Browse Topic: Disaster and emergency management

Items (369)
As a part of high-capacity public transportation system, subway stations necessitate evaluations from passengers’ perspective, which is the goal of this study. It took Shenzhen Metro as an object, employing field observations and questionnaire interviews as primary methods. The questionnaire was structured across four dimensions: subjects demographics, travel routines and in-station experiences, evaluations of wayfinding systems and facilities, and suggestions for improvements. Data analysis reveals that the majority of the subjects use the subway for daily commuting, and the congestion spots are concentrated at station entrances/exits, security checkpoints, vertical circulation points, and train door zones. The subjects’ overall satisfaction with Shenzhen Metro is quite high, driven primarily by wayfinding signage efficacy, route fluency (entry/exit/transfer), and safety perceptions. Subway station design should take spatial layouts and passenger flow optimization into consideration
Wu, XiangyangGan, Xuanci
In response to the inefficiency, slow speed, and reliance on specialized software in traditional methods for evaluating seismic stability of loess highway slopes, a simplified rapid assessment method is proposed. Based on post-earthquake landslide investigations, geotechnical surveys, and vibration table model tests, and integrates the latest research on seismic damage mechanisms of loess slopes, the potential sliding surface of seismic damage loess slope is divided into three segments: tensile fracture, shear, and anti-sliding zones, the potential sliding mass is partitioned into three blocks, and calculate the sliding force and anti-slip force of each potential sliding block from top to bottom, when the sliding force the upper sliding body is greater than its anti-sliding force, the excess sliding force is transmitted to the lower potential sliding body, and the stability of the slope is determined based on the ratio of the anti-sliding force and the sliding force of the lowest
Pu, XiaowuZhang, LizhiPu, ShuyaChe, Gaofeng
This study examines the issue of frequent traffic accidents leading to congestion and subsequent accidents. Timely investigation and management of these incidents is essential for effectively addressing this problem. This study aims to utilize Unmanned Aerial Vehicle (UAV) technology to improve the efficiency of assessing and investigating traffic accidents. We propose a bi-objective spatial optimization model based on identifying high-risk accident locations. This model combines coverage and median objectives within a service area, taking into account coverage requirements and optimizing site distribution. We also propose a constraint-based process to generate a Pareto frontier to help identify various alternative UAV station location scenarios. The model was validated using real traffic accident data from Nanning City, resulting in a UAV station configuration solution that reduces accident response time and improves assessment efficiency by considering multi-objective trade-offs
Li, QiulingWan, QianLiu, QianqianSun, Ke
The introduction of renewable energy systems offers the opportunity to achieve energy self-sufficiency or autarky in addition to contributing towards carbon neutrality by reducing the dependency on energy logistics. Amidst growing geo-political conflicts and natural calamities, the scenario of energy shortage or disruption of energy logistics is a major threat, especially for Europe due to the significant reliance on import of primary energy. Achieving autarky, however, requires a distinction between energy consumers that need uninterrupted energy supply and consumers that could potentially be cut-off during energy shortages to avoid prohibitive costs resulting from oversizing the system. Critical infrastructure such as hospitals, communication systems, emergency services and key mobility nodes like fuelling stations and charging points needed to sustain the services provided by them, always need continuous energy supply. The architecture in current tools for optimising the design and
Vijay, ArjunThaler, BernhardKöcheler, ValentinOppl, ThomasTrapp, Christian
The wing-in-ground effect (WIG) vehicle represents a significant advancement in aerodynamics and vehicle design, leveraging the ground effect phenomenon to enhance lift and reduce drag when flying close to the surface. This unique capability allows WIG vehicles to achieve higher payloads, longer range, and greater fuel efficiency compared to traditional aircraft, making them an attractive option for modern military and global disaster response applications. Wing-in-Ground Effect Vehicles: From Modern Military and Commercial Development to Global Disaster Response discusses future disaster response, logistics, and military applications for WIG vehicles, including the ongoing development of aerospace and transportation technology. Relavant advancements in materials and propulsion systems holds promise for further enhancing WIG performance and operational range. Additionally, cost-effective and powerful flight computers with various types of mission-enabling sensor suites from the
Doo, Johnny
The geological disasters along the Sichuan-Tibet Highway are frequent, and the traffic environment is complex. Traditional disaster reconnaissance methods struggle to meet the timeliness and accuracy requirements of emergency response. With the development of unmanned aerial vehicle (UAV) technology, it has significant advantages in rapid disaster information acquisition and complex terrain coverage. Considering the large elevation fluctuations, variable climate, and limited communication conditions in the study area, this paper focuses on UAV disaster reconnaissance in complex mountainous environments. By systematically summarizing and categorizing existing UAV disaster reconnaissance methods, this paper designs a UAV disaster reconnaissance system and applies it in practical engineering projects, providing technical support for disaster reconnaissance and emergency management along the Sichuan-Tibet Highway.
