Browse Topic: Total life cycle management

Items (109)
The scope of this document is to provide an overview and guidance to enable and monitor the use of Digital Thread data standards and the quantification of digital tread efficacy with the Digital Thread Qualitative Index. This document does not standardize the process. However, it does provide a methodology to determine efficiencies and inefficiencies of Digital Thread utilization across various phases of the product lifecycle.
G-31 Digital Transactions for Aerospace
This document provides an overview of currently available and need to be developed modeling and simulation capabilities required for implementing robust and reliable Aerospace WDM LAN applications.
AS-3 Fiber Optics and Applied Photonics Committee
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle. The digital thread framework
Rencher, RobertVeluri, SastryChidambaran, NarayananWalthall, RhondaFabre, ChrisMarkou, ChrisJones, KenBudeanu, DragosG.V.V., Ravi KumarRajamani, Ravi
The scope of this SAE Aerospace Information Report (AIR) is to describe the considerations for requirements, specifications, and framework of digital thread in the aircraft product life cycle management. This document is not intended to define an overarching rendition of implementation-dependent features around software or architecture.
G-31 Digital Transactions for Aerospace
ABSTRACT Traditionally, the life cycle management of military vehicle fleets is a lengthy and costly process involving maintenance crews completing numerous and oftentimes unnecessary inspections and diagnostics tests. Recent technological advances have allowed for the automation of life cycle management processes of complex systems. In this paper, we present our process for applying artificial intelligence (AI) and machine learning (ML) in the life cycle management of military vehicle fleets, using a Ground Vehicle fleet. We outline the data processing and data mapping methodologies needed for generating AI/ML model training data. We then use AI and ML methods to refine our training sets and labels. Finally, we outline a Random Forest classification model for identifying system failures and associated root causes. Our evaluation of the Random Forest model results show that our approach can predict system failures and associated root causes with 96% accuracy.
Kern, Maxwell C.Cengic, Arif
ABSTRACT As technology continues to improve at a rapid pace, many organizations are attempting to define their place within this modern age and the Department of Defense (DoD) is no exception. The DoD’s primary focus on modernization ensures that its design, development, and sustainment of systems demonstrate unparalleled strength that outpaces our adversaries and continue to solidify our position quickly and efficiently as the world’s mightiest through fundamental change. Digital Engineering (DE) is the foundation of that fundamental change. Speed-to-Warfighter, reliability, maintainability, resiliency, and performance are all improved through DE techniques. Accelerating technical integration by connecting once isolated data to a digital thread encompassing all domains, and further facilitating the evolution of the traditional approach/processes into an effective DE strategy. DE’s goal supports a reduction of inefficient process/procedures/communications that traditionally can yield
Granville, Alanzo D.
The Software Production Factory (SPF) is a cyber physical construct of computers, hardware and software integrated together to serve as an ideation and rapid prototyping environment. SPF is a virtual dynamic environment to analyze requirements, architecture, and design, assess trade-offs, test Ground Vehicle development artifacts such as structural and behavioral features, and deploy system artifacts and operational qualifications. SPF is utilized during the product development as well as during system operations and support. The white paper describes the components of the SPF to build relevant Ground Vehicle Rapid Prototyping (GVRP) models in accordance with the model-centric digital engineering process guidelines. The factory and the processes together ensure that the artifacts are produced as specified. The processes are centered around building, maintaining, and tracing single source of information from source all the way to final atomic element of the built system.
Thukral, AjayGriffin, Kevin W.Kanon, Robert J.
SAE TA-HB-0007-1A is an integral part of the following suite of documents, which are meant to be used together: SAE TA-STD-0017A, Product Support Analysis, SAE GEIA-STD-0007C, Logistics Product Data, SAE GEIA-HB-0007B, Logistics Product Data Handbook, and SAE TA-HB-0007-1A. MIL-HDBK-502A, Product Support Analysis provides additional guidance and instruction applicable to United States DoD programs. SAE TA-STD-0017A Product Support Analysis is a standard which prescribes a set of analysis activities for designing support and supporting the design of a product. MIL-HDBK-502A provides DoD users with implementation guidance for SAE TA-STD-0017A. The results of the analysis are Logistics Product Data. SAE GEIA-HB-0007B is a companion handbook to SAE GEIA-STD-0007C. The handbook provides standard guidance (i.e., how to), data population during life cycle phases, tailoring, contracting, data selection, a data map, and detailed information on data development for key and major fields (LCN
LCLS Life Cycle Logistics Supportability
This SAE Aerospace Standard (AS) establishes general requirements and descriptions of specific activities for the performance of LORA during the life cycle of products or equipment. When these requirements and activities are performed in a logical and iterative nature, they constitute the LORA process.
