Browse Topic: People and personalities

Items (10,268)
The transition from internal combustion engine (ICE) industry to electric vehicle (EV) industry has significant financial implications for both the automotive industry, government, and associated partners. The shift to EVs could lead to savings in foreign exchange reserves, the creation of new jobs, and a reduction in greenhouse gas emissions. However, the transition could also result in job losses in the automobile and its associated manufacturing industry. This study aims to analyze the impact of this transition on different stakeholders in India. The study takes into account the different financial aspects that includes production, technology, government policy, skilling, employability, job creation, and other associated aspects on Indian economy. For the projected study different cases were considered with 2030 as the projected year with 30% EVs. A modest attempt is made to analyze the impact on associated partners. The findings of the study suggest that the transition to EVs could
Vashist, DevendraMalik, VarunPandey, Sachchidanand
This research, path planning optimization of the deep Q-network (DQN) algorithm is enhanced through integration with the enhanced deep Q-network (EDQN) for mobile robot (MR) navigation in specific scenarios. This approach involves multiple objectives, such as minimizing path distance, energy consumption, and obstacle avoidance. The proposed algorithm has been adapted to operate MRs in both 10 × 10 and 15 × 15 grid-mapped environments, accommodating both static and dynamic settings. The main objective of the algorithm is to determine the most efficient, optimized path to the target destination. A learning-based MR was utilized to experimentally validate the EDQN methodology, confirming its effectiveness. For robot trajectory tasks, this research demonstrates that the EDQN approach enables collision avoidance, optimizes path efficiency, and achieves practical applicability. Training episodes were implemented over 3000 iterations. In comparison to traditional algorithms such as A*, GA
Arumugam, VengatesanAlagumalai, VasudevanRajendran, Sundarakannan
The SAE Formula prototypes are developed by students, where in the competition, various aspects of project definitions are evaluated. Among the factors evaluated for scoring is the braking system, in which the present work aims to present the development and design of the braking system of a vehicle, prototype of Formula SAE student competition. As it is a project manufactured mostly by students, where the chassis, suspension system, electrical, transmission and powertrain are developed, it is important to first pass the static and safety tests, where the brakes of the four wheels are tested during deceleration at a certain distance from the track. To enable such approval and also to demonstrate, for the competition judges, the veracity of the system’s sizing, all the parameters and assumptions of the choice of the vehicle’s braking system are presented, thus ensuring their reliability, efficiency and safety. Using drawing and simulation software such as SolidWorks and Excel for
Gomes, Lucas OlenskiGrandinetti, Francisco JoséMartins, Marcelo SampaioSouza Soares, Alvaro ManoelReis de Faria Neto, AntônioCastro, Thais SantosAlmeida, Luís Fernando
The automotive industry is facing unprecedented pressure to reduce costs without compromising on quality and performance, particularly in the design and manufacturing. This paper provides a technical review of the multifaceted challenges involved in achieving cost efficiency while maintaining financial viability, functional integrity, and market competitiveness. Financial viability stands as a primary obstacle in cost reduction projects. The demand for innovative products needs to be balanced with the need for affordable materials while maintaining structural integrity. Suppliers’ cost structures, raw material fluctuations, and production volumes must be considered on the way to obtain optimal costs. Functional aspects lead to another layer of complexity, once changes in design or materials should not compromise safety, durability, or performance. Rigorous testing and simulation tools are indispensable to validate changes in the manufacturing process. Marketing considerations are also
Oliveira Neto, Raimundo ArraisSouza, Camila Gomes PeçanhaBrito, Luis Roberto BonfimGuimarães, Georges Louis Nogueira
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
