Browse Topic: Management and Organizations
Video analysis plays a major role in many forensic fields. Many articles, publications, and presentations have covered the importance and difficulty in properly establishing frame timing. In many cases, the analyst is given video files that do not contain native metadata. In other cases, the files contain video recordings of the surveillance playback monitor which eliminates all original metadata from the video recording. These “video of video” recordings prevent an analyst from determining frame timing using metadata from the original file. However, within many of these video files, timestamp information is visually imprinted onto each frame. Analyses that rely on timing of events captured in video may benefit from these imprinted timestamps, but for forensic purposes, it is important to establish the accuracy and reliability of these timestamps. The purpose of this research is to examine the accuracy of these timestamps and to establish if they can be used to determine the timing
Model-based developers are turning to DevOps principles and toolchains to increase engineering efficiency, improve model quality and to facilitate collaboration between large teams. Mature DevOps processes achieve these through automation. This paper demonstrates how integrating modern version control (Git) with collaborative development practices and automated quality enforcement can streamline workflows for large teams using Simulink. The focus is on enhancing model consistency, enabling team collaboration, and development speed.
Reproducing driving scenarios involving near-collisions and collisions in a simulator can be useful in the development and testing of autonomous vehicles, as it provides a safe environment to explore detailed vehicular behavior during these critical events. CARLA, an open-source driving simulator, has been widely used for reproducing driving scenarios. CARLA allows for both manual control and traffic manager control (the module that controls vehicles in autopilot manner in the simulation). However, current versions of CARLA are limited to setting the start and destination points for vehicles that are controlled by traffic manager, and are unable to replay precise waypoint paths that are collected from real-world collision and near-collision scenarios, due to the fact that the collision-free pathfinding modules are built into the system. This paper presents an extension to CARLA’s source code, enabling the replay of exact vehicle trajectories, irrespective of safety implications
The ISO TR 5469 Technical Report provides a framework to classify the AI/ML technology based on usage level and the properties and requirements to mitigate cyber and functional safety risks for the technology. This paper provides an overview of the approach used by ISO TR 5469 as well as an example of how one of the six ISO TR 5469 desirable properties (resilience to adversarial and intentional malicious input) can be analyzed for adversarial attacks. This paper will also show how a vehicle testbed can be used to provide a student with an AI model that can be used to simulate a non-targeted cyber security attack. The testbed can be used to simulate a poisoning attack where the student can manipulate a training data set to deceive the AI model during a simulated deployment.1 The University of Detroit Mercy (UDM) has developed Cyber-security Labs as a Service (CLaaS) to support teaching students how to understand and mitigate cyber security attacks. The UDM Vehicle Cyber Engineering (VCE
The research activity aims at defining specific Operational Design Domains (ODDs) representative of Italian traffic environments. The paper focuses on the human-machine interaction in Automated Driving (AD), with a focus on take-over scenarios. The study, part of the European/Italian project “Interaction of Humans with Level 4 AVs in an Italian Environment - HL4IT”, describes suitable methods to investigate the effect of the Take-Over Request (TOR) on the human driver’s psychophysiological response. The DriSMI dynamic driving simulator at Politecnico di Milano has been used to analyse three different take-over situations. Participants are required to regain control of the vehicle, after a take-over request, and to navigate through a urban, suburban and highway scenario. The psychophysiological characterization of the drivers, through psychological questionnaires and physiological measures, allows for analyzing human factors in automated vehicles interactions and for contributing to
Battery cell aging and loss of capacity are some of the many challenges facing the widespread implementation of electrification in mobility. One of the factors contributing to cell aging is the dissimilarities of individual cells connected in a module. This paper reports the results of several aging experiments using a mini-module consisting of seven 5 Ah 21700 lithium-ion battery cells connected in parallel. The aging cycle comprised a constant current-constant voltage charge cycle at a 0.7C C-rate, followed by a 0.2C constant current discharge, spanning the useful voltage range from minimum to maximum according to the cell manufacturer. Charge and discharge events were separated by one-hour rest periods and were repeated for four weeks. Weekly reference performance tests were executed to measure static capacity, pulse power capability and resistance at different states of charge. All diagnostics were normalized with respect to their starting numbers to achieve a percentage change
Drivers present diverse landscapes with their distinct personalities, preferences, and driving habits influenced by many factors. Though drivers' behavior is highly variable, they can exhibit clear patterns that make sorting them into one category or another possible. Discrete segmentation provides an effective way to categorize and address the differences in driving style. The segmentation approach offers many benefits, including simplification, measurement, proven methodology, customization, and safety. Numerous studies have investigated driving style classification using real-world vehicle data. These studies employed various methods to identify and categorize distinct driving patterns, including naturalist differences in driving and field operational tests. This paper presents a novel hybrid approach for segmenting driver behavior based on their driving patterns. We leverage vehicle acceleration data to create granular driver segments by combining event and trip-based methodologies
Items per page:
50
1 – 50 of 49322