LCLS Life Cycle Logistics Supportability
The making of a quilt is an interesting process. Historically, a quilt is a canvas of work made from old pieces of cloth cut into squares or whatever shape that make a nice connected pattern and then stitched together. The quilt could be random pieces that is not related to each other. In most recent years and more common cases, a quilt is made of different pieces of patches that are connected and laid out in a special way to tell a story. Not only does it portray a story that is put together in a certain sequence, but it also stiches the pieces of the quilt into a nice and complete narrative. A story that one can understand just by looking at the quilt spread and unfolded. Much like the making of a quilt that has a story to tell, a Product Digital Quilt will tell the story of a product. The Digital Product Quilt replaces the conventional way of telling a product story. The traditional product story is a method that is serially connecting multiple product life cycle silos together
Hamada, Mohamed Y.Rabelo, Luis
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Holden, RogerPortsmore, AndyCheetham, SimonChacin, MarcoSelby, Oliver
Energy efficiency investment is commonly thought to be poor for business. The analysis presented here uses current cost data to demonstrate that there is plenty of room to improve the energy efficiency of cars from the current 25.7 miles per gallon (mpg) or 20%. Investing in the optimum yields an excellent return of over 22% on the owner’s investment in the improved efficiency. A model for the initial cost of a car was developed to accurately predict (within 10% for the majority of over 90% of the data for gasoline and hybrid cars) the initial cost as a function of power output and fuel efficiency. Minimizing total life cycle costs produces an optimum fuel efficiency ranging from 62 mpg to 82 mpg (48% to 64%) as gasoline prices vary from $5 to $10 per gallon, respectively. The higher efficiencies result in fuel savings with corresponding reductions in greenhouse gas emissions. Therefore, investing in energy efficiency is not only a good business decision, but it also makes for a more
Zietlow, David C.
ABSTRACT The DoD Digital Engineering Strategy [1] released in June 2018 outlined the DoD’s strategic goals which “promote the use of digital artifacts as a technical means of communication across a diverse set of stakeholders” In addition to build, test, field and sustainment of defense systems, emphasis was placed on the acquisition and procurement of systems and the importance of digital engineering. This was further reinforced in the Feb 2022 release of the Engineering of Defense Systems Guidebook [2] which contains Digital Engineering sections in each chapter. The norm for Systems Engineering has become Model-Based Systems Engineering (MBSE) in which models are used at all phases of development. To complete the digital thread from concept to disposal, models will be required for the acquisition phase. This paper will describe Model-Based Acquisition (MBAcq), and how it can be used to increase clarity compliance and understanding in Capability Systems and Software Acquisition for
Hause, Matthew CHart, Laura E
ABSTRACT Digital Engineering (DE) strategy is defined by the Department of Defense and establishes five goals [1]. One of the goals includes providing an enduring, authoritative source of truth, which moves the primary means of communication from documents to digital models and data. This enables access, management, analysis, use, and distribution of information from a common set of digital models and data. As a result, stakeholders have the current, authoritative, and consistent information for use over the lifecycle. The DE Model Based Systems Engineering (MBSE) Reference Architecture Framework (RAF) defines, at a minimum, the digital model authoritative source of truth, model structure, stakeholder needs, systems and subsystem context, process model elements, architecture types, views, viewpoints, and supporting methodologies and best practices. This framework is defined using the Systems Modeling Language, semantics, and constructs. The RAF structure is expressed to support DE
Griffin, Kevin W.Suffredini, Giuseppe D.Kanon, Robert J.Dua, Surender K.Yeh, Jihsiang J.Alexander, Eric J.Feury, Mark R.Kouba, Russell D.