The SAE Formula, a national stage of the international competition, consists of a student project at universities in Brazil that seeks to encourage engineering students to apply the theoretical knowledge obtained in the classroom to practice, dealing with real problems and difficulties in order to prepare them for the job market. The SAE Formula prototype is developed with the intention of competing in the SAE national competition, where teams from various universities in Brazil meet to compete and demonstrate the projects developed during the year. Focusing on the vehicle dynamics subsystem, which can be divided into the braking, suspension, and steering systems of a prototype, the steering system includes main mechanical components such as the front axle sleeves, wheel hub, steering arm, steering column, rack, wheel, and tire. All these components work together with the suspension systems, including suspension arms, “bell crank,” and spring/shock absorber assembly. These components
Rigo, Cristiano Shuji ShimadaNeto, Antonio Dos Reis De FariaGrandinetti, Francisco JoseCastro, Thais SantosDias, Erica XimenesMartins, Marcelo Sampaio
Organizations need to maintain their processes at high levels of efficiency to be competitive, asset management and industrial maintenance are extremely important to obtain positive results in optimizing operating costs, saving energy resources, reduction of environmental impacts among other characteristics that are considered differential for organizations. In this scenario, methods are increasingly being sought to assist managers in decision-making processes that contain several alternatives and selection criteria involved. The AHP and TOPSIS methods have been widely associated with prioritization studies, cost evaluation, resource selection, suppliers, among others. Thus, the selection of equipment and industrial elements can be evaluated by means of multicriteria decision methods where the criteria considered important by specialists in the area are inserted into the model. The objective of this article was to present a selection process for spur gears based on stress analysis and
de Oliveira, Geraldo Cesar Rosariode Oliveira, Vania Aparecida RosarioSilva, Carlos Alexis AlvaradoGuidi, Erick SiqueiraSalomon, Valério Antonio PamplonaRosado, Victor Orlando Gamarrade Azevedo Silva, Fernando
2023–2024 Reviewers
Hardy, Warren
Autonomous driving technology plays a crucial role in enhancing driving safety and efficiency, with the decision-making module being at its core. To achieve more human-like decision-making and accommodate drivers with diverse styles, we propose a method based on deep reinforcement learning. A driving simulator is utilized to collect driver data, which is then classified into three driving styles—aggressive, moderate, and conservative—using the K-means algorithm. A driving style recognition model is developed using the labeled data. We then design distinct reward functions for the Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC) algorithms based on the driving data of the three styles. Through comparative analysis, the SAC algorithm is selected for its superior performance in balancing comfort and driving efficiency. The decision-making models for different styles are trained and evaluated in the SUMO simulation environment. The results indicate that
Shen, ChuanliangZhang, LongxuShi, BowenMa, XiaoyuanLi, YiHu, Hongyu
In response to the escalating demand for high-performance, miniaturized, and integrated radio frequency (RF) systems, this research explores the application of the Zynq UltraScale+ RFSoC XCZU47DR chip in the realm of integrated RF transceiver technology. An 8-channel, 4.8Gsps multi-channel distributed collaborative spectrum sensing architecture has been designed, incorporating lightweight IQ neural network, which comprises a convolutional layer, three Bottleneck Units (BNU), a Global Average Pooling (GAP) layer, and a Fully Connected (FC) layer. Notably, each BNU encapsulates one or two inverted bottleneck residual blocks that integrate the concepts of inverted residual blocks and linear bottlenecks. The parameter counts and computational complexity associated with the convolution operation are significantly reduced to merely 11.89% of those required by traditional networks. The performance metrics of the hardware circuit were validated through a constructed test system. Within a 2GHz
Chen, WangjieYang, JianZhu, WeiqiangShi, SonghuaZhou, MingyuFan, Zhenhong
