Browse Topic: Electric motors

Items (1,836)
Electric vehicles represent a shift towards sustainability in the automotive industry, with the Brake-by-Wire (BBW) system as an innovation to enhance safety, and performance. This study proposes an electromagnetic BBW system for Formula SAE vehicles, optimizing an electromagnet with a genetic algorithm as the actuator. Through a selection process from a million individuals, the system was modeled. Integrated with electric motors using CarMaker® software, the optimized electromagnet surpassed the minimum required force of 228.08 N without reaching its nominal current of 12.5 A, achieving a force of 231.1 N for 150 W power, indicating an energy efficiency of 0.706 N/Watt. The system also exhibited a response time of 17.92ms for an 80 bar increase, 1.52 times better than compared systems. Simulation under varying braking intensities demonstrated dynamic behavior, with settling times for slow, moderate, and sharp braking at 193 ms, 62 ms, and 21 ms, respectively. Efficiency during
Salgado, Vinícius Batista AlvesGomes, Deilton GonçalvesAndrade Lima, Cláudio
A bench was developed with the aim of making it possible to test direct injection fuel system of low-displacement engines (up to 2,000cc) outside of a conventional test bench. It has adjustable supports that make it possible to install various engines of different manufacturers. In addition, the bench has features an electric motor, an external oil pumping system and a programmable ECU. These accessory systems were necessary because the engine for which the bench was initially designed has undergone various adaptations that required external systems such as those mentioned above. The project was designed to provide great ease, agility and low manufacturing costs, so the entire bench chassis was manufactured using just one standardized steel profile that is easily found on the market. Still about manufacturing, the concept of the prototype was also developed around the need for it to be compact and easy to transport so that the tests could be carried out in different environments in an
Zabeu, Clayton BarcelosPires, Gustavo CassaresJesus, Renato VieiraOliveira Polízio, Yuri Alves
Hybrid Electric Vehicles (HEVs) combine combustion and electric propulsion means to achieve key objectives, such as: reducing fuel consumption, minimizing pollutant emissions, and enhancing the overall energy efficiency of the Powertrain System. The series hybrid electric vehicles, in special, have a topology compound by four Subsystems, which are: Traction, Storage, Energy Generation, and Energy Management. The Energy Generation Subsystem is responsible for the power supply of the electric traction motors and batteries, depending on the control strategy promoted by the Energy Management Subsystem. The Energy Generation Subsystem is essentially made by an Internal Combustion Engine (ICE) and a Generator. Effective control of the power output from the Energy Generation Subsystem necessitates precise regulation of the engine speed. Thus, it is necessary to control the engine speed because this is directly related to the power demand of the consumers of other subsystem components. This
Júnior, João Marcos Hilário Barcelosde Sousa Oliveira, Alessandro BorgesTeixeira, Evandro Leonardo SilvaPereira, Bruno LuizPinheiro, Leandro Soaresdos Santos Ribeiro, Eduardodos Santos de Oliveira, Jordano
As we move towards sustainable transportation, it is essential to look for alternative powertrain technologies that might reduce emissions and depend less on fossil fuels. This paper offers a thorough analysis and comparison of several viable solutions along with their benefits, cost and conclusion for hydrogen fuel cells, solar cells, electric hybrid systems, compressed natural gas (CNG) and CNG hybrid systems alongside the latest proposal of using nuclear batteries. Hydrogen cars have zero emissions from their exhaust and can be refueled quickly, however there are some drawbacks like hydrogen production, storage, and infrastructure. The efficiency, affordability, and scalability of various hydrogen production techniques, fuel cell stack designs and storage technologies (compressed gas, liquid, and metal hydrides) are evaluated in this paper. Solar FCEVs on the other hand, are designed to utilize solar energy like Solar EVs but are very different in their operation and fundamentals
Hebbale Ramkumar, RamyaTrivedi, Shubham
As the automotive industry progresses towards electrification, driven by need for sustainability and reduced emissions, the traction inverter emerges as pivotal component of electric vehicles (EVs). Serving as the interface between the vehicle’s control systems, motor and battery. The traction inverter’s performance directly impacts the efficiency, sustainability and overall functionality of electric drive systems. A critical function of the traction inverter is measurement of phase currents in each motor phase, enabling precise control of the motor’s torque and rational speed. This capability is essential for optimizing efficiency, enhancing performance and ensuring safety key aspects of modern electric vehicle technology. This paper introduces method for measuring phase currents in Permanent Magnet Synchronous Motors (PMSM) utilizing the Enhanced Versitile Analog-Digital-Converter (EVADC) integrated within Infineon’s Aurix Tricore. This technology preferred for its rapid conversion
