Browse Topic: Electric motors

Items (1,887)
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Due to the high-power density, high torque rating, low torque ripples and fault-tolerant capability, the Dual Three-Phase Permanent Magnet Synchronous Motor (DTP-PMSM) has recently emerged as a feasible alternative for automotive applications. However, it comes with its own challenge of increased losses at low torque due to the use of 6-phase inverter or two three-phase inverters. The DTP-PMSM drive model can be designed to function in two operating modes, double-channel (dual three-phase) mode with both the inverters operating, and single-channel (three-phase) with one of the two inverters shut down. This paper proposed an efficiency analysis between single channel and double channel modes in a DTP-PMSM drive. A simulation model is prepared to calculate efficiency, and the losses associated with different parts of battery fed DTP-PMSM drive system operated in both modes. Detailed loss model is simulated to represent efficiency of a battery-fed DTP-PMSM drive system. Both single
Sun, FengyangPradhan, SubarniYang, JingruNahid-Mobarakeh, BabakValencia Garcia, Diego FernandoMavalankar, DrushanAllocco, Alessandro
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
Motor drive control is crucial for achieving the performance, reliability, and comfort of electric vehicles. Multi-phase motors, represented by dual-winding permanent magnet synchronous motors (PMSMs), have significant research value in the electric vehicle field due to their high-power drive capabilities and strong fault tolerance. A simple and easily analyzable motor model is essential for achieving high precision in control. This paper employs VSD coordinate transformation (vector space decomposition) based on electromagnetic principles and the positional relationships between windings, treating the multi-phase motor as a whole and mapping various physical quantities to multiple subspaces for simplified analysis. Consequently, a mathematical model for the dual-winding PMSM is established. The vector control system based on VSD coordinate transformation adopts a dual closed-loop structure for speed and current. It focuses on a comparative analysis between traditional two-vector
Gao, ChaoFanZheng, HongyuKaku, Chuyo
The Electro-Mechanical Brake (EMB) eliminates the traditional hydraulic pipeline arrangement through high-performance servo motor at the vehicles brake calipers. This provides a foundation for intelligent electric vehicles to achieve high-precision, fast response, and strong robustness in brake clamping force control. However, EMB faces some tricky nonlinear disturbances such as varying system stiffness disturbances, complex friction obstruction, etc., which leads to a decline in clamping force control performance. Therefore, this paper proposes a high-quality clamping force control for EMB considering nonlinear disturbances. First, we establish an EMB actuator model including the permanent magnet synchronous motor, mechanical transmission mechanism, and system stiffness characteristics. Next, the high-quality clamping force control strategy for EMB is designed. An outer-loop clamping force regulator is developed using Proportional-Integral-Derivative (PID) feedback control and
Zhao, HuiChaoChen, ZhigangLi, LunWang, ZhongshuoWu, JianChen, ZhichengZhu, Bing
The electric motor is a significant source of noise in electric vehicles (EVs). Traditional hardware-based NVH optimization techniques can prove insufficient, often resulting in trade-offs between motor torque or efficiency performance. The implementation of motor control-based torque ripple cancellation (TRC) technology provides an effective and flexible solution to reduce the targeted orders. This paper presents an explanation of the mathematical theory underlying the TRC method, with a particular focus on the various current injection methods, including those that allow up to 4DOFs (degrees-of-freedom). In the case study, the injection of controlled fifth or seventh order current harmonics into a three-phase AC motor is shown to be an effective method for cancelling the most dominant sixth order torque ripple. A dedicated feedforward harmonic current generation module is developed the allows the application of harmonic current commands to a motor control system with adjustable
He, SongGong, ChengChang, LePeddi, VinodZhang, PengGSJ, Gautam
The Environmental Protection Agency’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was initially created to simulate the Greenhouse Gas emissions from light-duty vehicles. ALPHA is used to predict tailpipe CO2 emissions and energy consumption from advanced automotive technologies. ALPHA is a physics-based, forward-looking vehicle computer simulation tool capable of analyzing various vehicle types with different powertrain technologies while replicating realistic vehicle behavior. ALPHA version 3.0 is the current version of the MATLAB/Simulink based software. Key changes made for ALPHA v3.0 include the addition of new light- and medium-duty vehicle models to support simulation of electrified vehicle architectures (hybrid, plug-in hybrid, and battery electric vehicles) aligning with the automotive industry transition towards electrified fleets. Each electrified vehicle model was tuned to replicate operational behavior of components (such as engine
Kargul, JohnMoskalik, AndrewBarba, DanielButters, Karla
This paper describes an optimal control method utilizing a Linear Quadratic Regulator (LQR) to control the torque during the gear shift on a multispeed electrified transmission to optimize for clutch actuator durability and shift performance. The dynamic state-space model of the system has been obtained using System-Identification. An LQR controller is formulated to minimize driveline oscillations and transmission-input-torque using the model by manipulating the electrical torque applied by the traction motor at the transmission input. The LQR controller is implemented in a simulation framework wherein the impact of vehicle parameters on the shift quality metrics is also assessed. Subjective and objective requirements are considered in the tuning process for the LQR controller. The LQR controller is utilized to generate profiled torque table calibrations. These calibrations are then deployed onto a production ready Transmission Control Unit and experimentally validated on a Class-8