The planning of mountain campus bus routes needs to take into account user demand, convenience, and other factors. This study adopts a comprehensive research method that combines quantitative and qualitative viewpoints. From the perspective of university students, this article studies the demand of campus public transportation and proposes the layout of campus bus routes in mountainous universities to meet the needs of users. The psychological needs questionnaire was used to investigate college students’ expectation of bus station service function. Taking three mountain universities as examples, the integration and selectivity of campus road networks are evaluated by using space syntax analysis, which provides valuable insights into the quality of bus stop areas. This article discusses the correlation between psychological needs assessment of college students and objective conditions of campus road network. The study concludes with the following findings: (1) The pedestrian environment
Duan, RanTang, RuiWang, ZhigangZhao, YixueWang, QidaYang, JiyiSu, Jiafu
Recent advancements in electric vertical take-off and landing (eVTOL) aircraft and the broader advanced air mobility (AAM) movement have generated significant interest within and beyond the traditional aviation industry. Many new applications have been identified and are under development, with considerable potential for market growth and exciting potential. However, talent resources are the most critical parameters to make or break the AAM vision, and significantly more talent is needed than the traditional aviation industry is able to currently generate. One possible solution—leverage rapid advancements of artificial intelligence (AI) technology and the gaming industry to help attract, identify, educate, and encourage current and future generations to engage in various aspects of the AAM industry. Beyond Aviation: Embedded Gaming, Artificial Intelligence, Training, and Recruitment for the Advanced Air Mobility Industry discusses how the modern gaming population of 3.3 million
Doo, Johnny
2023–2024 Reviewers
Watzenig, DanielFruehling, Terry
The fusion of virtualized base software with simulation technologies has transformed the methods used for development and system testing. This paper examines the architecture, implementation, and advantages of employing virtualization to improve simulation environments. Virtualized base software enables the creation of isolated, scalable, and replicable settings, essential for executing complex simulations that replicate real-world situations. Utilizing virtualization enhances simulations by making them more efficient, flexible, and cost-effective. The study covers the essential elements of virtualized simulation platforms, such as containerization, network abstraction and virtual drivers. It also analyzes how these components collaborate to create a strong framework for simulating diverse applications, ranging from software testing to hardware emulation. This approach offers several benefits, including better resource utilization, quicker deployment times, and the flexibility to
Shenoy, GaneshMalchow, Florian
To establish and validate new systems incorporated into next generation vehicles, it is important to understand actual scenarios which the autonomous vehicles will likely encounter. Consequently, to do this, it is important to run Field Operational Tests (FOT). FOT is undertaken with many vehicles and large acquisition areas ensuing the capability and suitability of a continuous function, thus guaranteeing the randomization of test conditions. FOT and Use case(a software testing technique designed to ensure that the system under test meets and exceeds the stakeholders' expectations) scenario recordings capture is very expensive, due to the amount of necessary material (vehicles, measurement equipment/objectives, headcount, data storage capacity/complexity, trained drivers/professionals) and all-time robust working vehicle setup is not always available, moreover mileage is directly proportional to time, along with that it cannot be scaled up due to physical limitations. During the early
Sehgal, VishalSekaran, Nikhil
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
Raj, Prem raj AnandSelvam, Dinesh KumarThanikachalam, GaneshSivakumar, Vishnu
Researchers at Caltech took an important step toward using reinforcement learning to adaptively learn how turbulent wind can change over time, and then uses that knowledge to control a UAV based on what it is experiencing in real time. California Institute of Technology, Pasadena, CA In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle. Now a team of researchers from Caltech's Center for Autonomous Systems and Technologies (CAST) and NVIDIA has taken an
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