Wu, GuorongXu, HuayanChen, YunjinTang, LuweiMo, ShiyingLuo, ShuzhaoHuang, ZiyangLiu, Xianxin
In order to improve the evacuation efficiency of sudden fire in urban rail transit station, taking the National Exhibition and Convention Center Station of Tianjin Rail Transit Line 1 as the research object, a three-dimensional model of the station is established. Based on the evening peak passenger flow on October 1, 2023, the parameters were calculated and reasonably set in the Pathfinder software to simulate the evacuation process of 3316 people in the fire scene of train arrival, and the evacuation process of sudden fire in the station is simulated. The simulation results show that the station can basically ensure the safe emergency evacuation within 6 minutes under the existing conditions. The stairs, escalators, automatic gate machine and passageways in the station are identified as the evacuation bottlenecks. The total time for all station personnel to evacuate outside the metro station is 514.8 s. According to the simulation results, some suggestions on evacuation strategy and
Fu, YanrongWang, LianxiaLi, YijuanLiu, YiboWang, Duolong
This study focuses on analyzing the impact of the Francis Scott Key Bridge collapse on traffic flow and the traffic network in Baltimore City. By employing the processing of publicly available datasets, the construction of a traffic network model and a comprehensive scoring method and an improved K-means clustering algorithm based on the idea of the rotational method, the following conclusions have been drawn in this study. First, the bridge collapse significantly changed the distribution of traffic flow. According to the AADT data of 17 key traffic nodes, after the bridge collapse, the AADT of all nodes generally increased except for the nodes closest to the tunnel and bridge. For example, traffic nodes around the city center (e.g., nodes with OSMID numbers 37831627 and 602433660) experienced an increase in AADT, suggesting that traffic flows we Second, the 17 key nodes selected represent the major nodes of the Baltimore City traffic system and provide accurate data to support
Hao, ZhenxiangHu, JianpingRan, JinZheng, YuhangMa, Chenyuan
Our research focuses on developing a novel loss function that significantly improves object matching accuracy in multi-robot systems, a critical capability for Safety, Security, and Rescue Robotics (SSRR) applications. By enhancing the consistency and reliability of object identification across multiple viewpoints, our approach ensures a comprehensive understanding of environments with complex layouts and interlinked infrastructure components. We utilize ZED 2i cameras to capture diverse scenarios, demonstrating that our proposed loss function, inspired by the DETR framework, outperforms traditional methods in both accuracy and efficiency. The function’s ability to adapt to dynamic and high-risk environments, such as disaster response and critical infrastructure inspection, is further validated through extensive experiments, showing superior performance in real-time decision-making and operational effectiveness. This work not only advances the state of the art in SSRR but also
Brown, Taylor J.Vincent, GraceNakamoto, KyleBhattacharya, Sambit
As weather-related catastrophes and urban vulnerabilities intensify, there is a growing interest in AI-driven tools for predicting weather patterns and disaster response. Engineers at Texas A&M University have developed CLARKE (Computer vision and Learning for Analysis of Roads and Key Edifices) — a system that uses drone imagery and artificial intelligence to rapidly assess damage after hurricanes and floods.