Koli, RohitSmith, Nathan
The key issue in the electromagnetic design of permanent magnet synchronous motors is the design of the rotor structure form of the motor. To achieve the goal of reducing the cost of the motor, this paper conducts electromagnetic design, optimal control calibration of the motor, and performance analysis for reducing the rotor lamination structure, and obtains the characteristics of the permanent magnet synchronous motor under this rotor structure. For the permanent magnet synchronous motor with reduced rotor stack length and one less motor temperature sensor, starting from vector control, the conditions for obtaining the maximum electromagnetic torque and the highest rotational speed are derived. Based on these conditions, the vector control strategies for the system operating under different working conditions are designed. At low speeds, the thermal loss of the stator winding is reduced with the maximum torque current ratio to improve the motor efficiency; as the rotational speed of
Jing, JunchaoZhang, JunzhiYu, PengfeiLiu, YiqiangChen, YingchaoDai, Zhengxing
In hybrid electric vehicles (HEVs), optimizing energy management and reducing system losses are critical for enhancing overall efficiency and performance. This paper presents a novel control strategy for the boost converter in hybrid electric vehicles (HEVs), aimed at minimizing energy losses and optimizing performance by modulating to a higher boost converter voltage only when necessary. Traditional approaches to boost converter control often lead to unnecessary energy consumption by maintaining higher voltage levels even when not required. In contrast, the proposed strategy dynamically adjusts the converter's operation based on real-time vehicle demands, such as driver input, Engine Start-Stop (ESS) events, Active Electric Motor Damping (AEMD), entry and exit transitions for Engine Fuel Cut-Off (DFCO), Noise-Vibration-Harshness (NVH) events like lash-zone crossing and other specific operational conditions. The control strategy leverages predictive algorithms and real-time monitoring
Basutkar, AmeyaHuo, ShichaoSullivan, ClaireBerger, DanielTischendorf, Christoph
A battery electric vehicle (BEV) employs a traction inverter to control a traction motor. One popular configuration is to make a HV battery directly connected to the input of the motor inverter. As a result, the maximum motor voltage is limited by the state of charge (SOC) of the traction battery. When the battery voltage is low the maximum motor speed and power are limited. This voltage limitation can be solved by using a traditional boost converter-based inverter. However, this approach has several disadvantages. The motor winding terminals see a PWM voltage, which results in high frequency harmonics that lead to EMI, NVH and potential additional insulation stress. Also, there are PWM-induced common mode voltages that are known to produce bearing failures as well as EMI/EMC problems that are extremely difficult to eliminate. Finally, the topology is significantly more expensive due to the high number of active switching devices needed. To solve some of the limitations and issues
Ge, BaomingMunoz, Alfredo R.Jiang, Hong
As the complexity of electrified powertrains and their architectures continue to grow and thrive, it becomes increasingly important and challenging for the supervisory torque controller to optimize the torque commands of the electric machines. The hybrid architecture considered in this paper consists of an internal combustion engine paired with at least one electric motor and a DC-DC switching converter that steps-up the input voltage, in this case the high voltage battery, to a higher output voltage level allowing the electric machines to operate at a greater torque range and increased torque responsiveness for efficient power delivery. This paper describes a strategy for computing and applying the losses of the converter during voltage transformation to determine the optimal engine and electric motor torque commands. The control method uses a quadratic fit of the losses at the power limits of the torque control system and on optimal motor torque commands, within the constraints of
Venkataramu, AchyutWalsh, McKenzieTischendorf, ChristophSullivan, MaryPatel, NadirshHuo, ShichaoSharma, Ashay
The rise of electric and hybrid vehicles with separate axle or wheel drives enables precise torque distribution between the front and rear wheels. The smooth control of electric motors allows continuous operation on high-resistance roads, optimizing torque distribution and improving efficiency. In hybrid vehicles, synergistic control of both internal combustion engines and electric motors can minimize energy consumption. Using the internal combustion engine for steady driving and electric power for acceleration enhances dynamic performance. Keeping the internal combustion engine at a constant speed is key to improving energy efficiency and vehicle responsiveness. The proposed method aids in selecting optimal power levels for both engines during the design phase. As acceleration time decreases, the ratio of electric motor power to internal combustion engine power increases. The torque distribution system, relying on sensors for axle loads, vehicle speed, and engine power, can reduce
Podrigalo, MikhailSergyjovych, Oleksandr PolianskyiKaidalov, RuslanDubinin, YevhenAbramov, DmytriiMolodan, AndriiAndrey, KorobkoKholodov, MykhailoOmelchenko, VasylKrasnokutskyi, Maksym
As one of the most important design choices in the powertrain design cycle, motor selection is conventionally performed according to given automotive requirements. Motor-related powertrain design parameters like gear ratio, power output ratio between different axles, are excluded from the motor design process. In this paper, three comparative studies are performed to investigate the impact of these motor-related powertrain design parameters on the motor performance and the weight/cost/efficiency of the entire EV powertrain. In the first study, three PM motor designs—characterized by high, medium, and low rated speeds—will be assessed for a two-axle EV using various gear ratio configurations. The same motor design will be used for both axles. In the second study, five motor designs with varying power and ratings (PM, non-PM) but identical rated speeds will be evaluated for a two-axle EV, permitting different power ratings for the front and rear axles. The design trade-offs between motor