Birari, Ashwini Anil
This paper presents a comprehensive methodology for sizing an electric motor for a given vehicle performance targets and analyzing the motor performance at different operating zones of the electric vehicle. Designing the powertrain of an electric vehicle starts with understanding the on-road performance requirements of the vehicle relevant to the application such as top speed, gradient and acceleration targets. It is critical to define the operating performance boundary of the vehicle based on end user preference. This paper illustrates a comprehensive approach of implementing 1D simulation tool namely GT-SUITE to simulate the vehicle model for different on-road performance targets so as to conclude the traction motor specifications [3]. These specifications along with the other boundaries of the vehicle such as battery limitations and MCU limitations are taken as input parameters for the electromagnetic simulation assisted by Ansys Motor-CAD to design optimized motor that can meet the
Ghule, Gopal ArjunNeelakantan, Subramoniyan
In hybrid and electric vehicles, the stable and precise operation of the motor significantly impacts vehicle performance. The operation of a motor depends on its electrical and mechanical parameters. This paper focuses on PMSM motor electrical parameters such as stator resistance, d-q axis inductance, and permanent magnet flux linkage. Identifying the electrical parameters of a PMSM motor is complex due to the non-linear relationship between input and output. A change in one parameter can alter the dynamic response of motor. This paper presents a comparative analysis of various PMSM electrical parameters identification techniques
Tank, KartikPandey, PramodSharma, ShashankMandal, SandeepHasan, Mohammad
In this paper, a comprehensive analysis of NVH in electric powertrains due to electromagnetic sources is presented. The spatial harmonics model of the traction motor, which is dependent on the motor design structure, rotor poles, stator teeth, and slots, is used for the analysis of the electromagnetic forces from the motor in the electric powertrain. The time harmonics model of the injected current of the motor dependent on the drive electrical circuit and control strategy is also considered for the electromagnetic force calculation. A complete workflow of this electromagnetic NVH analysis for electric powertrain covering the spatial harmonics and time harmonics model is presented. The spatial harmonics model result is presented as flux linkage with respect to dq-axes current and rotor position. The time harmonics are also presented by the injected current of the motor. In addition, a set of operating points on the torque-speed boundary of the traction motor is selected and results are
Joshi, NakulKumar, VinitTsoulfaidis, AntoniosHuang, ZhenhuaSchmaedicke, MarcelFialek, GregoryZhang, DapuWimmer, Joe
A novel design for a radial field switching reluctance motor with a sandwich-type C-core architecture is proposed. This approach combines elements of both traditional axial and radial field distribution techniques. This motor, similar to an in-wheel construction, is mounted on a shared shaft and is simple to operate and maintain. The rotor is positioned between the two stators in this configuration. The cores and poles of the two stators are separated from one another both magnetically and electrically. Both stators can work together or separately to produce the necessary torque. This adds novelty and improves the design’s suitability for use with electrical vehicles (EVs). A good, broad, and adaptable torque profile is provided by this setup at a modest excitation current. This work presents the entire C-core radial field switched reluctance motor (SRM) design process, including the computation of motor parameters through computer-aided design (CAD). The CAD outputs are verified via
Patel, Nikunj R.Mokariya, Kashyap L.Chavda, Jiten K.Patil, Surekha
ABSTRACT The paper presents the fuel economy and performance capabilities of a switchable P2/P3 Hybrid Transmission for commercial and military use cases through modeling and simulation. An overview of the simulation model developed to analyze the vehicle performance and fuel consumption for a specified drive cycle is presented. The model includes the key components of the electrified powertrain including engine, hybrid transmission, electric motor and battery. Use cases were identified to represent Commercial vocational applications and military analogues. The results of P2/P3 Hybrid Powertrain model simulation are compared with that obtained from a model of baseline Conventional Torque Converter Automatic Transmission (AT). The comparison is made for both vehicle performance and fuel economy, and the results indicate that the P2/P3 Hybrid Transmission demonstrates better fuel economy with same or better performance than the baseline heavy-duty automatic transmission. Opportunities to
Patil, ChinmayaThanom, WittDykes, ErikKreucher, JoshGenise, Thomas