A research team led by Rice University’s Edward Knightly has uncovered an eavesdropping security vulnerability in high-frequency and high-speed wireless backhaul links, widely employed in critical applications such as 5G wireless cell phone signals and low-latency financial trading on Wall Street
A Coventry University design and materials engineer is leading an international team of researchers in the creation of a new material for liquid hydrogen storage tanks that are used to propel rockets into space. Coventry University, Coventry, UK The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race. Dr. Ashwath Pazhani along with an international team of researchers have created a new material for storing the liquid hydrogen used to propel rockets into space by the likes of NASA
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop
Blanco, Sebastian
Liebherr and Fortescue unveiled their first autonomous battery-electric T 264 haul truck at MINExpo 2024, garnering a steady stream of attendees eyeing and climbing on the giant machine. The truck is the culmination of nearly three years of development work and collaboration among the autonomy and zero-emission units of Liebherr and Fortescue. The T 264 electric hauler features a 3.2-MWh battery system, comprising eight sub-packs, developed by Fortescue Zero. Fortescue also developed a stationary fast-charging solution to support the new T 264. The charger will be available in both manual and robotic versions. An automated quick charger of up to 6 MW with two megawatt charging system (MCS) plugs can reportedly charge the current battery-electric T 264 in 30 minutes
Gehm, Ryan
Komatsu introduced its first battery-electric load-haul-dump (LHD) machine, the WX04B, at the MINExpo tradeshow in September. The WX04B is designed specifically for narrow vein mines in underground hard rock mining operations. Komatsu is pairing the electric LHD with its new OEM-agnostic 150-kW battery charger that was also revealed in Las Vegas. The 4-tonne WX04B LHD features what Komatsu claims is best-in-class energy density, offering up to four hours of runtime on a single charge. The Li-ion NMC (nickel-manganese-cobalt) battery from Proterra has a capacity of 165 kWh and nominal voltage of 660 V. Fewer charge cycles are needed compared to competitors, the company claims, which helps to maximize operational efficiency and minimize downtime. Proterra and Komatsu began their collaboration on the LHD's H Series battery system in 2021, long before Komatsu's acquisition of American Battery Solutions (ABS) in December 2023
Gehm, Ryan
Sometimes, I cringe; sometimes, I just listen and wonder. These past few months have given us all a lot to think about in the automotive space, and it's clear now that the coming years will keep the foot down on the accelerator when it comes to the dramatic changes we've experienced this past decade. One thing that stood out to me in various recent conversations is that there's a widening gulf opening between Chinese automakers and the rest of the world. This isn't exactly news, and this column isn't meant to monger any fears. It's just a bit of off-the-cuff reporting that sheds a bit of light on the level of the challenges we face. As you can read in Chris Clonts' excellent report further in this issue about the warning that Voltaiq's CEO gave at The Battery Show this October, the U.S. is in serious danger of falling well behind Chinese competitors in the EV battery race (Michael Robinette tackles similar ground through a tariff lens in this month's Supplier Eye). But that message was
Blanco, Sebastian
North American automakers and EV battery firms have five years to erase China's dominance in technology and manufacturing or they may face the reality of buying batteries from China for the foreseeable future. That was the message from battery-analysis company Voltaiq CEO Tal Sholklapper at a media briefing in Detroit. “We're in the final innings now,” Sholklapper said. “If the industry around batteries and electric vehicles and all the follow-on applications wants to make it, we're going to have to change the way we play
Clonts, Chris
“This might be our most forward-looking team occupying the building that was the impetus for our future-looking focus in the very beginning,” Jennifer Kolstad, Ford Motor Company's Global Design and Brand Director, told SAE Media inside the 100-year-old Ford Engineering Lab's library. The two-story Dearborn, Michigan building, which spans two city blocks, is now the renovated and modernized workspace for Electrified Propulsion Engineering Team innovators. “They're in-space before the research and development hub opens across the street,” Kolstad said
Buchholz, Kami