High-altitude uncrewed aircraft can remain in the lower stratosphere for extended periods, performing a wide range of Earth observation and communications tasks – from monitoring shipping lanes and supporting disaster response to providing internet access. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now taken an important step in the development of its own high-flying solar aircraft by successfully completing a Ground Vibration Test (GVT) on its innovative HAP-alpha high-altitude platform. Extensive ground trials took place at DLR’s National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, Germany. Further tests will follow and the first low-altitude flight trial is planned for 2026, subject to ideal weather conditions.
The German Aerospace Center's (DLR) solar-powered high altitude platform (HAP) has completed ground vibration testing, in preparation for low altitude flight testing planned for 2026. German Aerospace Center (DLR), Cologne, Germany High-altitude uncrewed aircraft can remain in the lower stratosphere for extended periods, performing a wide range of Earth observation and communications tasks - from monitoring shipping lanes and supporting disaster response to providing internet access. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now taken an important step in the development of its own high-flying solar aircraft by successfully completing a Ground Vibration Test (GVT) on its innovative HAP-alpha high-altitude platform. Extensive ground trials took place at DLR's National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, Germany. Further tests will follow and the first low-altitude flight trial is planned for 2026, subject to ideal
In late July to October 2022, residents of the Manu’a Islands in American Samoa felt the earth shake several times a day, raising concerns of an imminent volcanic eruption or tsunami.
Hurricane evacuations generate high traffic demand with increased crash risk. To mitigate such risk, transportation agencies can adopt high-resolution vehicle data to predict real-time crash risks. Previous crash risk prediction models mainly used limited infrastructure sensor data without covering many road segments. In this article, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data that contain vehicle speed and acceleration information collected at a high frequency (mean = 14.32, standard deviation = 6.82 s). The dataset was extracted from a database of connected vehicle data for the evacuation period of Hurricane Ida on Interstate-10 in Louisiana. Five machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data. The results indicate that the Gaussian process boosting and extreme gradient
Syed, Zaheen E MuktadiHasan, Samiul
Secondary crashes, including struck-by incidents are a leading cause of line-of-duty deaths among emergency responders, such as firefighters, law enforcement officers, and emergency medical service providers. The introduction of light-emitting diode (LED) sources and advanced lighting control systems provides a wide range of options for emergency lighting configurations. This study investigated the impact of lighting color, intensity, modulation, and flash rate on driver behavior while traversing a traffic incident scene at night. The impact of retroreflective chevron markings in combination with lighting configurations, as well as the measurement of “moth-to-flame” effects of emergency lighting on drivers was also investigated. This human factors study recruited volunteers to drive a closed course traffic incident scene, at night under various experimental conditions. The simulated traffic incident was designed to replicate a fire apparatus in the center-block position. The incident
Bullough, John D.Parr, ScottHiebner, EmilySblendorio, Alec
SAE J3108 Recommended Practice (RP) provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of SAE J3108-1 is to present responders with a limited number of intuitive letters and colors. The International community is in the process of adopting International Standards Organization (ISO) 17840, which provides first and second responders with a standardized format for emergency information. While the ISO 17840 format in coloring and lettering can be adopted and should be encouraged when possible, it is intended for large and heavy vehicles. SAE J3108-1 provides a means for responders to recognize fuel and vehicle type on North American light duty vehicles due to size constraints preventing use of ISO 17840 labels.1 While encouraged to be adopted or referenced by vehicle manufacturers, this RP has been developed for the use of States and other Governmental bodies. The RP is not intended to replace the standards
Hybrid - EV Committee
Recent advancements in electric vertical take-off and landing (eVTOL) aircraft and the broader advanced air mobility (AAM) movement have generated significant interest within and beyond the traditional aviation industry. Many new applications have been identified and are under development, with considerable potential for market growth and exciting potential. However, talent resources are the most critical parameters to make or break the AAM vision, and significantly more talent is needed than the traditional aviation industry is able to currently generate. One possible solution—leverage rapid advancements of artificial intelligence (AI) technology and the gaming industry to help attract, identify, educate, and encourage current and future generations to engage in various aspects of the AAM industry. Beyond Aviation: Embedded Gaming, Artificial Intelligence, Training, and Recruitment for the Advanced Air Mobility Industry discusses how the modern gaming population of 3.3 million