ABSTRACT Determining the required power for the tractive elements of off-road vehicles has always been a critical aspect of the design process for military vehicles. In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to improve stealth capabilities. The electric motors that power the wheel or tracks require an accurate estimation of the power and duty cycle for a vehicle during certain operating conditions. To meet this demand, a GPS-based mobility power model was developed to predict the duty cycle and energy requirements of off-road vehicles. The dynamic vehicle parameters needed to estimate the forces developed during locomotion are determined from the GPS data, and these forces include the following: the gravitational, acceleration, motion resistance, aerodynamic drag, and drawbar forces. Initial application of the mobility power concept began when three U.S. military’s Stryker vehicles were equipped with GPS receivers while conducting a
Ayers, PaulBozdech, George
ABSTRACT To realize the full potential of simulation-based evaluation and validation of autonomous ground vehicle systems, the next generation of modeling and simulation (M&S) solutions must provide real-time closed-loop environments that feature the latest physics-based modeling approaches and simulation solvers. Real-time capabilities enable seamless integration of human-in/on-the-loop training and hardware-in-the-loop evaluation and validation studies. Using an open modular architecture to close the loop between the physics-based solvers and autonomy stack components allows for full simulation of unmanned ground vehicles (UGVs) for comprehensive development, training, and testing of artificial intelligence vehicle-based agents and their human team members. This paper presents an introduction to a Proof of Concept for such a UGV M&S solution for severe terrain environments with a discussion of simulation results and future research directions. This conceptual approach features: 1
Misko, SamuelFree, ArnoldSivashankar, ShivaKluge, TorstenVantsevich, VladimirHirshkorn, MartinMorales, AndresBrascome, James MichaelRose, ShaylaBowen, NicZhang, SiyanGhasemi, MasoodGardner, StevenFiorini, PierreMaddela, MadhurimaJayakumar, ParamsothyGorsich, DavidManning, ChrisThurau, MatthiasRueddenklau, NicoZachariah, GibinDennis, EvaCostello, Ian
ABSTRACT As more electrical-based systems are developed for battlefield use, the mobile and stationary power requirements of military vehicles continue to increase. Current power requirements of the light and medium duty class military vehicles’ 28 VDC system are exceeding what is achievable from a single alternator system that is belt-driven. In-service, belted alternator systems, such as the C803 Niehoff alternator (28 VDC, 520 A), are capable of providing up to 14.5 kW of electrical power at the maximum speed of the alternator. However, during stationary applications, these systems are only capable of producing 7.7 kW at an engine idle speed of 700 RPM. For these systems to be able to comply with the 10 kW plus power requirement, additional vehicle control is needed to elevate engine speed to an appropriate level to ensure the required power output may be achieved. For power levels above 15 kW, single-machine, belt-driven solutions become impracticable. This paper evaluates various
Young, MatthewCard, AngelaPhillips, StephenMolen, G. MarshallGafford, JimMazzola, Mike
ABSTRACT The series Hybrid-Electric Drive (HED) architecture brings a significant range of potential benefits to military ground platforms. Electric-drive wheeled vehicles can feature electric traction motors in a conventional driveline, but also offer potential for motor incorporation into the axle or the wheel hub. The implementation of in-wheel hub drives presents challenges both in their design and to the overall vehicle system. However, by overcoming these challenges, the vehicle designer is rewarded with greatly increased freedom in vehicle hull and suspension design and numerous other benefits arising from the elimination of much of the mechanical driveline and the provision of individual wheel control. Many hub drive development programs of the previous two decades that have produced demonstrator vehicles have been typified by a large wheel rim size in order to accommodate a traction motor of sufficient power to achieve both peak output torque requirements and peak rotational
Mackey, J.Goldsack, S.Dick, S.
ABSTRACT Due to the recent fluctuations in the rare-earth magnet pricing and availability demands, switched reluctance machines (SRMs) have gained significant interest to be used in automotive and military applications. SRMs are known to have high power density/efficiency, low cost, easy manufacturability, wide constant power region, robust structure and high reliability. On the other hand, high acoustic noise and torque ripple have limited their wide spread usage in the past. This paper investigates the analyses, design and experimental verification of various acoustic noise reduction techniques for SRMs. The prototypes of 100 kW SRMs for military ground vehicles have been built with the implemented acoustic noise reduction techniques and were tested using a dynamometer special for electric and hybrid vehicle testing
Sozer, YilmazTylenda, JoshuaKutz, JohnWright, Ronnie L.