Movahed, EhsanGodbehere, JonathanJia, Yijiang
The advancement of high-performance electrification for electric vehicle (EV) development is continuously pushing the boundaries of electric motor technology. The axial flux motor (AFM) represents a promising application for high-performance EVs, offering potential advantages including up to twice the torque density and a 50% reduction in weight compared to regular IPM radial flux motors. The distinctive "pancake" configuration and high axial forces inherent to AFMs present notable NVH challenges, yet there is a lack of research exploring NVH analysis and risk assessment. In this paper, a 10-pole and 12-slot AFM motor is designed, prototyped, and tested, demonstrating the capability to deliver 320 Nm of peak torque and 140 kW of peak power. A comprehensive finite-element model is constructed, and the orthotropic stator material properties are evaluated using modal test data. The dominant axial stator modes are identified as the source of resonances in the system responses. A three
He, SongJensen, WilliamForsyth, AlexanderChang, LeZhang, PengGong, ChengYao, JianZou, YushengFedida, VincentDuan, ChengwuGSJ, Gautam
The drive unit, primarily consisting of an electric motor and a gearbox, needs to be cooled and lubricated for its long life and efficient performance. In an extreme drive cycle condition, the pickup tube to the pump may get exposed to air, leading to a substantial loss in line pressure and a drop in oil flow rate to the subsystems. An advanced Computational Fluid Dynamics (CFD) simulation can provide insights into the oil delivery system and help in improving the oil sump design, optimizing the position of the pickup tube to the pump and oil delivery lines. The current study employs a Volume of Fluid (VOF) based multiphase model implemented in a commercial CFD solver, Simerics-MP+. The drive unit lubrication system considered in the study consists of a gerotor pump, the entire oil delivery lines to the two subsystems and the drive unit casing. A multiphase simulation of the system with transient operation of the pump is computationally expensive. Therefore, a new methodology is
Joe, Erin SamSchlautman, JeffManne, Venkata Harish BabuSrinivasan, ChiranthPasunurthi, Shyam Sundar
The automotive subframe, also referred to as a cradle, is a critical chassis structure that supports the engine/electric motor, transmission system, and suspension components. The design of a subframe requires specialized expertise and a thorough evaluation of performance, vehicle integration, mass, and manufacturability. Suspension attachments on the subframe are integral, linking the subframe to the wheels via suspension links, thus demanding high performance standards. The complexity of subframe design constraints presents considerable challenges in developing optimal concepts within compressed timelines. With the automotive industry shifting towards electric vehicles, development cycles have shortened significantly, necessitating the exploration of innovative methods to accelerate the design process. Consequently, AI-driven design tools have gained traction. This study introduces a novel AI model capable of swiftly redesigning subframe concepts based on user-defined raw concepts
Yang, JiongzhiSarkaria, BikramjitKumaraswamy, PrashanthKailkere Srinivas, Praveen
In recent years, simulation-based performance of the models is a highly effective way to finalize the model at design stage itself. But simulation-based models are complex owing to more parameters involved hence resulting in more computational time. With the increasing demand for electric vehicles, the development time for electric vehicle (EV) powertrain is reduced, thereby increasing pressure on original equipment manufacturers (OEMs) to develop products faster. Digital twin is a platform where replication of physical models is made possible with extremely limited data to predict the performance of the model hence providing the most accurate results in a short time. Electric vehicles are the best alternatives for reducing emissions. An Electric vehicle is run by an electric motor which in turn is powered by a battery. Interior permanent magnet synchronous motors (IPMSMs) are the conventional type of motors in electric vehicles because of their high-power density and efficiency. This
Shroff, RoopeshUpase, Balasaheb
A new hybrid power system was investigated by installing a motor on the axle of a conventional semi-trailer. The purpose is to reduce the fluctuation of longitudinal acceleration and improve driving comfort by filling the transmission output torque hole through the motor during the gear shift process. Models for the longitudinal motion of a commercial vehicle, the permanent magnet synchronous motor, and the motor power distribution method are established, and the system model is built using MATLAB/Simulink. The model-in-the-loop simulation control interface is created in ModelBase, and model-in-the-loop simulation under the full-throttle (WOT) and braking operating conditions is performed based on ModelBase. Due to the high-frequency jitter problem in the actual control of the motor, the torque output obtained from different control algorithms is investigated. Finally, the sliding mode control algorithm with perturbation observation is used to ensure the fast response and smoothness of
Zhang, HongyuWei, ZhengjunZhen, RanShangguan, Wen-Bin
This paper implements high-fidelity models to analyze the system-level interactions of high-power traction motor drives in modern battery electric vehicles. With the continuous rise in demand for more hybrid and battery electric vehicles on the road, the performance requirements are becoming more demanding and the time to market is significantly shorter. The stringent cost, efficiency, and power density targets and along with the reduced design/development time, necessitate rapid and high-fidelity models for achieving optimized designs that satisfy the demands. Pulse-width modulation (PWM) strategies such as space vector and discontinuous are used widely in traction applications. The resultant harmonics generated from the inverter lead to increased electromagnetic noise, vibration and harshness (e-NVH) factors such as torque ripple and radial force harmonics, as well as harmonic losses in the stator and rotor. These unintended side effects of PWM are significant and need to be included