Additive manufacturing (AM), also known as “3D printing,” now provides the ability to have an almost fully digital chain from part design through manufacture and service. This “digital thread” can bring great benefits in improving designs, processes, materials, operations, and the ability to predict failure in a way that maximizes safety and minimizes cost and downtime. Unsettled Aspects of the Digital Thread in Additive Manufacturing discusses what the interplay between AM and a digital thread in the mobility industry would look like, the potential benefits and costs, the hurdles that need to be overcome for the combination to be useful, and how an organization can answer these questions to scope and benefit from the combination. Click here to access The Mobility Frontier: Metals, Polymers, or Composites Click here to access the full SAE EDGETM Research Report portfolio.
Slattery, Kevin
Vehicles consume energy and release harmful emissions throughout their life period from the manufacturing stage of raw materials to the vehicle scrapyard. The current Green-House Gas (GHG) emissions from diesel and petrol vehicles are reported to be 164 g CO2/km and 156 g CO2/km respectively. Thus, enormous research studies are been carried out for low-carbon alternative fuel-powered vehicles to reduce the overall GHG emissions. Numerous research on hydrogen as a transportation fuel has demonstrated the potential of reduced vehicular emissions compared to conventional fuels. Life cycle assessment (LCA) is a comprehensive methodology used for estimating the overall environmental impact of vehicles. In this present work, a comparative LCA is conducted between Compressed Natural gas (CNG) powered vehicles and H-CNG powered vehicles. The effect of the two alternative vehicles is assessed from various points in their lifetime using the GREET model software. The analysis is done in two
N, VinithkrishnaR, Deepak NarayananG N, Ashwin Ram
This Standard specifies the Habitability processes throughout planning, design, development, test, production, use and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring of this standard may be applied. The primary goals of a contractor Habitability program include: Ensuring that the system design complies with the customer Habitability requirements and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, prioritizing, and resolving Habitability risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans ○ Raised at design, management, and program reviews ○ Debated in Working Group meetings ○ Coordinated with Training, Logistics, and the other HSI disciplines ○ Included appropriately in documentation and deliverable data items Ensuring that Habitability requirements are applied to all personnel environments, including operators, maintainers, trainers
G-45 Human Systems Integration
The traditional acquisition and development cycles of a weapon system by government agencies goes through multiple stages throughout the life cycle of the product. Over the last few decades, many of the United States military equipment had experienced acquisition cost growth. Many studies by the Department of Defense indicates that the cost growth is a result of multiple factors including the development and manufacturing stages of the product. Organizations with multiple operation sites that goes across multiple states or even countries and continents are finding it increasingly difficult to share informational databases to ensure the corporate synergy between multiple sites or divisions. For such organizations, there exist the need to synchronize the operations and have standard and common database where everything is stored and equally accessed by different sites. Digital transformation sounds real exotic and futuristic and promise to reduce operation costs of big organizations
Hamada, Mohamed Yousef
Researchers have developed artificial intelligence (AI) software for powder bed 3D printers that assesses the quality of parts in real time without the need for expensive characterization equipment. The software, named Peregrine, supports the advanced manufacturing “digital thread” that collects and analyzes data through every step of the manufacturing process, from design and feedstock selection, to print build and material testing.
This Human Systems Integration (HSI) Standard Practice identifies the Department of Defense (DoD) approach to conducting HSI programs as part of procurement activities. This Standard covers HSI processes throughout design, development, test, production, use, and disposal. Depending on contract phase and/or complexity of the program, tailoring should be applied. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered in the DoD HSI Handbook. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is specifically cited in the contract.