ABSTRACT This paper describes next generation modeling tools to solve a basic problem of concept analysis, which is the lack of component models that realistically estimate the performance of technology that has yet to be fully reduced to specific products. Three important classes of electric power components essential to future Army vehicles are addressed: integrated electric machines, battery energy storage, and traction motor drives. Behavior models are delivered in a common software simulation “wrapper” with a limited number of user settings that allow the ratings of the component to be scaled to the performance required by the vehicle concept represented in a larger simulation. This approach captures expert knowledge about components so the systems engineer managing the concept analysis can create reliable simulations quickly
Mazzola, Michael S.Molen, G. MarshallPhillips, StephenYoung, MatthewBillberry, CharlesCard, AngelaGafford, JamesKramer, DenisePozolo, Michael
ABSTRACT For medium sized combat vehicles, the traditional method for auxiliary power is hydraulics, based on proven track record of reliability, high output forces and excellent power density. With the transition to vehicle electrification, emphasis has been placed on the integration of electric motors into the overall architecture of the vehicle. Electric components generally are larger in size and weigh more for the amount of power they deliver compared to hydraulics. This paper will explore the integration of electric motors in a vehicle and the advantages and disadvantages as compared to hydraulic power
Aardema, JimLaboda, Thomas
ABSTRACT With the increase in electric power on military ground vehicle platforms, electrically driven accessories are replacing existing hydraulic, belt, and gear-driven loads. Permanent Magnet Synchronous Machines (PMSM) are often selected to drive these accessories, and are under consideration for the main engine generator, due to their torque density and efficiency being among the highest available. To maximize the efficiency of a PMSM, accurate knowledge of its parameters is required across the entire operating range. Efficient control of the onboard electric drives will help reduce fuel consumption in the ground vehicle fleet. This paper presents the effects of iron saturation on the performance of a PMSM drive. Iron saturation depends on the amount of current injected into the motor and it restricts the amount of flux linkage that can be generated. PMSMs are controlled using a two axis space vector representation. Ideally, the control is decoupled, such that the flux linkage
Cintron-Rivera, Jorge G.Foster, Shanelle N.Zanardelli, Wesley G.Strangas, Elias G.
ABSTRACT This paper describes the architecture, capabilities, and readiness of the SAPA Advanced Combat Transmission (ACT) family. The ACT850, ACT1000, and ACT1075 utilize scalable and modular technology across the product line, applicable to tracked vehicles weighing 35 thru 75 tons. The ACT family of transmissions are designed to improve the size, weight, power, and cooling (SWaP-C) characteristics of armored vehicle powertrains. Common features of the ACT family include high efficiency (>90%), low heat rejection under all operating conditions, 32 speed mechanical propulsion in forward and reverse; high efficiency mechanical steering delivering smooth agility from pivot turns thru straight paths and enabling use of lower power electric motors to provide for silent maneuverability; drive-by-wire control interface to reduce operator fatigue and training requirements; and reduced powertrain cooling, weight, and space claim impacts on the vehicle
Garcia-Eizaga, IñigoAperribay, JokinHunter, Gary
ABSTRACT Future Military ground vehicle power trains can benefit from a hybrid-electric drive approach, particularly in packaging flexibility where drive train components can be modular and conveniently distributed. Small component size and operation with high-temperature liquid coolant are essential factors in the flexible packaging concept. This paper describes the development of one component, a 220 kW traction motor drive for a hybrid-electric power train. Challenging requirements for the motor-drive include power densities of at least 25 kW/liter and 15 kW/kg at 105°C coolant temperature. To achieve these densities, power modules capable of high-temperature operation were developed using SiC normally-off JFETs. This paper will discuss the unique custom packaging of the SiC JFET devices, as well as the arrangement of key components/packaging and thermal management issues
Wagner, EdwardHall, WilliamMahoney, Dennis
WHY DO WE NEED SIMULATIONS? This paper is intended to provide a broad presentation of the simulation techniques focusing on transmission testing touching a bit on power train testing. Often, we do not have the engine or vehicle to run live proving ground tests on the transmission. By simulating the vehicle and engine, we reduce the overall development time of a new transmission design. For HEV transmissions, the battery may not be available. However, the customer may want to run durability tests on the HEV motor and/or the electronic control module for the HEV motor. What-if scenarios that were created using software simulators can be verified on the test stand using the real transmission. NVH applications may prefer to use an electric motor for engine simulation to reduce the engine noise level in the test cell so transmission noise is more easily discernable
Johnson, Bryce
ABSTRACT Most hybrid electric vehicle (HEV) applications require the utilization of electric motors that have high torque/power density, high efficiency, a wide speed range and reliability. Interior permanent magnet (IPM) synchronous motors comprised of rare-earth magnet material is the most common electric motor class used for HEVs. However, recent fluctuations in the rare-earth magnet pricing and availability demands the search for zero rare-earth motor topologies as an alternative to IPM for use in HEVs. Switched reluctance machines (SRMs) are rare-earth free alternatives with simple and very robust construction, high efficiency/reliability, high torque at low speed, more thermal capability, and a wide constant power region. Nonetheless, they have several disadvantages which emerge from the nature of the torque production in SRMs, such as high torque ripple, high vibration, and substantial acoustic noise. This paper investigates the acoustic noise mitigation techniques of SRMs with
Sozer, YilmazTylenda, JoshuaKutz, JohnWright, Ronnie L.
