Browse Topic: Supply chain management

Items (15,789)
With the rapid development of e-commerce, the logistics industry also presents new features such as multi-level, integrated upstream-downstream operations, increasingly perfect service quality and low logistics costs. The exponential growth in online transactions and consumer expectations for faster, more reliable deliveries intensifies the pressure on logistics systems. The last-mile service network refers to the logistics nodes that have direct contact with consumers, and its geographical location and quantity will directly affect the service level, cost and customer service mode of the distribution network. However, with the rapid growth in the number of online shoppers and their imbalance on the Internet, these factors have gradually become an important basis for influencing the layout of terminal outlets. This imbalance, coupled with dynamic urban traffic conditions, renders traditional distribution planning methods inadequate. Therefore, in the e-commerce environment, how to
Tong, TongGu, XuefeiLi, Lingxiao
.
Xie, DongxuanLi, DongyangZhang, YoukangZhao, YingjieHong, BaofengWang, Nan
Earthmoving machines are equipped with a variety of ground-engaging tools that are joined by bolted connections to improve serviceability. These tools are made from heat-treated materials to enhance their wear resistance. Attachments on earthmoving machines, including buckets, blades, rippers, augers, and grapples, are specifically designed for tasks such as digging, grading, lifting, and breaking. These attachments feature ground-engaging tools (GET), such as cutting bits or teeth, to protect the shovel and other earthmoving implements from wear. Torquing hardened plates of bolted joint components is essential to ensure uniform load distribution and prevent premature failure. Therefore, selecting the proper torque is an important parameter. This study focuses on analyzing various parameters that impact the final torque on the hardened surface, which will help to understand the torque required for specific joints. Several other parameters considered in this study include hardware
Parameswaran, Sankaran PottiBhosale, DhanajiKumar, Rajeev
The de-rated capacity of forklifts plays a crucial role in determining their safety, efficiency, and overall performance, particularly when modifications are introduced to meet stringent industrial standards. The term "de-rated capacity" refers to the reduction in a forklift's rated load-carrying capacity caused by various factors, including load center shifts, lifting height, attachment usage, tire types, and counterweight adjustments. This reduction occurs as a safety measure to account for potential instabilities or mechanical limitations when operating under less-than-ideal conditions. Accurate understanding and calculation of de-rated capacity are vital to ensure safe and efficient forklift operation. This research provides a detailed examination of forklift variants, specifically evaluated under the IS 4357:2004 standards [1], to understand the intricate relationship between tire types and counterweight adjustments on the derated capacity. With advanced Multibody Simulations, as
Shende, KalyaniShingavi, ShreyasHingade, Nikhil
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Kadam, Pankaj
Autonomous negotiation systems, powered by artificial intelligence, are transforming supply chain management by optimizing supplier interactions. This paper proposes a framework for autonomous supplier negotiation using Statistical hypothesis testing to evaluate multiple negotiation strategies under uncertain conditions. Paper models supplier price negotiations with Random simulations, incorporating supplier cost variability and negotiation dynamics. Three strategies—distributive, integrative, and hybrid—are tested across diverse scenarios, with performance measured by negotiated price outcomes. Statistical hypothesis testing is applied to compare strategy effectiveness, identifying the hybrid approach as optimal for balancing cost savings and supplier relationships. The framework offers actionable insights into implementing autonomous negotiation systems in procurement as Agents negotiating with suppliers.