Balamurali, AiswaryaMohammadi, HossainMistry, JigarNasirizarandi, Reza
As the agricultural industry seeks to enhance sustainability and reduce operational costs, the introduction of mild hybrid technology in tractors presents a promising solution. This paper focuses on downsizing internal combustion (IC) engine, coupled with integration of electric motor, to reduce fuel consumption and meet stringent emission regulations while maintaining power requirement for agricultural applications in India. The hybridization aims to deliver instant power boosts during peak loads and capitalizes on energy recovery during part loads and braking. Furthermore, the idle avoidance feature minimizes fuel consumption during periods of inactivity thus improving fuel efficiency. The hybridization also aims to hybridize auxiliary systems for flexible power management, enabling operation of either engine, auxiliaries, or both as needed. A newly developed hybrid supervisory control prototype efficiently manages electric power and mechanical power, enabling intelligent management
Prasad, Lakshmi P.PS, SatyanarayanaPaygude, TejasGangsar, PurushottamThakre, MangeshChoudhary, NageshGitapathi, Ajinkya
This study investigates the impact of various notch geometries on the outer surface of the rotor of an interior permanent magnet synchronous motor intended for traction applications, focusing on improving both its thermal and electromagnetic performances. Traditional motor cooling methods, such as water jackets or oil spray/impingement, typically target the stator and/or end windings, neglecting rotor cooling. As a result, the dissipation of the heat from the rotor is dependent on the heat transfer across the air gap surrounding the rotor, despite air’s poor thermal conductivity, which causes it to act as an insulator. Rotor notches are used to limit the higher order harmonics from air gap flux density which results in decreased torque ripple, cogging torque, noise, and vibration of the machine. While the effect of rotor notches on electromagnetic performance is analyzed, their impact on the thermal management of the motor, particularly the heat transfer coefficient in the air gap
Zajac, ArthurDe Silva, BuddhikaLee, SunMistry, JigarNasirizarandi, RezaJianu, OfeliaKar, Narayan
As the global energy transition moves to increased levels of electrification for passenger cars, then the number and role of hybrid electric vehicles (HEVs) increases rapidly. For these, the power reaches the road from an internal combustion engine (ICE) and/or an electric motor, with several switches between these three modes, over a typical drive-cycle. Consequently, this comes with a large increase in the number of significant engine stop and start events. Such events are potentially challenging for the HEV engine lubricant, as by comparison, for standard ICE cycles there is almost continuous relative movement of the two lubricated surfaces, for most areas of the engine. Based on both field and test cell observations, a challenging area for the lubricant within the gasoline direct injection (GDI) engine is the high pressure (HP) fuel pump, typically driven by a cam and follower, whilst lubricated by engine oil. From engine start, the speeds are low, also the fuel pump loads are high
Butcher, RichardBradley, NathanLambert, Bertie
The automotive industry is amidst an unprecedented multi-faceted transition striving for more sustainable passenger mobility and freight transportation. The rise of e-mobility is coming along with energy efficiency improvements, greenhouse gas and non-exhaust emission reductions, driving/propulsion technology innovations, and a hardware-software-ratio shift in vehicle development for road-based electric vehicles. Current R&D activities are focusing on electric motor topologies and designs, sustainability, manufacturing, prototyping, and testing. This is leading to a new generation of electric motors, which is considering recyclability, reduction of (rare earth) resource usage, cost criticality, and a full product life-cycle assessment, to gain broader market penetration. This paper outlines the latest advances of multiple EU-funded research projects under the Horizon Europe framework and showcases their complementarities to address the European priorities as identified in the 2Zero
Armengaud, EricRatz, FlorianMuñiz, ÁngelaPoza, JavierGarramiola, FernandoAlmandoz, GaizkaPippuri-Mäkeläinen, JenniClenet, StéphaneMessagie, MaartenD’amore, LeaLavigne Philippot, MaevaRillo, OriolMontesinos, DanielVansompel, HendrikDe Keyser, ArneRomano, ClaudioMontanaro, UmbertoTavernini, DavideGruber, PatrickRan, LiaoyuanAmati, NicolaVagg, ChristopherHerzog, MaticWeinzerl, MartinKeränen, JanneMontonen, Juho
The drive unit of electric vehicles is a complex system consisting of an electric motor and a gear train, which work together to provide the necessary power for vehicle propulsion. One essential component within this system is the ball bearing, which supports the rotating components such as gears and shafts. This study focuses on the thermal simulation of a ball bearing within the drive unit conducted using the Volume of Fluid (VOF) method coupled with mixed timescale Conjugate Heat Transfer (CHT) in Simerics-MP+ to reduce the computational time while ensuring accuracy in the analysis. The Computational Fluid Dynamics (CFD) approach considers the geometrical details and clearances of the inner race, outer race, cage, and ball within the ball bearing. By accounting for the relative motions between these components, it can accurately model the film formation of the lubricating oil and its impact on heat removal from the bearing. The simulations are conducted at two different shaft speeds
Ballani, AbhishekMotin, AbdulDhar, SujanGanamet, AlainMaiti, DipakRanganathan, RajPandey, Ashutosh