ABSTRACT The paper presents the EMX Hybrid Electric Cross Drive transmission developed by Kinetics Drive Solutions to satisfy RCV as well as conventional tracked vehicle requirements. Key design characteristics are modularity to enable performance customization, scalability to suit various vehicle weight classes, and flexibility to adapt to latest advancements in electric motor/inverter technology and autonomous control. EMX1000 prototypes have been built and are currently undergoing testing on dyno as well as in vehicle. Future development includes refining the prototype design and scaling the design for a heavier weight class. Citation: Caldarella F., Johnson A., Wright G., Scheper R., “Development of a Modular and Scalable Hybrid Electric Cross Drive Transmission,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Caldarella, FrancoJohnson, AndrewWright, GrantScheper, Ron
ABSTRACT The United States Army Tank-Automotive Research, Development and Engineering Center (TARDEC) is actively researching methods to advance the state of hybrid-electric power system technology for use in military vehicles. Supporting this research, Science Applications International Corporation (SAIC) is the lead contractor for developing the Hybrid Electric Re-Configurable Movable Integration Test-bed (HERMIT), which is operated at TARDEC in Warren, Michigan. The HERMIT is a ground-vehicle-sized series hybrid-electric test-bed featuring a diesel engine, permanent magnet generator, high voltage bus, DC-DC converter, lithium ion battery pack, left and right traction motors, thermal management system, and left and right bi-directional dynamometers. The power system is sized for a 20-22 ton tracked vehicle. The dynamometers are responsible for emulating loads that the tracked vehicle would see while running over a military theater-type course. This paper discusses the control system
Goodell, JarrettConnolly, TomLeslie, EdSmith, Wilford
The objective of the project was to evaluate the energy efficiency of a hybrid electric tractor-semi-trailer combination prototype. The prototype was developed for log hauling application by integrating an existing tractor with an electric semi-trailer to improve fuel consumption and reduce greenhouse gas emissions. One of the conventional axles of the quad axle semi-trailer was replaced with a drive axle powered by an electric motor. Tests were conducted on a 105 km test route with a maximum difference in elevation of 355 m, including a hilly section with a length of 89 km. The results indicated fuel savings ranging from 10.5% to 14% per test run, with an average fuel savings of 12% when the electric drive axle was engaged. The hybrid electric tractor semi-trailer consumed 17.5% less fuel up-hill and 9.4% less down-hill. Throughout each test run, the battery’s state of charge fluctuated, averaging between 88% at the start and 52% at the end. Prior to each run, the batteries were
Surcel, Marius-DorinMercier, SteveBonsi, Adime Kofi
In recent years, deposit formation in fuel systems for heavy-duty engines, using drop-in fuels, have become increasingly common. Drop-in fuels are particularly appealing because they are compatible with existing engines, allowing for higher proportions of alternative fuels to be blended with conventional fuels. However, the precipitation of insoluble substances from drop-in fuels can result in fuel filter clogging and the formation of internal injector deposits, leading to higher fuel consumption and issues with engine drivability. The precise reasons behind the formation of these deposits in the fuel system remain unclear, with factors such as operating conditions, fuel quality, and fuel contamination all suggested as potential contributors. In order to reproduce and study the formation of internal injector deposits, for heavy-duty engines under controlled conditions and to facilitate a more precise comparison to field trials, a novel injector test rig has been developed. This newly
Pach, MayteHittig, HenrikTheveny, ArnaudKusar, HenrikHruby, Sarah
Rotor and Stator are the key constituents of an electric motor that are made of several laminates punched from a sheet metal and stacked together. The rotor stack is inserted with magnets at the punched-out pockets and is assembled with a shaft via press fitting. Rotor assembly being the rotating part of an E-Motor is subjected to centrifugal loads due to masses of magnets, lamination stack and shaft rotating at high speeds, temperatures and assembling loads because of which rotor laminates experience failures as the high strains develop in the regions on the laminate that support magnets. Typically, these high strain locations are the sections of the magnet pockets one on the outer diameter of the laminate and the other at the sections between the magnet pockets. Traditionally, these high strains are addressed by increasing the area of these sections, but this has a detrimental effect on the electromagnetic performance. Instead of increasing the area of these sections, the proposed
Pawde, DeepakSrimathkandala, MaithiliGalande, Pandurang