Increased use of advanced composite structural materials on aircraft has resulted in the need to address the more demanding quality and nondestructive testing procedures. Accordingly, increased utilization of solid laminate composites is driving changes to airline NDI/NDT training requirements and greater emphasis on the application of accurate NDI/NDT methods for composite structures. Teaching modules, including an introduction to composite materials, composite NDI/NDT theory and practice, special cases and lessons learned, are included in this document as well as various hands-on NDI/NDT exercises. A set of proficiency specimens containing realistic composite structures and representative damage are available to reinforce teaching points and evaluate inspector’s proficiency. Extensive details of the guidance modules, hands-on exercises, and proficiency specimens are all presented in this document. This document does not replace OEM guidance as may be specific to material, process
AMS CACRC Commercial Aircraft Composite Repair Committee
ABSTRACT This paper presents the conceptual design, development, and implementation of the Robotic Technology Kernel (RTK) in a Polaris GEM e2 by the United States Military Academy's autonomy research team. RTK is the autonomous software suite of the U.S. Army Combat Capabilities Development Command Ground Vehicles Systems Center and to this point has primarily been used within off-road environments. The research team's primary objectives were to verify RTK's platform-agnostic characteristic by implementing the control software on a small, low-speed electric vehicle and augmenting the software to provide the additional capability of operating within an established infrastructure rule set. Citation: J. Cymerman, S. Yim, D. Larkin, K. Pegues, W. Gengler, S. Norman, Z. Maxwell, N. Gasparri, M. Pollin, C. Calderon, J. Angle, J. Collier, “Evolving the Robotic Technology Kernal to Expand Future Force Autonomous Ground Vehicle Capabilities,” In Proceedings of the Ground Vehicle Systems
Cymerman, JosephYim, SangLarkin, DominicPegues, KathrynGengler, WyattNorman, SamuelMaxwell, ZacharyGasparri, NicholasPollin, MaryCalderon, ClementAngle, JeremyCollier, Jaylen
ABSTRACT The OMU (orientation measurement unit), a combination of inertial (accelerometer, gyroscope), magnetometer and GPS/GNSS sensors, can play a significant role in the stabilization, orientation, navigation and munitions guidance applications performed in ground-based military vehicles. The raw data measured by the OMU’s sensor array includes angular rate, acceleration, magnetic field strength as well as position. By blending these sensor measurements with the use of software algorithms (a.k.a. sensor fusion), the data can be transformed into orientation data (pitch, roll & yaw), commonly referred to as Euler Angles. OMUs have a wide range of price that depends on the quality of its individual device sensors, environmental packaging, standards met and the sophistication of the device firmware used to filter, correct and smooth the inertial inputs used in the computation of application output data. In the ground-based military vehicle industry, applications supported by the OMU
Wright, Ronnie L.Wilson, Chad J.Petty, Millard E.Wong, Michael C.Smith, Michael R.
ABSTRACT The objective of this research was to survey and evaluate simulators for use with unmanned ground vehicles and extend the functionality of the ANVEL simulator to include the robot operating system (ROS). The goals of the research were first to determine how the ANVEL simulator would compare to four other currently available simulators on four criteria: physical fidelity, functional fidelity, ease of development, and cost. The second goal was the development of an ANVEL-ROS bridge to expand the robot control functionality in ANVEL. The ANVEL-ROS bridge developed was verified using two robots, Turtlebot2 and Jaguar V4. RViz, a ROS visualization tool, was used to confirm sensor output correctness. Robot control in ANVEL was confirmed using tele-operation through ROS commands
Hudson, Christopher R.Lalejini, AlexanderOdom, BrandonBethel, Cindy L.Carruth, Daniel W.Durst, Phillip J.Goodin, Christopher
