Browse Topic: Electric motors
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
In the realm of electric and hybrid vehicles (EVs, HEVs), the intelligent thermal system control unit is essential for optimizing performance, safety, and efficiency. Unlike traditional internal combustion engines, EVs rely heavily on battery performance, which is significantly influenced by temperature. An intelligent thermal management system helps battery packs to operate within their optimal temperature range, enhancing energy efficiency, extending battery life, and maximizing driving range. Furthermore, it plays a crucial role in managing the thermal dynamics of power electronics and electric motors, preventing overheating, and ensuring reliable operation. As the demand for high-performance and efficient electric vehicles grows, the integration of advanced thermal control strategies becomes increasingly vital, paving the way for innovations in EV design and functionality. One of the key aspects of an intelligent thermal system control is their prediction capability. These
Items per page:
50
1 – 50 of 1956