Cooling strategies are evolving to meet the needs of tomorrow's improved EVs. At the heart of innovations that have powered EV range and performance improvements lies the pursuit of efficiency. Today's electric drivetrains convert over 85% of a battery's electrical energy into mechanical energy. By comparison, internal combustion engines (ICEs) convert less than 40% of their fuel's chemical energy into mechanical energy. As a result of this greater efficiency, we have seen major gains in electric motor performance, with today's motors operating at up to 25,000 rpm compared to the 15,000 rpm common ten years ago. So, what's driving this increase in efficiency? As with any complex system, there are several variables at play: optimized winding configurations, improvements in magnet layout and materials, and better integration between components. However, one of the major heroes of EV efficiency improvements has been thermal management technologies
Mair, Andreas
During a recent Bosch tech showcase, we spoke with Joe Dear, engineering manager for electric propulsion systems at Linamar. The Guelph, Ontario-based parts manufacturer is no stranger to building unsung components for the auto industry, including gears, camshafts, connecting rods, and cylinder heads. The Linamar team was demonstrating a modified Ram 2500, a collaboration between Bosch and Linamar, that was outfitted with a prototype electric powertrain and new e-axles: a rigid axle on the rear (with a Bosch motor and inverter) and a steering axle up front
Blanco, Sebastian
Traditionally the off-highway vehicles like tractors, construction and road building machinery have been using diesel engine as the power source. In recent times there has been more and more focus to adopt either all electric or hybrid powertrain for off highway vehicles to reduce the carbon footprint. The e machines involve various electrical components like Battery pack, On board Charger, DC/DC converter, Inverters, Traction motors, PTO Motor and e transmission. The cooling requirement and the fluid temperature limits for these electric components is different compared to the conventional engine. In most of the cases the battery cell temperature needs to be around 20 to 30 °C which in most cases would be below the ambient temperature. Whereas the hydraulic oil temperature can be as high as 100 °C. The hydraulic oil temperature can be maintained using a separate air-cooled hydraulic oil cooler or a plate cooler. Therefore, the cooling system for the e components will be unique and
Dewangan, NitinJoshi, Prathamesh
In an electric vehicle, nevertheless, the primary component is the electric motor (e-motor). Understanding the thermal performance of the e-motor is paramount in ensuring the overall efficient functioning of the electric vehicle. Usually, the high-power e-motors are oil-cooled due to relatively high thermal loads. The e-motor thermal response is monitored under extreme conditions like warm-up cycle allowing the vehicle to move in a circular track multiple-times. In this condition, the vehicle undergoes heavy lateral and longitudinal accelerations, the e-motor speed varies and the consequent thermal losses from the rotor and stator components also vary accordingly. Importantly, the cooling oil sloshes rigorously that affects the heat removal capacity of the oil. The advanced capabilities of Computational Fluid Dynamics (CFD) allow to virtually simulate the warm-up cycle and capture the extremely transient thermal response of the e-motor in the given conditions. In the current effort, a
Pasunurthi, Shyam SundarSrinivasan, ChiranthChaudhari, NiravMaiti, Dipak
Permanent magnet synchronous (PMS) motors are frequently used in electric vehicles because of their high power density, stable output torque and low noise. During the operation of an electric motor, some of the electrical energy is converted into heat. The rise in motor temperature hampers motor performance (power output, demagnetization, breakdown of winding insulation, efficiency and component lifespan). The losses occurring in electric motors during operation mainly include: stator loss, winding copper loss, rotor iron loss, eddy current loss in magnets and mechanical losses. The life and operating reliability of a motor depends on the thermal performance of the motor. This paper describes a detailed procedure for an indirect coupled analysis between Ansys Maxwell and Ansys Fluent, in order to predict critical thermal characteristics of the motor and cooling jacket. The main objective of this paper is to model the PMS motor with a cooling system based on input electrical and
Shandilya, AnandKumar, Vivek
The aim of paper is to present the workflow of battery sizing for electric L7e-CU type vehicle. The intention is to use it as last-mile delivery multi-purpose vehicle. Based on legislation limits and pursuing the real-world driving cycle, major vehicle characteristics as total vehicle mass including payload and wheel size are determined. Vehicle total energy consumption is calculated knowing vehicle power in time. Accordingly, to selected gearbox ratio the electric motor nominal power-speed curve is defined as well as the nominal torque-speed curve. Applying vehicle acceleration dynamics involving limits considering resistive forces, acting on the vehicle, e.g. slope, friction, air drag, and total inertia, referred to the electric motor through the gearbox the electric motor over-load-ability characteristics are calculated. Next, the motor design is defined and optimized. Defining required vehicle range at given driving cycle and knowing the vehicle and all powertrain characteristics
Rupnik, UrbanVukotić, MarioManko, RomanAlić, AlenČorović, SelmaMiljavec, Damijan