G-45 Human Systems Integration
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision. This document is intended for use as one of the elements of project
G-48 System Safety
In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions. The common process for recycling the rare-earths used in magnets can recover high-purity rare
Isomura, Keisuke
This document describes a life cycle cost model for commercial aircraft composite structure. The term life cycle cost used herein, refers to the airline costs for maintenance, spares support, fuel, repair material and labor associated with composites after introduction into service and throughout its useful life. This document contains the equations that can be programmed into software which is used to estimate the total cost of ownership aircraft, including structure. Modification costs and operating costs are estimated over a specified life (any period up to 30 years). Modification costs include spares holding, training, support equipment, and other system related costs. Annual operating costs include: Schedule interruption, fuel, spares, insurance, and maintenance. Maintenance costs are separated by scheduled maintenance or unscheduled damage, or can by grouped into the typical organizations of line, shop, and hangar maintenance. This Lifecycle Cost allows users to evaluate the
AMS CACRC Commercial Aircraft Composite Repair Committee
ABSTRACT Systems change over time. Sometimes this is planned as in the normal maintenance, planned upgrades, refits and modifications to keep a system fit for purpose and ready to deploy. There may also be multiple allowable configurations of a system providing flexibility to meet different operational needs. Sometimes the changes are not planned. This can be due to complete system failure, component failure, accidental or deliberate damage, as well as unforeseen operational needs. Whatever the reason for the change, the “To-Be” configuration of the system needs to be captured, analyzed and evaluated to ensure it will meet the projected operational need. Systems engineering and trade-off analysis also need to be performed to ensure that the best configuration of the system has been specified regarding time, cost, system effectiveness, as well as a host of other criteria. Additionally, it is not sufficient to simply model the system configurations. It is necessary to show how a
Hause, Matthew
ABSTRACT This paper will discuss the systematic operations of utilizing the BOXARR platform as the ‘Digital Thread’ to overcome the inherent and hidden complexities in massive-scale interdependent systems; with particular emphasis on future applications in Military Ground Vehicles (MGVs). It will discuss how BOXARR can enable significantly improved capabilities in requirements-capture, optimized risk management, enhanced collaborative relationships between engineering and project/program management teams, operational analysis, trade studies, capability analysis, adaptability, resilience, and overall architecture design; all within a unified framework of BOXARR’s customizable modeling, visualization and analysis applications.
Smith, Robert E.Hamilton, Fraser
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
G-33 Configuration Management
The primary focus of this standard is information of interest to Configuration Management (CM) practitioners related to the performance of CM functions as products are conceived, proposed, defined, developed, produced, operated, maintained, modified, and disposed. This information is stored when generated and, from time to time, must be moved or shared with others. This standard, through the use of the Data Dictionary, defines real world things of interest to the CM practitioner, which are the foundation of the following CM functional areas, and are needed for effective data exchange and interoperability: Configuration Management Planning and Management Configuration Identification Configuration Change Management Configuration Audit Configuration Verification Configuration Status Accounting The Data Dictionary [21] defines terms that are used to define these objects of interest, which are listed below. Some of terms are considered to flow from applying CM principles or performing CM
G-33 Configuration Management
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The Regulation requirements such as the 2020 CAFE (Corporate Average Fuel Economy) standard, growing public demand, and increased fuel prices are pushing auto manufacturers worldwide to increase fuel economy through incorporation of lightweight materials in newly-designed vehicle structures. This paper is aimed at
Bushi, LinditaSkszek, TimothyWagner, David
This Bulletin is intended for use as a guide and defines the terms and definitions to be used during the development, documentation, verification, and delivery cycles of new and modified computer software. It lists and defines the most common terms currently used in the world of computer software configuration management. There has been no attempt to compete with some of the more formal documents in use within the software programming community.
G-33 Configuration Management
These Protocols can be used for all forms of motorsports; however, only certain combinations of Green Racing Elements will result in motorsport competitions that are recognized as Green Racing events. As new information, fuels and technologies emerge, addendums or new protocols will be developed. The SAE International (SAE) Motorsports Engineering Activity is also an invaluable source of reference materials and ongoing technical advice providing access to the constantly evolving set of best safety and operational practices for current and emerging technologies. This is especially true with regard to high voltage safety and the adoption of other advanced propulsion and fuel system technologies.
Green Racing Committee
This standard establishes general requirements and descriptions of specific activities for performance of LORA during the life cycle of products or equipment. When these requirements and activities are performed in a logical and iterative nature, they comprise the LORA process.