ABSTRACT Improvised Explosive Devices (IEDs) and mines pose significant threat to military ground vehicles and soldiers in the field. Due to the severity of the forces exerted by a blast, ground vehicles may undergo multiple sub-events subsequent to an explosion, including local structural deformation of the floor, gravity flight and slam-down. The current method of choice to simulate the effect of a shallow-buried IED or mine on a Lagrangian vehicle model, is a fluid-structure interaction with the environment modelled with an Eulerian formulation (explosive, ground, air) [1]. This method, also called Arbitrary Lagrangian-Eulerian (ALE), is more expensive and involved than pure structural methods (usually pressure loads applied to the vehicle surface). However, it allows for taking into account the effect of the shape, type and size of the charge and the soil characteristics on the impulse transmitted to the vehicle. Three approaches are proposed to reduce the analytical simulation
Parthasarathy, MohanKosarek, Philip G.Santini, JulienThyagarajan, Ravi
ABSTRACT Integration risk differentiates from other program risk in that it always involves interfaces between various systems or subsystems. The level of integration required is different depending on the phase of the Acquisition Life Cycle (i.e. Materiel Solution Analysis Phase, Technology Development Phase, Engineering and Manufacturing Development Phase, Production and Deployment Phase and Operation and Support Phase). This paper focuses on the process used to assess the integration risks of integrating various technologies or subsystems into a vehicle platform. The process presented provides a step by step instruction on how to perform an integration risk assessment. A new Integration Readiness Level (IRL) rating system has been developed by the TARDEC System Engineering and Integration Group to help acquisition vehicle programs as well as science and technology teams to evaluate the health of their technology or subsystem integration into their vehicles. The rating system is
Tzau, Jerome
ABSTRACT Systems Engineering (SE) would always benefit from the inclusion of the Six-Sigma perspective in both the planning and execution of project systems. This applies to not only System Engineers but also to Systems Extended Team Members, all who must provide cumulated knowledge along with competency to the project. It is difficult to obtain a high level of competency among single members of the team to be highly successful. Strength in one area is very often an underlying factor of weakness in another area. Determining and integrating sigma characteristics from the development cycle into all remaining phases of the product project, especially at critical component interfaces, with a resultant sigma value given to those connections that develop a sigma-risk factor for each function and process pathway within the operational configuration. This sigma-risk factor concept is the key in uniting knowledge with experience
Maholick, WilliamGodell, Carl J
ABSTRACT This paper presents the comparative analysis of virtual and experimental proving ground for the performance capabilities of front suspensions in the Family of Medium Tactical Vehicles (FMTV) cargo truck. The front suspension of the current baseline FMTV is a solid axle with leaf springs and shock absorbers. Two other types of suspensions including passive and semi-active suspensions are evaluated in solid and fully independent axle configurations. Virtual proving ground for on- and off-road tests are simulated in the Trucksim environment to include constant radius circular steer, double lane change, sinusoidal steer, washboard road surfaces, and half-round curb strike. Physical proving ground tests are conducted to provide some experimental correlation and validation of the baseline vehicle simulation results. The comprehensive experiments also evaluate the capabilities of various suspensions which have been considered in future FMTV design for mobility performance improvement
Liao, Y. GeneCard, BrandonWasylyk, John
ABSTRACT Model-Based Systems Engineering (MBSE) has grown in popularity since the introduction of SysML a decade ago. Pockets of modeling excellence have developed within many government, industrial, and educational organizations. Few, if any, have achieved “wall-to-wall” adoption. This paper will focus on a key component of a successful system modeling efforts: the individuals who must translate sound systems engineering into robust, useful system models. The author routinely teaches systems architecture, systems engineering, and system modeling and will share methods and techniques for identifying and growing modeling talent. Success depends as much upon mindset and approach as it does upon understanding tool user interfaces and modeling conventions. Published texts, class exercises, videos, and case studies can be used to shape engineers’ problem-solving methods. In addition, a craft system (with apprentice, journeyman, and master modelers engaged in interlocking skill development
Vinarcik, Michael J.