Nowadays, the increase in the global population and the rise in living standards lead to a growing number of cars on the roads, resulting in an increase in emissions. It becomes crucial for society to make efforts to modernize the entire vehicle fleet to emission standards adequate for combating climate change, accelerating the natural turnover of older vehicles whenever possible. For this reason, the following study delves into the category of mild hybrid electric vehicles, which can be easily obtained through retrofitting practices from existing vehicles, thus enabling the enhancement of a large number of cars using minimal materials and requiring minimal time. The present paper focuses on the performance of the traction electric machine, whose dynamic model - based on the equivalent circuit model of a surface synchronous permanent magnet electric motor - is shown to allow for an accurate representation of instantaneous power and efficiency during its operation. Still, this motor
Federici, LeonardoLombardi, SimoneTribioli, LauraBella, Gino
Decarbonization and a continuous reduction in exhaust emissions from combustion engines are key objectives in the further development of modern powertrains. In order to address both aspects, the DE4LoRa research project is developing an innovative hybrid powertrain that is characterized by the highly flexible combination of two electric motors with a monovalent compressed natural gas (CNG) engine. This approach enables highly efficient driving in purely electric, parallel and serial operating modes. The use of synthetic CNG alone leads to a significant reduction in CO2 emissions and thus in the climate impact of the drivetrain. With CNG-powered engines in particular, however, methane and other tailpipe emissions of climate gases and pollutants must also be minimized. This is possible in particular through efficient exhaust gas aftertreatment and an effective operating strategy of the powertrain. This publication presents measurement results that examine the critical aspect of cold
Noone, PatrickHerold, TimBeidl, Christian
The paper characterizes and documents the performance evaluation of an electric motor and motor controller/inverter. An overall energy balance on the electric motor itself was performed that resulted in a maximum operating efficiency of 94%, while the combined motor and motor controller/inverter system resulted in an 80% efficiency at 2,500 RPM and 60 Nm operating conditions. The zero load power requirements were identified across a span of operating conditions and compared against manufacturer provided values. Vibrations in the system were shown to impact motor control, through the current draw values, that resulted in unstable operation regimes
Schroen, ErikMitsingas, ConstandinosKweon, Chol-Bum “Mike”
Motor temperature plays a critical role in controlling pump speed and regulating coolant flow to prevent overheating during motor operation. Presently, negative temperature coefficient (NTC) sensors are commonly used for motor temperature measurement, typically installed at the motor winding’s end for ease of installation. However, in oil spray-cooled motors, the temperature distribution is uneven due to the spray pipe, leading to lower temperatures near the pipe compared to other areas. This results in a challenge where relying solely on NTC measurements at the winding end may not meet the motor’s cooling requirements. To address this issue and improve temperature signal accuracy, a novel approach has been developed that utilizes four signals derived from the motor controller: motor speed, motor torque, along with oil pump speed, oil temperature. Employing the lumped parameter method, a model established in Simulink aims to estimate the average temperature in the motor’s high
Lu, JunjieLi, QiangChen, BinglinZhu, LunzhiWu, JianYan, Pingtao
Toyota, Mazda and Subaru announced a new technological effort to create new internal combustion engines and ways to use them in the electrification era, specifically for hybrid and plug-in hybrid vehicles. The companies said at a joint press conference in Japan that they would encourage increased use of petroleum alternatives like biofuels and eFuels in their effort to create carbon-neutral vehicles. A joint statement from the three OEMs claims this push for new and better ICEs comes with a focus on “carbon as the enemy” as they develop engines that can better work with electric motors, batteries, and other electric drive units. Toyota, Mazda and Subaru made clear they are not getting rid of EV-only vehicle plans. Here's how each company will approach the new ICE+EV era (quotes provided in English by on-site interpreters
Blanco, Sebastian
Eaton and BAE Systems have collaborated to create an electric powertrain featuring BAE electronics and an Eaton four-speed transmission. One of the advantages that OEMs have long touted for battery-electric vehicles (BEVs) has been the elimination of components like the transmission. The instant torque that an electric motor can supply often mitigates the need for any sort of torque multiplication beyond what the chosen axle ratio can provide. However, what the industry has found is that this concept has its limitations in certain use cases. When asked to haul heavy loads over sustained grades or at freeway speeds, a direct drive BEV powertrain rapidly begins losing efficiency and range. Of course, batteries and motors can be scaled up to handle heavier loads, but these methods add both cost and weight to vehicles for which these numbers are already major concerns