Panda, Dinesh Abhimanyu
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
The electrification of off-highway vehicles presents a complex landscape of challenges, particularly in the realm of cost engineering for motors. These challenges stem from technological complexities, use of specialty materials and processes, economics of scale, and operational factors, each requiring careful consideration to ensure accurate and efficient cost modeling. The lack of standardized cost data for specialty materials poses a significant barrier to accurate cost engineering. Furthermore, the cost of key materials and components, such as electrical steel and permanent magnets, can fluctuate due to supply chain disruptions, material shortages, introducing uncertainty into cost projections. The economies of scale play a crucial role in cost engineering for off-highway electrification. Many off-highway vehicles are produced in lower volumes compared to on-road vehicles, which can result in higher unit costs for electric motors and other. In this paper, we delve into the primary
Chauhan, ShivPadalkar, Bhaskar
In today’s competitive landscape, industries are relying heavily on the use of warranty data analytics techniques to manage and improve warranty performance. Warranty analytics is important since it provides valuable insights into product quality and reliability. It must be noted here that by systematically looking into warranty claims and related information, industries can identify patterns and trends that indicate potential issues with the products. This analysis helps in early detection of defects, enabling timely corrective actions that improve product performance and customer satisfaction. This paper introduces a comprehensive framework that combines conventional methods with advanced machine learning techniques to provide a multifaceted perspective on warranty data. The methodology leverages historical warranty claims and product usage data to predict failure patterns & identify root causes. By integrating these diverse methods, the framework offers a more accurate and holistic
Quadri, Danishuddin S.F.Soma, Nagaraju
In the agricultural industry, the logistics of transporting and storing bales, used as cattle feed, pose significant challenges for large scale farms. Traditional storage of bales in barns is labor-intensive, high in capital expenditure and requires multiple trips of transport vehicle on and off the field. Improper handling during this transition can lead to substantial losses in time, resources and loss of hay. This development aims to eliminate the last-mile transportation step, by enabling year-round storage of bales directly in the field. A patented wrapping material, along with strategic orientation of wrapped bales, enhances their resistance to weather conditions. Field experiments demonstrated that this innovative material not only protects the bales from adverse environmental factors but also effectively retains their nutrient and moisture content. A critical aspect of this solution is ensuring the correct orientation of the wrap seams, as the bales are continuously rotated
Kadam, Pankaj
This paper introduces a comprehensive solution for predictive maintenance, utilizing statistical data and analytics. The proposed Service Planner feature offers customers real-time insights into the health of machine or vehicle parts and their replacement schedules. By referencing data from service stations and manufacturer advisories, the Service Planner assesses the current health and estimated lifespan of parts based on metrics such as days, engine hours, kilometers, and statistical data. This approach integrates predictive analytics, cost estimation, and service planning to reduce unplanned downtime and improve maintenance budgeting, aligning with SAE expectations for review-ready manuscripts. The user interface displays current part health, replacement due dates, and estimated replacement costs. For example, if air filter replacement is recommended every six months, the solution uses manufacturer advisories to estimate the remaining life of the air filter in terms of days or
Chaudhari, Hemant Ashok
This paper introduces an AI-powered mobile application designed to enhance vehicle warranty management through real-time diagnostics, predictive maintenance, and personalized support. The system supports multi-modal inputs (text, voice, image, video), integrates real-time On-Board Diagnostics (OBD) data, and accesses OEM warranty terms via secure APIs. It employs supervised, unsupervised, and reinforcement learning to deliver accurate fault detection, tailored recommendations, and automated claim decisions. Contextual analysis and continuous learning improve precision over time. The application also provides service cost estimates, part availability, and proactive maintenance alerts. This approach improves customer satisfaction, reduces warranty costs, and streamlines aftersales support. Utilizing advanced AI and machine learning algorithms, the application interprets customer queries through multiple input modes—text, voice, video, and image—and retrieves relevant information from the
Ramekar, Vedant MadhavChaudhari, Hemant
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana Shakti
Weight and cost are pivotal factors in new product development, significantly impacting areas such as regulatory compliance and overall efficiency. Traditionally, monitoring these parameters across various stages involves manual processes that are often time-intensive and prone to delays, thereby affecting the productivity of design teams. In current workflows, designers must manually extract weight and center of gravity (CG) data for each component from disparate sources such as CAD models or supplier documents. This data is then consolidated into reports typically using spreadsheets before being analyzed at the module level. The process requires careful organization, unit consistency, and manual calculations to assess the impact of each component on overall system performance. These steps are not only laborious but also susceptible to human error, limiting agility in design iterations. To address these challenges, there is a conceptual opportunity to develop a system that could