Abstract The Integrated Systems Engineering Framework (ISEF) is an RDECOM solution to capture, leverage, and preserve/reuse Systems Engineering (SE) knowledge generated throughout a system’s lifecycle. The framework is a system of tools designed to support decision making with confidence through embedded SE process management, high quality data visualizations, and system lifecycle information traceability. A web based tool architecture supports near zero IT footprint and allows real time collaboration between team members. The Combat Vehicle Prototype program is a large S&T effort within the Army community to create a virtual demonstrator to influence the next Future Fighting Vehicle program of record. The program is made up of “leap-ahead” technology development efforts pursuing TRL 6 demonstrations. These technologies are being coordinated with the CVP central program office to ensure an effective system level concept is transitioned at the end of the program. This paper will begin
Umpfenbach, EdwardBlasky, John
ABSTRACT In development of next generation products, 80% or more of the downstream costs associated are committed during design phase. If we could predict, with reasonable confidence, the long-term impact of design decisions, it would open opportunities to develop better designs that result in tremendous future cost savings, often with no compromise in key performance objectives. Systems engineering is, by its nature, multi-disciplinary. The aim of Integrated Product and Process Development is to bring these disciplines together in order to assess various downstream implications of early design decisions, creating better designs, avoiding dead-end designs that are costly in terms of design cycle-time, and realizing designs that are manufacturable while achieving the performance objectives. The goal is to build a downstream value analysis tool that links all the conceptual design activities. This capability allows a designer to realize the long-range impacts of key up-front design
Sarkar, SohiniSoltisz, Jim
Abstract Converting vehicles from conventional manned operations to unmanned supervised operations has been slow to adoption in many industries due to cost, complexity (requiring more highly skilled personnel) and perceived lower productivity. Indeed, hazardous operations (military, nuclear cleanup, etc.) have seen the most significant implementations of robotics based solely on personnel safety. Starting in 2005, the U.S. Army Corps of Engineers (USACE) has assumed a leading role in promoting the use of robotics in unexploded ordnance (UXO) range remediation. Although personnel safety is the primary component of the USACE mission, increasing productivity while reducing overall cost is an extremely important driver behind their program. To achieve this goal demands that robotic range clearance equipment be affordable, easy to install on rental equipment, durable and reliable (to minimize down-time), low or no maintenance, and easy to learn / operate by the same individuals who would
Selfridge, BobHewitt, Gregory
ABSTRACT This paper will discuss how proven automotive systems engineering lightweighting principles and practices are being adapted and applied to combat and tactical ground vehicle systems. An automotive lightweighting methodology has most recently been utilized to reduce the weight of a light-duty pickup truck by 511 kilograms resulting in a 20.8% vehicle mass reduction. A holistic approach to light-weighting offers great benefits with additional mass reduction at a cost savings, reducing the overall vehicle lightweighting cost impact. Automotive studies have shown additional vehicle mass-reductions in the range of 3-5% are achievable when vehicles are aggressively light-weighted (i.e., approximate 20% vehicle mass reduction range). Although many factors like customer usage, function and performance requirements, production volumes, product life cycles, value stream, manufacturing infrastructure, litigation application, etc., are indeed considerably different between automotive and
Kolwich, GregSchecter, CharlesTirwomwe, DonaldLane, JerryGerth, RichardOstberg, Don
ABSTRACT The Advanced Systems Engineering Capability (ASEC) developed by TARDEC Systems Engineering & Integration (SE&I) group is an integrated Systems Engineering (SE) knowledge creation and capture framework built on a decision centric method, high quality data visualizations, intuitive navigation and systems information management that enable continuous data traceability, real time collaboration and knowledge pattern leverage to support the entire system lifecycle. The ASEC framework has evolved significantly over the past year. New tools have been added for capturing lessons learned from warfighter experiences in theater and for analyzing and validating the needs of ground domains platforms/systems. These stakeholder needs analysis tools may be used to refine the ground domain capability model (functional decomposition) and to help identify opportunities for common solutions across platforms. On-going development of ASEC will migrate all tools to a single virtual desktop to promote
Mendonza, PradeepFitch, John
ABSTRACT U.S. Army Combat Capabilities Development Command (CCDC) Ground Vehicle Systems Center (GVSC) has been managing and developing a variety of autonomous systems throughout its existence. Two of the most important from the past decade include the Autonomous Mobility Appliqué System (AMAS) developed by Lockheed Martin Corporation (LMC) and the Robotic Technology Kernel (RTK) developed by GVSC in collaboration with DCS Corp and Southwest Research Institute (SwRI). Rather than continuing to develop and maintain two separate autonomous software systems, GVSC has decided to integrate any capabilities that were unique to AMAS into RTK and devote efforts to developing RTK going forward. The goal of integrating AMAS into RTK is to leverage the best features of each system. The process of this integration involves multiple steps. This paper describes the historical and current efforts involved in the integration of AMAS into RTK. Citation: D. Pirozzo, J.P. Hecker, A. Dickinson, T
Pirozzo, DavidHecker, Joshua P.Dickinson, AlanSchulteis, TimRatowski, JeffTheisen, Bernard
ABSTRACT Simulation is critical to the development of effective unmanned ground vehicles (UGVs). Simulation provides the ability to test virtual hardware and software systems in conditions that may be difficult to recreate physically. An important benefit of simulation is that it grants researchers access to simulated hardware, such as sensors and vehicles, that might not be available otherwise. To successfully simulate both hardware and software systems, it is essential to acknowledge the needs and requirements of the simulation platform. In this paper, we investigate two simulation environments being used at Mississippi State University to model and simulate UGVs: the Mississippi State University Autonomous Vehicle Simulator (MAVS) and Gazebo. Within this paper we investigate the specific modeling needs for the Clearpath Robotics Warthog UGV in both simulation environments. We found that Gazebo has more options for vehicle and robot customization. However, Gazebo requires more up
Moore, Marc N.Ray, Payton A.Goodin, ChristopherHudson, Christopher R.Doude, MatthewCarruth, Daniel W.Ewing, Mark R.Towne, Brent W.