Engineers have been dealing with either random excitation or swept sinusoidal excitation quite often in the past, in order to estimate the fatigue damage in an automotive system. Efficient numerical methods in frequency domain for the fatigue due to either form of excitation (not both) have become more mature in the past decades. However, a greater demand for a fatigue estimation under a more complicated form of excitation has risen as electric vehicles are being developed in the automotive industry. In particular, delicate rotating components such as electric motors and gearboxes can be simultaneously subject to a random excitation due to any possible rough surfaces on the road as well as sinusoidal excitation due to its own rotation. Hence, this combined or mixed excitation, also known as swept sine-on-random (SSOR), has posed a challenge to the fatigue simulation community when using a frequency-domain method is desired.. The very challenge is due to the fact that when either random
Yang, ZaneSridhar, KarthikeyanLingareddy, Manoj Kumar
The use of electric vehicles (EVs) has been on the rise in recent years and this trend is expected to continue in the upcoming years. There are several reasons for the increasing popularity of EVs, including environmental concerns, advances in technology, and government incentives. The 2W/3W EV powertrain comprises components such as the battery, traction motor, motor controller, charger, and DC-DC converter, etc. Essential components which impact the power, efficiency, and range of the vehicle are a motor (generally PMSM or BLDC) and a motor controller. PMSMs can produce more output power than BLDC motors of the same size, making them suitable for high-power applications. While the EV powertrain allows for greater flexibility in designing electric vehicle architectures, it also exhibits new challenges in meeting all the essential requirements. When a motor rotates, as per Lenz’s law, an opposing voltage (Back-EMF) is generated in a motor whose magnitude is proportional to its angular
Mohan, MidhunShinde, RushikeshMagar, PradipDeo, Mayank PramodChaudhary, Pramod
The rotor position information is an important variable in the control system of dual three-phase motors, and ensuring the real-time and correct information is a prerequisite for the reliable operation of the dual three-phase motor system. The paper analyzes the structural characteristics of a dual three-phase permanent magnet synchronous motor (DTP-PMSM) with a 30°misalignment of dual Y windings, and proposes a new high-frequency symmetrical voltage injection method that can effectively identify rotor position information in a wide speed range. It forms heterogeneous information verification with the hardware signals of the dual three-phase motor rotor position sensors, improving the functional safety level of the control system. Firstly, a DTP-PMSM mathematical model was constructed under high-frequency voltage injection, and the mapping relationship between injection voltage and response current was derived, revealing the characteristic relationship between rotor position
Xu, LuhuiZhao, Zhiguo
Deadbeat Predictive Current Control (DPCC) has emerged as a highly effective control strategy, owing to its outstanding dynamic performance. However, the control effectiveness of traditional methods is limited by the machine parameters set in advance, which inevitably reduces the parameter robustness of the method. When machine parameters change due to factors like temperature, the discrepancy between the actual values and the parameters configured in the controller leads to a decline in DPCC performance, and cause system instability. To tackle the challenge of parameter dependence, this paper proposes an adaptive parameter-free model-free deadbeat predictive current control (PF-MFDPCC) method suitable for interior permanent magnet synchronous motors (IPMSM). The method estimates the actual gain parameters based on the sampled current values and reference values, and determines the required harmonic current injection by minimizing torque ripple. First, the relationship of the
Guo, RongGu, hongyang
The U.S. DRIVE Electrical and Electronics Technical Team has set a goal for 2025 to achieve a power density of 33 kW/L for electric vehicle (EV) motors [1]. The increase in motor power density is highly dependent on effective thermal management within the system, making active cooling techniques like oil-jet impingement essential for continued advancements. Due to the time and expense of physical experimentation, numerical simulations have become a preferred method for design testing and optimization. These simulations often simplify the motor-winding surface into a smooth cylinder, overlooking the actual corrugated surface due to windings, thus reducing computational resources and mesh complexity. However, the coil's corrugated surface affects flow turbulence and heat transfer rates. This study utilizes three-dimensional Computational Fluid Dynamics (CFD) simulations to investigate the impingement-cooling of an Automatic Transmission Fluid (ATF) jet on a corrugated surface that
Mutyal, Jayesh RameshHaghnegahdar, AhmadGurunadhan, MohanaKonangi, SantoshChamphekar, Omkar
With the development of automotive electrification and intelligent technology, vehicles have higher and higher requirements for braking systems. On the one hand, it requires it to have an active braking function, and at the same time facilitates the integration with other control systems of the chassis domain. The system should minimize oil pollution as much as possible, and under the premise of ensuring the pedal force, it can be used to recover the brake energy as much as possible to improve the range of electric vehicles as possible. The new brake system based on Electronic mechanical brake (EMB) as a line -controlled decoupling braking system can not only meet the needs of the brake pedal sensation, but also achieve continuous and accurate control of braking power. It can effectively Taking into account braking economy, braking safety, and braking comfort. In addition, the development of EMB technology is still immature and the failure rate is high, so research on EMB's fault
Li, XuesongQin, KeyunZheng, HongyuKaku, Chuyo