Patil, VivekSahoo, AbhilashBallewar, SachinChidanandappa, BasavarajChundru, Satyanarayana
The Operator’s Field of Vision (FOV) test, conducted in accordance with IS/ISO 5006:2017, is a vital assessment to ensure the safety and operational comfort of personnel operating Construction Equipment Vehicles (CEVs) / Earth-Moving Machinery. IS/ ISO 5006:2017 defines rigorous guidelines for evaluating the operator’s visibility from the driver's seat, with particular emphasis on the Filament Position Centre Point (FPCP), determined from the Seat Index Point (SIP) coordinates. The test includes assessment of masking areas, focusing on the Visibility Test Circle (a 24-meter diameter ground-level circle around the machine), and on the Rectangular Boundary on which a vertical test object is placed at a height specific to the machine type and its operating mass. These parameters are designed to simulate real-world operating conditions. This paper introduces a portable testing setup developed specifically for conducting the Operator’s FOV test as per IS/ISO 5006:2017. The setup facilitates
Ghodke, Dhananjay SunilTambolkar, Sonali AmeyaBelavadi Venkataramaiah, Shamsundara
Producing 3D models of cooling water passages of outboard motors, and calculating distribution of electric potential on the water passage surfaces using BEM, we have developed the new method for simulation of electric potential distribution. The outboard motor is a propulsion system attached to the transom of the boat with steering function. As the water around the boat is drawn in for cooling of the engine, the engine parts are susceptible to severe corrosion. As a means to help prevent corrosion, a part referred to as the anode metal, which has a lower natural potential, is provided. Such a method is called the sacrifice protection because the anode metal corrodes before the engine parts due to the difference of electric potential. Since anti-corrosion currents occur preferentially to areas close to the anode metal, the anode metal is required to be located at the most effective place for corrosion protection. However, there are certain restrictions in the layout of anode metal from
Shibuya, RyotaSuzuki, Hiroki
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
In general-purpose small SI engines, it is necessary to reduce fuel consumption under operating conditions involving repeated starts and stops. In other words, the energy distribution during the transition from 0 rpm to idling speed is a crucial factor. At startup, the SI engine must be driven by a motor, and the electrical energy required should be minimized. However, the engine must accelerate during this process, and the required electrical energy is influenced by factors such as compression, friction, and moments of inertia. The purpose of this research is to experimentally clarify the conditions for minimum energy starting in SI engines. Specifically, the effect of the moment of inertia was eliminated by using a motor to maintain a constant engine speed, thereby enabling the isolation and measurement of electrical energy consumed by friction. The electrical energy required to overcome the moment of inertia can be determined by comparing it with the energy consumed when
Matsuura, YusukeTanaka, Junya
The proton exchange membrane (PEM) water electrolyzer is an emerging technology to produce green hydrogen due to its compactness and producing high purity hydrogen. This study presents a numerical investigation on multiphase flow dynamics and heat transfer within the anode flow field of a PEM water electrolyzer. Two different channel configurations, i.e., rectangular, semi-circular are considered having same cross-sectional area while keeping the porous transport layer (PTL) thickness constant (which is within the commercially available ranges). Simulations are conducted for various oxygen generation rates and heat fluxes (corresponding to different current densities) and different inlet water flow rates. The effects of channel configurations on pressure drop, flow uniformity, and temperature distribution are illustrated pictorially and graphically. The impact of water flow rates and oxygen generation rates on phase distribution, pressure drop, and temperature profiles, particularly
Dash, Manoj KumarBansode PhD, Annasaheb
Mobile air conditioning (MAC) systems play a critical role in ensuring occupant thermal comfort, particularly under extreme ambient conditions. Any delay in compressor engagement directly affects cabin cooldown performance, impacting both perceived and measured comfort levels. This study assesses the thermal comfort risks associated with compressor engagement delays of 6.5 seconds and 13 seconds under varying ambient conditions. A comprehensive frontloading approach was employed, integrating 1D CAE simulations with objective and subjective experimental testing. Initial simulations provided insights into transient cabin heat load behavior and air distribution effectiveness, enabling efficient test case selection. Physical testing was conducted in a controlled climatic chamber under severe (>40°C) ambient condition, replicating real-world scenarios. Objective metrics, including cabin air temperature, vent temperature and cooldown rates, were measured to quantify thermal performance
Kulkarni, ShridharDeshmukh, GaneshJoshi, GauravShah, GeetJaybhay, Sambhaji
Items per page:
1 – 50 of 15789