Browse Topic: Electric motors
Electric vehicle (EV) transmissions play a vital role in powering EVs by channeling energy from the electric motor to the wheels. Recently, the focus has shifted to multi-speed transmissions in the EV sector due to their potential to improve efficiency and performance. By utilizing various gear ratios, these transmissions enable the motor to function within its most efficient range across different speeds. Most of these transmissions need electric control unit (ECU) with software for optimal functionality and smoother gear shifting. These controllers incorporate controller area network (CAN) communication protocol to operate along with other ECUs. Thus validation of these transmissions is a challenge as they are clutch less, motor has to be controlled for speed matching and have electro mechanical systems replacing conventional systems for operation. This paper proposes a methodology to validate multispeed EV transmissions on a test bench. The validation setup consists of electric
The automotive industry is undergoing a transformational shift with the addition of Virtual ECU in the development of software and validation. The Level 3 Virtual ECU concept will lead to the transformation in the SDLC process, as early detection of defects will have a significant impact on cost and effort reduction. This paper explains the application of a Level 3 virtual ECU which can enable to perform testing in initial period considering the Shift Left Strategy, which will significantly reduce development time. This paper demonstrates various development and validation strategies of virtual ECU and how it can impact project timeline.
Electric vehicle (EV) transmission efficiency is crucial for optimizing energy use and enhancing performance. It minimizes power losses during energy transfer from the motor to the wheels, directly impacting the vehicle's range and battery life. High efficiency ensures smoother acceleration and better driving dynamics, improving the overall user experience. Unlike internal combustion engine (ICE) transmissions, EV transmissions often employ simpler, single-speed systems, reducing complexity and energy loss. Efficient transmissions help reduce energy usage, lower costs, and minimize environmental impact. As a result, transmission efficiency plays a vital role in ensuring the sustainability and reliability of EV designs. This paper proposes a simulation model based methodology to estimate EV transmission efficiency based on modelica models developed on simulation X. A single speed EV model is developed which contains whole transmission layout discretized into simple components which
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
Items per page:
50
1 – 50 of 1979