Doo, Johnny
As vehicles adopt software-centric architectures, assessing vehicle software behavior becomes more complex, which can lead to the exploitation of overlooked or untreated vulnerabilities. Using these backdoors, attacks frequently targeted automotive products for malicious reasons. Automotive security incident management involves continuous monitoring of incidents and vulnerabilities. However, it faces challenges in reproducing attacks and revalidating security goals. The lack of visualization of attack scenarios, and vectors, and the knowledge required to replicate attacks hinders vulnerability assessment. The proposed approach aims to improve vulnerability assessment and document residual risks. It promotes replicating attack scenarios using cyber digital twins to support threat modeling, risk assessment, and threat analysis. The research paper focuses on utilizing digital twins for cybersecurity incident response, threat monitoring, and vulnerability exploitation by examining elastic
Venkatachalapathy, Sreenikethana
In the context of insufficient international management experience, this study combines the current situation of Chinese aviation and the characteristics of unmanned aircraft (UA) operation, adopts the specific operations risk assessment (SORA) method, and conducts in-depth research on the trial operation risks of UA in urban low-altitude logistics scenarios, conducting effective evaluations and project practices. This study starts from two dimensions of ground risk and air risk, determines the boundaries required for safe operation of UA, and improves the robustness level of UA operation through ground risk mitigation measures and air risk mitigation measures. At the same time, a series of compliance verification methods are provided to meet 24 operational safety objectives (OSO) (including design characteristics, operational limitations, performance standards, safety characteristics, communication requirements, emergency response plans, etc.), ensuring that UA operation does not pose
Li, LiLiu, WeiweiFu, Jinhua
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
Shrimal, Harsh
This AS provides the minimum performance requirements for the following types of inflatable emergency evacuation devices (hereinafter referred to as device[s]): 1 Type I - Inflatable Slide: A device suitable for assisting occupants in descending from a floor-level airplane exit or from an airplane wing to the ground. A Type I off-wing slide is a device that does not include a ramp. 2 Type II - Inflatable Slide/Raft: A device suitable for assisting occupants in descending from a floor-level airplane exit or an airplane wing to the ground that is also designed to be used as a life raft. A Type II off-wing slide/raft is a device that does not include a ramp. 3 Type III - Inflatable Exit Ramp: A device suitable for assisting occupants in descending from certain overwing exits to an airplane wing. 4 Type IV - Inflatable Ramp/Slide: A device suitable for assisting occupants from an overwing exit or airplane wing to the ground. It is a combination ramp and wing-to-ground device. 5 Type V
S-9A Safety Equipment and Survival Systems Committee
Researchers from Stanford and the American University of Beirut have developed a lightweight, portable antenna that can communicate with satellites and devices on the ground, making it easier to coordinate rescue and relief efforts in disaster-prone areas. Stanford University, Stanford, California When an earthquake, flood, or other disaster strikes a region, existing communication infrastructure such as cell phone and radio towers are often damaged or destroyed. Restoring emergency communications as quickly as possible is vital for coordinating rescue and relief efforts. Researchers at Stanford University and the American University of Beirut (AUB) have developed a portable antenna that could be quickly deployed in disaster-prone areas or used to set up communications in underdeveloped regions. The antenna, described recently in Nature Communications, packs down to a small size and can easily shift between two configurations to communicate either with satellites or devices on the
When an earthquake, flood, or other disaster strikes a region, existing communication infrastructure such as cell phone and radio towers are often damaged or destroyed. Restoring emergency communications as quickly as possible is vital for coordinating rescue and relief efforts.
After hurricanes and other disasters, it is becoming more common for people to fly drones to record the damage and post videos on social media. Those videos are a resource for rapid damage assessment. By using artificial intelligence, researchers are developing a system that can automatically identify buildings and make an initial determination of whether they are damaged and how serious that damage might be.
