Browse Topic: Supply chain management

Items (15,879)
Conventional tractor transmission systems feature separate Brake and Bull Cage housings, with brakes often being proprietary components and Bull Cage designed by the Original Equipment manufacturer (OE). To optimize design and performance, an innovative integrated system was developed, combining an in-house braking system with a unitized Bull Cage assembly. This robust design reduces part count, eliminates proprietary dependency (except for friction liners), and enhances performance. Virtual simulations performed under RWUP conditions demonstrated enhanced strength and stiffness in the integrated design. In this Integrated Brake & Bull Cage assembly (IBCA), the braking layout was reconfigured from a 4+1 friction design to a 3+2 configuration which improved balancing, enhancing customer braking experience and increasing contact area by 11%. This adjustment extends friction liner life and boosts mechanical advantage by 7.9%, significantly improving tractor stability and performance
Dumpa, Mahendra ReddyDhanale, SwapnilPerumal, SolairajGomes, MaxsonRedkar, DineshSavant, KedarnathV, Saravanan
This study investigates the tribological behaviour of Sesbania rostrata fiber (SRF) reinforced polycaprolactone (PCL) biocomposites using a pin-on-disc wear couple. The stationary SRF/PCL composite specimen interacted with a rotating EN31 steel disc (64 HRC), establishing the sliding wear interface in accordance with ASTM G99 standards. Composite laminates containing 10, 20, and 30 wt% SRF were evaluated at a sliding velocity of 1 m/s over a fixed distance of 1000 m under varying normal loads. The incorporation of SRF significantly enhanced the wear performance relative to neat PCL, with 20 wt% fiber loading achieving the lowest coefficient of friction and specific wear rate due to improved load transfer, stronger interfacial adhesion, and a more uniform laminate structure. In contrast, the 30 wt% composite exhibited fiber agglomeration, reduced homogeneity, and weakened fiber–matrix interactions, resulting in increased wear. SEM microstructural analysis confirmed the formation of a
Raja, K.Senthil Kumar, M.S.
This study presents a systematic CFD-based investigation of air-cooled lithium-ion battery pack thermal management using a novel U-shaped channel. The U-shaped domain was selected due to its ability to promote recirculation and uniform air distribution, which enhances cooling effectiveness compared to conventional straight and Z-type channels. A systematic parametric optimization of inlet position and airflow velocity was performed to minimize hotspot formation and improve temperature uniformity. Results reveal that shifting the inlet from 30 mm to 20 mm and increasing velocity from 2 m/s to 3 m/s reduced the maximum battery temperature by 3.46 K, from a baseline of 333 K to 329.54 K, while maintaining minimal pressure drop. These findings highlight that strategic control of inlet parameters can yield significant thermal improvements with high cost-effectiveness and geometric simplicity.
PC, MuruganJ, SivasankarW, Beno WincyG, Arun Prasad
This paper presents the virtual prototyping of traction motor in commercial EV to make an early prediction of the performance parameters of the machine without spending an enormous cost in building a physical structure. A 48/8 slot-pole configuration of IPMSM is used to demonstrate the electromagnetic and thermal co-simulation in ANSYS MotorCad. The core dimensions were determined using permanent-magnet field theory. From those, a two-dimensional finite-element (2D FEM) model of the interior permanent magnet (IPM) motor was simulated using Ansys Motor-CAD electromagnetic simulation tool. The influence of geometrical parameters on the performances of traction motor are evaluated based on FEM. The temperature distribution have been analyzed under steady and transient operating conditions. Alongside, the effects of saturation, demagnetization analysis, and the impact of PM flux linkage on inductances are also considered in this paper. At last, the simulation and analytical results of the
Murty, V. ShirishRathod, SagarkumarGandhi, NikitaTendulkar, SwatiKumar, KundanThakar, DhruvSethy, Amanraj
The BioMap system represents a groundbreaking approach to collaborative mapping for autonomous vehicles, drawing inspiration from ant colony behavior and swarm intelligence. It implements a fully decentralized protocol where vehicles use virtual pheromone trails to mark areas of uncertainty, change, or importance, enabling efficient map consensus without centralized coordination. Key innovations include novel pheromone-based compression algorithms and bio-inspired consensus mechanisms that allow real-time adaptation to dynamic environments. In a simulated urban scenario (Town10HD), three vehicles achieved balanced load distribution (±1.8% variance) and comprehensive coverage of a 253.2m × 217.9m × 22.4m area. The final fused map contained 311 chunks with 72,785 particles and required only 10.4 MB of storage. Approximately 49.2% of map particles exceeded the pheromone significance threshold, indicating active importance marking, while no high-uncertainty regions remained. These results
Bhargav, Anirudh SSubbarao, Chitrashree
This definitive study investigates the variation of churning losses occurring with hypoid ring and pinion gear sets and factors that determine energy dissipation in these mechanisms. An in-depth investigation confirms that viscosity is critical, particularly because of its significant temperature-dependent variations. Furthermore, the study rigorously analyzes the data's experimental parameters to examine churning losses. These losses result from the interaction between the rotating gears and the lubricating oil, contributing to notable inefficiencies in the overall drivetrain. A robust and highly effective model has been developed to address this issue comprehensively. It accounts for variable oil viscosity with temperature and integrates key empirical parameters that reflect observed behaviours in gear systems. The study employs a multidimensional approach to examine how oil density impacts hydrodynamic resistance, which is key to understanding lubricant flow under varying conditions
Khan, Aliya JavidPraveen, AbhinavKanagaraj, PothirajJain, Saurabh KumarAP, Baaheedharan
Rear drive vehicles transfer power to the rear wheels through the Gear Carrier Assembly, which is fit at the central section of the Rear Axle. The Gear Carrier Assembly includes hypoid ring and pinion gears, set at the heart of the system. However, one of the common issues with hypoid gears is gear scoring and whine noise, both of which can seriously affect durability and reduce the overall performance of a vehicle. In this study, the focus is on design changes as well as process improvements to address these problems and at the same time improve gear reliability. On the design side, changes such as refining the macro geometry, upgrading materials, and modifying the heat treatment cycle were carried out. These helped in improving properties like contact stress resistance, bending and impact strength, and also reduced motion transmission error (MTE). From the process point of view, careful control over carburizing, hardening, and quenching temperatures, along with adjustments in
Praveen, AbhinavDeshpande, PraveenJain, Saurabh KumarParmar, MayurKarle, NileshKanagaraj, PothirajPagar, Pawan
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
The global push for clean energy has made hydrogen a central element in decarbonizing transport, industrial processes, and energy systems. Effective hydrogen storage and distribution are critical to supporting this transition, and type IV Composite Overwrapped Pressure Vessels (COPVs) have emerged as the preferred solution due to their lightweight, high pressure capacity, hydrogen embrittlement and corrosion resistance. However, the cascade infrastructure used to house and transport these vessels has lagged behind in innovation. Steel-based cascades, while strong, are heavy prone to corrosion, and unsuitable for mobile deployment. This paper introduces a custom designed aluminium cascade system offering a 65% weight reduction while maintaining structural integrity and safety. Designed for mobile use, the system features modularity, better damping, and enhanced corrosion protection. The paper outlines design methodology, material selection, fabrication process, and comparative
Parasumanna, Ajeet BabuMuthusamy, HariprasadAmmu, Vnsu ViswanathKola, Immanuel Raju
Items per page:
1 – 50 of 15879