In modern vehicles, effective thermal management is crucial for regulating temperatures across various components and sub-systems, ensuring optimal performance, efficiency, safety, and passenger comfort. As the industry shifts towards reducing carbon emissions, powertrain electrification - encompassing electric and hybrid vehicles - has emerged as a prominent trend. This transition introduces greater complexities, as the powertrain system must now precisely control the temperatures of not only traditional components but also batteries, power electronics, and motors. Typically, the performance of vehicle-level thermal management systems is fully evaluated only after physical prototypes are developed and tested, particularly during summer and winter road trials. Conducting development and validation at such a late stage in the development process significantly increases both development risks and costs. To address these challenges, a comprehensive vehicle-level thermal management
Xu, ZhengQiu, JieLu, YuanWang, Yingzhen
Electric motors are critical components in Electric Vehicle (EV) & industrial applications. In case of EVs electric motor has a direct impact on the functionality, range and general user experience. Traditional maintenance procedures have several major limitations such as, leaving no choice but to use the expensive warranty claims, restricted predictive maintenance, unavailability of useful data, reducing resale value, and ultimately poor customer satisfaction. The process of building a virtual duplicate of an actual motor that can replicate the physical system in real time is known as the Digital Twin (DT) technology. Here, the DT technology-based monitoring and maintenance is initiated on permanent magnet synchronous motor (PMSM) used in traction, thus helping to overcome the drawbacks of traditional maintenance system. To provide a holistic approach to real time motor monitoring, motor management, ensuring enhanced reliability, efficiency, and predictive maintenance capabilities
Valiyil, RinshaR, BharathNair, AnushPuthiyapurayil, ShamalRavi, Reshma
Reducing emissions in individual transport requires electrification and hybridization. Emission reduction depends on the degree of electrification, the specific powertrain design and optimized components. This is especially true for hybrids with the highest number of components, consisting of combustion engine, transmission, electric motors and batteries. The integration of the electric motor in the transmission for dedicated hybrid transmissions leads to many possible concepts. Computer-aided powertrain synthesis is therefore needed to develop new powertrain architectures. In a publicly funded project, we have developed a powertrain synthesis that includes a combustion engine synthesis and a transmission synthesis. In this paper we focus on the impact of the engine concept on the powertrain dimensioning, fuel consumption, performance and operating behavior in a parallel hybrid configuration. In addition to different engine concepts, the electrical power is also varied to discuss the
Sturm, AxelHenze, RomanKüçükay, FeritWolgast, CarstenEilts, Peter
Conjugate heat transfer (CHT) analysis of electric motor cooling was performed, simulating both the standard and paperless stator designs, using the CFD software Simerics-MP+ to assess the predictive accuracy of the numerical simulations. The condition investigated involved the motor operating at 14,000 RPM. This high rotor speed was modeled using a novel hybrid approach for mesh rotation to make the problem more tractable. Oil and air, the two immiscible fluids, were modeled using the explicit interface-capturing Volume of Fluid (VOF) method. The traditional CHT approach is computationally expensive for electric motor cooling applications due to the heat transfer time scale differences between the fluid and the solid. Temperature changes in solids occur over a much slower time scale owning to their higher thermal inertia compared to fluids. Therefore, we model the fluid and solid domains separately and use a mixed-time scale approach to exchange the heat transfer data between them
Varghese, JoelSchlautman, JeffChen, YaweiBhunia, SrijohnSrinivasan, Chiranth
China 6b regulation was fully implemented since July 2023 with very strict emission standards for HC, NMHC, NOx, and CO. The country is now also in the process of developing China 7 regulation, which will perhaps impose even stricter emission limits and extra criteria pollutants including NH3. Moreover, increasingly strict fuel consumption regulation has been implemented as well and it is highly possible that greenhouse gas emission limits will be included in the China 7 regulation. With the hybrid technology innovation, PHEVs are effective in fuel economy and emission reduction, which are favored by manufacturers and consumers, and leading to a rapid increase in market share. Through the optimization of hybrid architecture and the synergy of electric motors, the operating conditions of the hybrid engine have been optimized, making it more stable and avoiding extreme engine operating conditions compared to traditional ICE, which also provides possibilities for optimizing the after
Wang, JimingLi, ChunboFeng, XiangyuChen, XiaolangBoger, ThorstenTian, LichenHu, XianliZeng, JunTian, TianGao, BojunLi, DachengLiu, ShichengJiang, Fajun
A heavy-duty commercial electric truck is equipped with dual axles, with the middle axle driven by an electric motor and a three-speed transmission and the rear axle driven by an electric motor and a two-speed transmission. To consider the dynamic and economy performance of the whole vehicle, as well as the gear distribution characteristics in the vehicle operation, a comprehensive shifting schedule based on the cross-particle swarm algorithm is proposed. By establishing the longitudinal dynamics model of the truck, the optimal power shift schedule and the optimal economics shift schedule of each of the two transmissions are studied. Under the standard test conditions, an optimal gear control strategy based on the dynamic programming algorithm considering the shift interval is proposed, and the shift schedule for the standard conditions is derived through the hierarchical clustering method. Furthermore, with 0-100 km/h acceleration capability and specific energy consumption as the
