Browse Topic: Aluminum engines
Downsizing and Light weighting is the latest trend in the automotive industry to achieve more fuel efficient, compact and cost effective design of vehicles. Powertrain components compromise of more than 45% of the total vehicle weight. Automakers are putting significant efforts to reduce the weight of power train components. Integrated design of aluminum Engine Head and Intake manifold has been successfully implemented. Now currently we have identified the gear box housings for downsizing in light duty trucks i.e. Existing light duty trucks Cast Iron transmission. This design has been successfully modified with integrated clutch housing and transmission housing, using lightweight aluminum as the new material, using simulation tools. This lead to weight savings of up to 30% and cost savings of 20-25% as compared to existing cast iron designs. Using an integrated design reduces the assembly cost, makes the design more compact and gives better weight balance. From an emissions perspective
The bearing performance of steel backed half bearings, bushings, and washers is dependent on the properties and thickness of the lining alloy, the strength and dimensional stability of the steel backing (usually SAE 1010) and the strength of the bond between the lining alloy and the backing. This SAE Information Report is primarily concerned with the properties of the lining alloys used in automotive applications, in particular, the crankshaft bearings of the internal combustion engine
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles. The temperature field in the block is
A linerless aluminum (Al) engine block has potential to reduce the weight of an automotive engine and improve the fuel economy. However, the Al cylinder surface of an aluminum engine block is not usually strong enough to withstand the sliding wear against piston rings. A few surface processing technologies are used to protect the surface of cylinders. Among them, a thermal spraying coating, such as plasma transferred wire arc (PTWA) is already popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum-silicon (Al-Si) alloys and reducing the friction between the cylinder and piston. In this work, two different PEO coatings with a thickness of around 23 μm were prepared on an Al-Si alloy A356, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coatings at oil lubricant conditions. A cast iron sample was also used to do similar tribological tests for comparison. The coefficient of friction
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy. The rotational velocity of the
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components. Conversely, the undistorted engine block had compressive strains in
Rising fuel prices and more stringent vehicle emissions requirements are increasing the pressure on engine manufacturers to utilize technologies to increase efficiency and reduce emissions. As a result, interest in cylinder surface coatings has risen considerably in the past few years. Among these are SUMEBore® coatings from Sulzer Metco. These coatings are applied by a powder-based air plasma spray (APS) process. The APS process is very flexible, and can process materials which wire-based methods cannot, particularly metal matrix composites and pure ceramics. Applications range from small 2-stroke engines, motorcycles, and lightweight passenger car engines, up to high-speed diesel truck engines and medium-speed diesel engines. The compositions of the coatings can be tailored to the specific challenges in an engine, e.g., excessive abrasive wear, scuffing, corrosion caused by adulterated fuel, improved heat transfer from the combustion chamber into the water jacket, etc. A number of
Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder. The residual stress in the gray cast iron liner was
IC Engine manufacturers are constantly in pursuit of better sealability of cylinder head and engine block interface for meeting performance and durability targets. In order to overcome variation in torque - tension characteristics of cylinder head bolt because of friction variations, yield based clamping are being extensively adopted. Current study is done on torque - tension characteristics of a cylinder head bolt with a controlled quality. The paper enumerates the experimental setup representing a sub 1 liter all aluminum engine's head-block joinery. Studies on torque - tension characteristics of cylinder head bolt and the effect of sealing interface using a cost effective single layer steel gasket are being discussed in the paper. Subject work has led to a successful implementation of angular torque parameters on head bolts to meet functional and durability targets
The automotive industry convened in Detroit in early January for the annual North American International Auto Show to introduce a number of new production and concept vehicles. Many of the concept vehicles drew on the past for inspiration, focused on sporty performance and lifestyles, or blurred even more the distinction between car, truck, and SUV. AEI editors review their engineering highlights on the following pages
The bearing performance of steel backed half bearings, bushings, and washers is dependent on the properties and thickness of the lining alloy, the strength and dimensional stability of the steel backing (usually SAE 1010) and the strength of the bond between the lining alloy and the backing. This SAE Information Report is primarily concerned with the properties of the lining alloys used in automotive applications, in particular, the crankshaft bearings of the internal combustion engine
Items per page:
50
1 – 50 of 61