For wealthy countries like Switzerland, having a dense network of earthquake monitoring stations is a matter of course. This is not the case in less developed countries and on the floor of the world’s oceans. While poorer regions lack the money for the necessary number of sensors, the oceans require complex systems that can reliably measure minimal pressure changes at depths of thousands of meters and bring the data signals to the surface.
An oil spill refers to the accidental or deliberate release of petroleum or other petroleum-based products into the environment. These spills can occur on land or in water bodies, such as oceans, rivers, or lakes, and can have devastating impacts on the environment, wildlife, and human health. Oil spills can harm aquatic and terrestrial ecosystems by contaminating water and soil, and by affecting the food chain. They can also cause economic losses, such as the loss of fisheries, tourism, and property values. Cleaning up oil spills can be a difficult and expensive process, and the effectiveness of the response can depend on various factors, such as the type and amount of oil spilled, weather conditions, and proximity to sensitive ecosystems. Preventing oil spills is critical to minimizing their impacts. This can be achieved through measures such as regular maintenance of oil transport and storage facilities, the use of double- hulled tankers, and the implementation of emergency response
Kumar, V SudhirR, BalamuruganPasupuleti, ThejasreeNatarajan, Manikandan
This paper presents a simulation study of hydrogen leakage from an onboard hydrogen supply system in open, closed, and semi-closed spaces. The simulations investigate the effects of environmental factors and conditions such as obstacles on the diffusion process of hydrogen leaks. The results show that when hydrogen gas leaks, the direction of the leak determines the potential risk. If the leak is directed toward the cab, the gas will accumulate in the gap between the cab and the hydrogen supply system, posing a significant risk to the driver. On the other hand, if hydrogen leaks toward the rear, a combustible cloud forms mainly behind the vehicle at a safe distance of 3.8 meters. The study also investigated the effects of wind speed, wind direction, and ambient temperature. It was found that headwinds can cause hydrogen to spread near the vehicle, increasing the risk of an accident. The paper also investigates the effect of obstacles that inhibit the horizontal diffusion of hydrogen
Zhang, YongtaoYu, JiangbinYang, ZirongHao, DongZhang, Xin
ABSTRACT Geotechnical site characterization is the process of collecting geophysical and geospatial characteristics about the surface and subsurface to create a 3-dimensional (3D) model. Current Robot Operating System (ROS) world models are designed primarily for navigation in unknown environments; however, they do not store the geotechnical characteristics requisite for environmental assessment, archaeology, construction engineering, or disaster response. The automotive industry is researching High Definition (HD) Maps, which contain more information and are currently being used by autonomous vehicles for ground truth localization, but they are static and primarily used for navigation in highly regulated infrastructure. Modern site characterization and HD mapping methods involve survey engineers working on-site followed by lengthy post processing. This research addresses the shortcomings for current world models and site characterization by introducing Site Model Geospatial System
Richards, Matthew E.Murphy, Kevin F.Toledo, Israel LopezSoylemezoglu, Ahmet
Advanced technology plays a vital role in search and rescue operations after natural disasters such as earthquakes. Thermal imaging equipment and sensitive listening devices are deployed to seek out signs of life. Small aerial drones could also survey otherwise inaccessible spaces, but the inherent fragility of current designs have limited their use.
Thousands die or are injured each year in automobile crashes. Reducing the number of these tragedies requires reframing our approach to vehicle- and human-based transportation mobility and depends on whether the mobility industry and individual human drivers take a more aggressive approach to saving lives and preventing injuries. Bringing automated driving systems technologies into the advanced driver assist systems (ADAS) and connected vehicle space will help humans drive more safely and better prepare us for automated vehicles (AVs). Reducing Human Driver Error and Setting Realistic Expectations with Advanced Driver Assistance Systems discusses the recent Partnership for Analytics Research in Traffic Safety report which shows that ADAS can indeed work. The path forward requires combining ADAS and ADS implementation with infrastructure engineering, law enforcement, education, emergency response, and public policy, with the goal of reaching zero deaths and serious injuries. It also
Chalmers, Seth
This document provides guidance for in-flight rest facilities provided for use by cabin crew on commercial transport airplane. This document is applicable to dedicated cabin crew rest facilities with rigid walls. The facility includes a bunk or other surface that allows for a flat sleeping position, is located in an area that is temperature-controlled, allows the crew member to control light, and provides isolation from noise and disturbance.