Guo, JunZhang, YunqingWu, Jinglai
The 2026 Formula One (F1) power unit (PU) regulations introduce significant changes, particularly in the Motor Generator Unit-Kinetic (MGU-K), allowing for increased energy recovery under braking and greater energy deployment per lap. These changes are expected to lead to higher heat generation within the electric motor during the energy recovery and deployment phases. This study presents a methodology for assessing the thermal performance of the MGU-K under the 2026 regulations, with a comparative analysis against the 2024 powertrain configuration. A hybrid F1 powertrain model, coupled with rule-based control logic, was developed in GT-Drive, adhering to both FIA 2024 and 2026 regulations. Validation of the powertrain model was performed using 2023 Qualifying 3 (Q3) data. The heat loss data derived from the simulations were integrated into a hybrid thermal model, combining lumped parameter networks with finite element thermal analysis, to predict temperature increases. Based on these
Bayram, BerkeSamuel, Stephen
As stepper motors become more and more widely used in engineering systems (vehicles, 3-D printers, manufacturing tools, and similar), the effects of their induced magnetic fields present a concern during the packing and orientation of components within the system. For applications requiring security, this is also a concern as the background electromagnetic radiation (EMF) can be captured at a distance and used to reproduce the motion of the motor during operation. One proposed alternative is to use customized non-magnetic plastic shields created using additive manufacturing. Some small studies have been completed which show some effectiveness of this approach but these studies have been small-scale and difficult to reproduce. To seek a more rigorous answer to this question and collect reproducible data, the present study used full factorial design of experiments with several replications. Three materials were used: Polylactide (PLA), PLA with 25% (weight) copper powder, and PLA with 15
Hu, HenryPatterson, Albert E.Karim, Muhammad FaeyzPorter, LoganKolluru, Pavan V.
This paper aims to model and simulate a design specification for a fuel cell electric powertrain tailored for Extreme H motorsport applications. A comprehensive numerical model of the powertrain was constructed using GT-SUITE v2024, integrating the 2025 Extreme H regulations, which include specifications for the fuel cell stack, electric motors, hydrogen storage, and battery systems. A detailed drive cycle representing the real-world driving patterns of Extreme E vehicles was developed, utilizing kinematic parameters derived from literature and real-world data. The performance of the Extreme H powertrain was benchmarked against the Toyota Mirai fuel cell vehicle to validate the simulation accuracy under the same racing conditions. The proposed design delivers a maximum power output of 400 kW, with 75 kW supplied by the fuel cell and 325 kW by the battery, ensuring optimal performance within the constraints set by the Extreme H 2025 regulations. Additionally, the design maintains an
Moreno Medina, JavierSamuel, Stephen
Electric vehicles (EVs) represent a significant stride toward environmental sustainability, offering a multitude of benefits such as the reduction of greenhouse gas emissions and air pollution. Moreover, EVs play a pivotal role in enhancing energy efficiency and mitigating reliance on fossil fuels, which has propelled their global sales to unprecedented heights over the past decade. Therefore, choosing the right electric drive becomes crucially important. The main objective of this article is to compare various conventional and non-conventional electric drives for electric propulsion in terms of electromechanical energy conversion ratio and the thermal response under continuous [at 12 A/mm2 and 6000 rpm] and peak [at 25 A/mm2 and 4000 rpm] operating conditions. The comparative analysis encompasses torque density, power density, torque pulsation, weight, peak and running efficiencies of motor, inverter and traction drive, electromechanical efficiency, and active material cost. This
Patel, Dhruvi DhairyaFahimi, BabakBalsara, Poras T.
Electric vehicles (EVs) represent a promising solution to reduce environmental issues and decrease dependency on fossil fuels. The main drawback associated with the direct torque control (DTC) scheme is that it is incapable of improving the efficiency and response time of the EVs. To overcome this problem, integrating deep learning (DL) techniques into DTC offers a valuable solution to enhance the performance of the drive system of EVs. This article introduces three control methods to improve the output for DTC-based BLDC motor drives: a traditional proportional–integral for speed controller (speed PI), a neural network fitting (NNF)-based speed controller (speed NNF), and a custom neural (CN) network-based speed controller (speed CN). The NNF and CN are DL techniques designed to overcome the limitations of conventional PI controllers, such as retaining the percentage overshoot, settling times, and improving the system’s efficiency. The CN controller reduced the torque ripple by 15
Patel, SandeshYadav, ShekharTiwari, Nitesh
Environmental awareness is being fostered in every sector, with particular emphasis on the automotive industry. Conventional internal combustion engines are responsible for greenhouse gas emissions and health issues. Researchers are looking for alternative technologies to reduce carbon footprint and for a green environment. In this study, electric drivetrain is designed for 20% range extension and retrofitted in conventional two-wheeler. An effective control technique has been developed, thoroughly tested, and effectively implemented on the two-wheeler. The hybrid drivetrain architecture is assessed for complexities such as the required space for the battery and the location for fitting the electric motor. During low-speed conditions, the electric motor reduced the emissions and minimized fuel consumption. Consequently, the overall utilization of internal combustion engines at low-speed conditions has decreased, leading to a decrease in the vehicle's fuel consumption and exhaust gases.
