring torque, enabling passive disturbance attenuation. And its passive foundation is synergistically integrated with an actively controlled brushless DC motor system. During platform oscillation, embedded algorithms detect angular motion reversals. In addition, their detection triggers an instantaneous transition from motor drive to regenerative braking mode, and transition facilitates bidirectional
Zhang, TianlinLiu, ShixuanXu, Yuzhe
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
The electrification of off-highway vehicles presents a complex landscape of challenges, particularly in the realm of cost engineering for motors. These challenges stem from technological complexities, use of specialty materials and processes, economics of scale, and operational factors, each requiring careful consideration to ensure accurate and efficient cost modeling. The lack of standardized cost data for specialty materials poses a significant barrier to accurate cost engineering. Furthermore, the cost of key materials and components, such as electrical steel and permanent magnets, can fluctuate due to supply chain disruptions, material shortages, introducing uncertainty into cost projections. The economies of scale play a crucial role in cost engineering for off-highway electrification. Many off-highway vehicles are produced in lower volumes compared to on-road vehicles, which can result in higher unit costs for electric motors and other. In this paper, we delve into the primary
Chauhan, ShivPadalkar, Bhaskar
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Singh, BhuvaneshwarTirumala, BhaskarBadgujar, SwapnilHK, Shashikiran
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
While hybrid electric powertrains are the standard for passenger cars, the application to motorcycles is almost nil. The reason is the increase in weight, cost and overall dimensions, which can compromise the layout and dynamics of the motorcycle. A viable path is to replace the standard internal combustion engine with a much smaller and lighter unit, which leaves room for the installation of the electric components. The 2-Stroke (2S) cycle technology, thanks to double cycle frequency and inherent simplicity, can be the key to reduce engine dimensions, weight and cost, while keeping high power outputs. The HybridTec project, discussed in this paper, aims to develop a compact and lightweight V-90° two-cylinder 2S engine, coupled to an electric motor installed downstream of the gearbox (P3 configuration). The total installed power should be about 110 kW. The engine features loop-scavenging, actuated by a crankshaft-driven supercharger, while an exhaust rotary valve and electronic fuel
Rinaldini, Carlo AlbertoScrignoli, FrancescoVolza, AntonelloMattarelli, EnricoMontanari, LucaMagnani, Gianluca
This paper focuses on the potential application of hydrogen fueled internal combustion engine (HICE) in the off-road market, examining HICE based on a diesel engine. In the transition to HICE, priority was given to compatibility with existing systems, minimizing changes from the base engine. By adopting a PFI (Port Fuel Injection) method for fuel injection, low-pressure hydrogen supply was achieved. To address the issue of backfire associated with PFI, optimization of injection pressure using a variable pressure control valve, along with adjustments to valve timing and injection timing, was implemented to suppress backflow of residual gases into the intake system and minimize hydrogen retention. Regarding pre-ignition, in addition to suppressing hotspots, the relationship between the homogenization of the air-fuel mixture and NOx emissions was examined, revealing a correlation. This engine was mounted on a generator, and efforts were made to improve the important characteristic of
Shiraishi, KentaroKishi, ShinjiKato, DaichiMitamura, KentaMurakami, KeiMikuni, Yusuke
In the transition towards sustainable mobility, Circular Design principles are crucial. Electric Motors are subject to continuous innovation to improve efficiency, performance density and reduce externalities associated with their production. Therefore, the choice of technological solutions during design phase must guarantee optimal performance and minimal environmental impact throughout the entire product life cycle: production, use, and end-of-life. In the automotive sector, the use phase is particularly critical since the efficiency of the traction system is directly related to total energy consumption during the life cycle and, consequently, to its environmental impact. This research introduces a simulation-based approach to evaluate the use phase of an Axial Flux Electric Motor equipped with Permanent Magnets (AFPM). While providing high performance for electric traction motors, these magnets are composed of Rare Earth Elements (REEs), e.g. Neodymium, classified as Critical Raw
Guadagno, MaurizioBerzi, LorenzoPugi, LucaDelogu, Massimo
Electric motorcycles produce less vibration and noise than vehicles with internal combustion engines. However, the cogging torque of electric motors can cause vibrations, particularly at low speeds. When push-walking a motorcycle at very low speeds, this cogging torque produces handlebar vibrations, resulting in discomfort for the rider. Since motorcycles are typically turned off during push-walking, it is impossible to reduce these vibrations through motor control. Thus, reducing handlebar vibrations through motor cogging torque design is required. To simulate vibration, a detailed and large-scale model that considers the characteristics of drivetrain components like belts and gears, is required. Consequently, the optimization of vibrations in the early stages of design is challenging. The ultimate goal of this study is to construct a simulation model that can predict handlebar vibration during push-walking. This report investigates the vibration transmission mechanism. Vehicle
Okamura, TsubasaOtaki, RyotaSugaya, AtsushiShimizu, Tsukasa
The growing demand for lightweight, durable, and high-performance materials in industries such as aerospace, automotive, and energy has driven the development and evaluation of thermoset and thermoplastic composites. Within this framework the static and fatigue mechanical behavior of one thermoset material and two thermoplastic composites are investigated in the (-30° +120°C) temperature range, to simulate extreme environmental conditions. The results from the tensile tests show the different mechanical behavior of the investigated materials, while the cyclic test results highlight the significant impact of temperature on structural properties, offering useful insights for their application in temperature-sensitive environments. This research is partially funded by the Italian Ministry of Enterprises and Made in Italy (MIMIT) within the project ”New Generation of Modular Intelligent Oleo-dynamic Pumps with Axial Flux Electric Motors,” submitted under the ”Accordi per l’Innovazione
Chiocca, AndreaSgamma, MicheleFranceschini, AlessandroVestri, Alessiomancini, SimoneBucchi, FrancescoFrendo, FrancescoSquarcini, Raffaele
Items per page:
1 – 50 of 1959