Wolfe, Matt
In order to improve the speed control performance of permanent magnet synchronous motor (PMSM) under disturbance, an adaptive reaching law sliding mode control (ASMC) is proposed. The objectives are to accelerate the control stabilization time and reduce chattering in speed control. Based on Lyapunov stability theory, the effectiveness of the scheme is proven. Based on the traditional index reaching law (T_SMRL), the adaptive sliding mode reaching law (ASMRL) introduces the adaptive adjustment terms of chattering, system state, and reaching speed, and uses hyperbolic tangent function instead of sign function. The effectiveness of the ASMRL is proved by theoretical analysis and numerical simulation. Compared with the T_SMRL and improved sliding mode control (I_SMC), the convergence is 33% faster and the chattering is 30% less. In addition, based on the ASMRL, the motor speed control system is established. An extended state observer (ESO) is designed in the surface PMSM (SPMSM) control
Liu, JingangLi, RuiqiLin, HuimingLiu, XianghuanZheng, JianyunYang, Hongmei
The global attention toward electric vehicles is growing tremendously, mainly because of environmental issues in recent years. There has been a significant increase in the development of hybrid and pure electric vehicles as they are considered as an effective solution for reducing the carbon footprint. There is a lot of research happening, especially in the design of high-performance e-motors for electric powertrain applications. In this paper, the focus is on the permanent magnet synchronous motors (PMSM) due to its higher efficiency and more advantageous torque characteristics compared to other types of motors. This paper presents a procedure for determining the initial design parameters using analytical calculation method for a PMSM, followed by developing machine learning algorithms (XGBoost, random forest, and artificial neural networks) with the available benchmarking data and compare their performance to determine the motor design parameters. A comparison study with the results
Bolagond, VrashabhaAtre, AniruddhaGurumurthy, Amogh
Many sources and paths cause interior cabin noise. Some noise from an electric vehicle is unique and different from a vehicle with an internal combustion engine. Especially, whine noise occurs due to the particular orders of the electromagnetic force of an electric motor and transmission gears, which is tonal and usually reaches high frequencies. This paper covers structure-borne (SB) and airborne (AB) aspects to estimate whine, and the difference between the two characteristics is distinguished. The focus lies mainly on the process of virtual vehicle development and application for performance improvement. First, to predict SB whine, an e-powertrain is modeled as a finite element model (FEM), and electromagnetic (EM) forces are calculated. A vehicle model is also modeled as an FEM, in which interior sound packages are carefully modeled as they play an important role in the medium-frequency region. The e-powertrain and vehicle models (being simulated separately) are combined to obtain
Yoo, Ji WooChae, Ki-SangChoi, JaeHyukKim, MyunggyuCho, SeunghyeonCoster, ChristopheVan Gils, Anneleen
The heavy-duty off-road industry continues to expand efforts to reduce fuel consumption and CO2e (carbon dioxide equivalent) emissions. Many manufacturers are pursuing electrification to decrease fuel consumption and emissions. Future policies will likely require electrification for CO2e savings, as seen in light-duty on-road vehicles. Electrified architectures vary widely in the heavy-duty off-road space, with parallel hybrids in some applications and series hybrids in others. The diverse applications for different types of equipment mean different electrified configurations are required. Companies must also determine the value in pursuing electrified architectures; this work analyzes a range of electrified architectures, from micro hybrids to parallel hybrids to series hybrids to a BEV, looking at the total cost, total CO2e, and cost per CO2e (cost of carbon abatement, or cost of carbon reduction) using data for the year 2021. This study is focused on a heavy-duty off-road material
Goodenough, BryantCzarnecki, AlexanderRobinette, DarrellWorm, JeremyBurroughs, BrianLatendresse, PhilWestman, John
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspects of electric motors. Among the different causes of the NVH issues of electrical drives, the spatial and temporal harmonics of the electrical drive system are of great importance. To reduce the tonal noise of the electric motors induced by these harmonics, harmonic injection methods are applied in many applications. However, a lot of existing researches focus more either on improving the optimization process of the harmonic injection parameter settings, or on the controller design of the harmonic injection process, while the structural dynamic characteristics of the motor are seldom considered. A lot of literature shows that the harmonic injection strategies can more effectively influence the mode 0 (M0) radial forces than the higher spatial orders, so it is more efficient to apply such methods at the frequencies/orders where the effect of mode 0 forces are dominant with respect to the
Fu, TongfangXu, ZhipengGünther, MarcoPischinger, StefanBöld, Simon
Items per page:
1 – 50 of 1836