Banad, Chandrashekhar BDevunuri, SureshNair, Jayashri NarayananHadagali, BalappaPrasad, Gvl
The popular methods to generate PWM (Pulse width modulation) are triangle comparison method and space vector method. The work evaluates the performance of continuous and discontinuous space vector pulse width modulation techniques based on the switching losses and harmonic distortion. The flexibility in the placement of null vectors and active vectors gives generality in SVPWM (Space Vector PWM) techniques. Continuous SVPWM employs the conventional switching sequences which are equally divided the null vectors and active vectors. Discontinuous PWM are derived based on the different combinations of null and active switching vectors. The discontinuous PWM techniques clamps each phase for either 300 or 600 in each half cycle. Majority of the discontinuous SVPWM uses any one of the null vectors and effectively to reduce the average switching loss in a cycle and the total harmonic distortion.The study brings out the optimum SVPWM sequences for the control of PMSM(PERMENANT MAGNET
Nair, Meenu DivakaranDurai, Saranya
Electric vehicles (EVs) are paving the way for future mobility, with drive motors playing a central role in their efficiency and performance. Motor testing machines are crucial for validating EV motors, yet flaws in testing equipment, such as gear issues, often lead to operational disruptions. This study aims to enhance motor testing by implementing machine learning and vibration signal analysis to detect gear faults early. Using statistical feature extraction and classifiers like Quadratic SVM and Bagged Trees, the collected vibration signals are categorized as normal or faulty under loaded (0.275 kW) and no-load conditions. Performance comparison reveals the Bagged Trees algorithm's superior accuracy of 95.3%. This approach offers an intelligent, preventive maintenance solution, improving the motor test bench’s reliability.
S, RavikumarSyed, ShaulV, MuralidharanD, Pradeep Kumar
Customers are expecting higher level of refinement in electric vehicle. Since the background noise is less in electric vehicle in comparison with ICE, it is challenging for NVH engineers to address even minor noise concerns without cost and mass addition. Higher boom noise is perceived in the test vehicle when driven on the coarse road at a speed of 50 kmph. The test vehicle is rear wheel driven vehicle powered by electric motor. Multi reference Transfer Path Analysis (TPA) is conducted on the vehicle to identify the path through which maximum forces are entering the body. Based on the findings from TPA, solutions like reduction in the dynamic stiffness of the suspension bushes are optimized which resulted in reduction of noise. To reduce the noise further, Operational Deflection Shape (ODS) analysis is conducted on the entire vehicle to identify the deflection shapes of all the suspension components and all the body panels like floor, roof, tailgate, dash panel, quarter panel and
S, Nataraja MoorthyRao, Manchi VenkateswaraRaghavendran, PrasathSelvam, Ebinezer
This paper designs a low-budget yokeless and segmented armature (YASA) axial flux permanent magnet synchronous machine, which replaces some of the PMs attached to the rotor with silicon steel plates. For the purpose of checking the effectiveness of the proposed machine, the equivalent magnetic circuits of the typical and proposed YASA machines are first compared and analyzed, and then the models of the two machines are constructed and simulated. The results prove that the proposed YASA machine significantly reduces the quantity of permanent magnets compared to the typical machine. In addition, the thickness of the machine rotor disc has been reduced by optimizing the machine, which both enhances the power density and reduces the volume of the machine. Finally, the rotor-stator magnetic pulling force of the machine is simulated and analyzed, and the results prove that the proposed machine can operate stably.
Li, TaoWang, BitanDiao, ChengwuZhao, Wenliang
The permanent magnet synchronous motor (PMSM) has become the preferred driving technology in robotic control engineering due to its high-power density and excellent dynamic response capability. However, traditional vector control strategies, while widely used, reveal certain limitations due to their reliance on high-precision sensors and the complex coordinate transformation calculations. These limitations affect the performance of robots in high-speed environments. This paper proposes a decoupling design for the PMSM current loop based on Internal model control (IMC), aiming to improve control accuracy and response speed by simplifying the control algorithm. This new strategy not only maintains the basic framework of vector control but also enhances the dynamic performance of the system through effective decoupling. Simulations conducted using Simulink demonstrate that this strategy significantly improves system stability and dynamic response speed, achieving more precise and rapid
Chen, HaoHuan, DiGong, ChaoLiu, Chenliang
The design of weighting factors in the cost function of traditional model predictive torque control (MPTC) is relatively cumbersome, at the same time, the accuracy of the prediction model decreases obviously when the motor parameters are mismatched. Therefore, a model predictive control without weighting factors based on on-line identification of motor parameters is studied. Firstly, the control objectives transformed from torque and flux of traditional MPTC to active torque and reactive torque, since they are of the same dimension the design of weighting factors is unnecessary. Secondly, aiming at the problem of control performance degradation caused by the change of motor parameters in the prediction model, the online identification of motor parameters based on model reference adaptive system is studied, the identification results are applied to the prediction process to avoid the bad influence caused by the parameter variation. The findings from the simulation indicate that the
Zhang, YanqingJia, DanyangYin, ZhonggangLiu, Qi
Items per page:
1 – 50 of 1887