LCLS Life Cycle Logistics Supportability
Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production (“Baseline”), an advanced high strength steel and aluminum design (“LWSV”), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body
Das, Sujit
ACT is able to provide insight into acquisition, operational, and life-cycle affordability early in program formulation prior to a commitment of architecture, or anytime during the program to change systems or subsystems. ACT analyzes different systems or architecture configurations for affordability that allows for a comparison of total life-cycle cost, annual affordability, cost per pound, cost per seat, cost per flight (average), and total payload mass throughput. Although ACT is not a deterministic model, it does use characteristics (parametric factors) of the architectures/systems being compared to produce important system outcomes (figures-of-merit). The outcome figures-of-merit provide the designer with information on the relative affordability of different configurations.
The marine environment differs greatly from other environments in which hydraulics are used. This Recommended Practice provides hydraulic design considerations and criteria for the marine environment and is applicable to commercial vessels, military ships, and submersible vehicles. This document may be used for manned and un-manned vehicles.
Ship Fluid Systems Committee
Tooling structures to make wing/wing, fuselage/fuselage, and wing/fuselage mates have long been rather massive tools. Not only are these tools large and expensive, but they often obstruct the very drilling and fastening work to be done in the mate tool. Furthermore, these legacy mate tools can only do one job - a mate tool cannot be used for a different airplane, or even a different part of the same airplane. A flexible, more versatile system will lower the cost of aircraft with a low quantity production run planned, and a more open design can reduce the cost of assembly on a high production aircraft. This paper will discuss the development and recent breakthroughs that allow the mating of any size aircraft sections with very high precision using only a set of specialized jacks that provide six degrees-of-freedom coupled with a non-contact measurement system. Data extracted directly from a CAD 3-D model is fed into a computer system that is then used with a closed-loop control system
Richardson, Roger C.
This SAE Recommended Practice provides recommended guidelines and best practices for implementing a supportability program to ensure that software is supportable throughout its life cycle. This Implementation Guide is the companion to the Software Supportability Program Standard, SAE JA1004, that describes, within a Plan-Case framework, what software supportability performance requirements are necessary. This document has general applicability to all sectors of industry and commerce and to all types of equipment whose functionality is to some degree implemented via software. It is intended to be guidance for business purposes and should be applied when it provides a value-added basis for the business aspects of development, use, and sustainment of support-critical software. Applicability of specific recommended practices will depend on the support-significance of the software, application domain, and life cycle stage of the software.
G-41 Reliability
To warrant the substitution of traditionally used structural automotive materials with titanium alloys, the material substitutional and redesign advantages must be attainable at a justifiable cost. Typically, during material replacement with such ‘exotic’ aerospace alloys, the initial raw material cost is high; therefore, cost justification will need to be realized from a life-cycle cost standpoint. Part I of this paper highlighted the redesign, fabrication, and validation of an automotive component. Part II details the particulars of constructing the total life-cycle cost model for both prototypes (P1, P2). Considerations in the model include adaptation to a high volume production scenario, availability of near-net size plate/bar stock, etc. Further, response surfaces of fuel costs savings and consequent life-cycle costs (state-variables) are generated against life-cycle duration and unit fuel price (design-variables) to identify profitable operating conditions. In conclusion, it is
Kuttolamadom, MathewJones, JoshuaMears, LaineKurfess, ThomasFunk, Kilian
ABSTRACT Military ground vehicles often have service lives that exceed their original design targets. For this reason, these vehicles typically require technology upgrades during their useful life. When considering design trade-offs, both mature as well as less mature or developing technologies need to be considered against the anticipated service life for the vehicle. Early adoption of technologies that are not sufficiently mature can result in operational reliability and availability issues and increased sustainment costs. However, failure to anticipate technology refresh requirements during the original design phase may result in a platform that cannot be cost effectively upgraded as technology or functional requirements change, limiting the functionality and utility. This paper presents an Innovation Based Design (IBD) process as part of a systems engineering approach that facilitates technology refresh cycles via platform remanufacturing throughout the life of the platform. The
Thurston, MichaelHaselkorn, MichaelNasr, Nabil
Items per page:
1 – 50 of 109