S-9B Cabin Interiors and Furnishings Committee
As fossil fuels are phased out in the effort to slow global warming, we will be depending upon a reliable source of electric power more than ever. And that means blackouts caused by weather events such as hurricanes, tornadoes, and snowstorms will have increasingly serious consequences.
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system. By developing a hybrid system with appealing new driving characteristics, it was possible to increase the variety of electric powertrains available to customers as
Sasaki, KoichiKamichi, KensukeIshimoto, ManabuKojima, SeiBridge, AlistairTakebayashi, Noritaka
A research team at the University of Central Florida has developed technology that could prevent electric vehicle fires, like those caused by saltwater flooding from Hurricane Ian.
To make sure our buildings and infrastructure are earthquake-safe, we must understand how seismic activity affects different structures. Two major research efforts funded by the Department of Energy (DOE) seek to fill in the gaps and provide resources for researchers and engineers to study earthquakes across scales, from the initiation of seismic waves at the fault rupture site deep underground, to the interactions between shaking soil and individual structures at the surface.
Innovators at the NASA Langley Research Center have developed the Multi-Layer Nuclear Thermionic Avalanche Cell (NTAC), a novel electrical generator, which transforms nuclear gamma-ray photon energy directly to electric power by liberating intra-band atomic inner shell electrons.
Motorcyclists are about 29 times more likely than passenger vehicle occupants to die in a motor vehicle crash and are 4 times more likely to be injured. Safe motorcycling takes balance, co-ordination, and good judgement. As per NHTSA, per 100,000 registered vehicles motorcycle fatality and injury rate stand at 58.33 and 975 and that of passenger vehicles stand at 9.42 and 1152. With such rates of fatality and injury of motorcyclists, there is strong need for motorcycle solutions that help to minimize traffic fatalities and improve road safety scenarios. Helmets are estimated to be 37% effective in preventing fatal injuries to motorcycle riders and 41% for motorcycle passengers but there is little to no post-crash assistance available on board the motorcycles. Post-crash emergency response is time sensitive and can be broken down into a subset of activities beginning with discovery of crash, notification, and activation of emergency medical service (EMS), response time, on-scene time
Rao, Aditya NNotani, VipulMuralidharan, Vishal
Data is information that has been recorded in a form or format convenient to move or process. It is important to distinguish between data and the format. The format is a structured way to record information, such as engineering drawings and other documents, software, pictures, maps, sound, and animation. Some formats are open source, others proprietary. Regardless of the format, there are three broad types of data. Table 1 lists these types of data and provides examples. DM, from the perspective of this standard, consists of the disciplined processes and systems utilized to plan for, acquire, and provide management and oversight for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for stakeholder collaboration extending through the supply chain during product acquisition and sustainment life cycle. This standard has broader application
EIDM Enterprise Information and Data Management
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft.
S-9B Cabin Interiors and Furnishings Committee
This SAE Aerospace Recommended Practice recommends general criteria for the development and installation of an aircraft emergency signal system to permit any crew member (flight or cabin) to inform all other crew members that an emergency evacuation situation exists and that an evacuation has been or should be immediately started.
S-9B Cabin Interiors and Furnishings Committee
Coastal and riverine shorelines are dynamic landscapes that change continually in response to environmental forces. The combination of static infrastructure with dynamic and diverse landscapes creates management challenges for navigation, storm damage reduction, and ecosystem health that are exacerbated during natural disasters. The U.S. Army Corps of Engineers (USACE) flood risk management (FRM) mission strives to reduce the nation's flood risk and increase resilience to disasters. FRM is inherently interdisciplinary, requiring accurate identification of environmental, physical, and infrastructure features that can reduce risk from flood and coastal storm disasters.
Items per page:
1 – 50 of 369