ABSTRACT The U.S. Department of Energy established the SuperTruck program in 2009 with the goal of developing and demonstrating technologies that can vastly improve the efficiency of Class 8 over-the-road trucks. Several teams participated in the program and developed prototypes that demonstrated more than double the fuel economy of conventional trucks. As part of the High-Efficiency Truck Users Forum program CALSTART investigated the approaches taken by the different teams and analyzed the military applicability of the technologies that were employed
Sokolsky, StevenMcNett, BradGallo, Jean-Baptiste
ABSTRACT Program Executive Office (PEO) Ground Combat Systems (GCS) initiated a Green Belt project in 2007 to develop a risk management process. The Integrated Product Team (IPT) built on Defense Acquisition University (DAU) and Department of Defense (DoD) risk management guidance to create a process for risk analysis, mitigation, and rules for Risk Review Board approval. To automate this process, the IPT eventually created an Army owned, customizable tool (Risk Recon) that matched the PEO GCS process. Risk Recon is used to track risks throughout the acquisition life-cycle. Changing the culture of the PEO has been the most significant challenge. Training and follow-up of risk progress is required to keep the process from becoming stagnant. Partnership with the Original Equipment Manufacturer (OEMs)s is an integral part of all programs and a balance is needed between how the PEO and its OEMs perform risk management and communicate those risks. The software requirements continue to
Rassette, CherylGraf, LisaOlsem, MikeDmoch, Barb
ABSTRACT Northrop Grumman has developed Tactical Ground Vehicle High-Availability (HA) middleware conforming to open standards specified by the Service Availability Forum (SAF), a consortium of industry-leading communications and computing companies. The software hot-spare and standby capabilities realized by this technology operate across tightly and loosely coupled farms of processors, ensuring critical processes remain operational with zero or minimal interruption, as chosen by system architects. High availability software delivers key benefits to the warfighter. Systems experience less downtime, helping to maintain continuity of tactical operations. Both hardware and software failures are managed, reducing the impact on system aborts and essential function failures and therefore reducing the number of computing elements required to meet system level availability SWAP-CC (Size, Weight, Power, and Cost, Cooling). The wrappers Northrop Grumman has created for open source and
Nguyen, Tri
ABSTRACT The U.S. military has made substantial progress in developing and fielding C4ISR systems that can collect and gather overwhelming amounts of valuable raw sensor data. A new challenge that has emerged with the deployment of numerous state-of-the-art ISR collection systems is the effective and timely use of the collected surveillance and reconnaissance information, or simply stated an architecture that pushes the timeliness and accessibility of this situational awareness data to the tactical edge – “the right data at the right time to the soldier.” Delivery of real time key information to include situational awareness to a decision maker is what makes the difference between loss and victory on the battlefront. This paper is an extension of a GVSETS paper that was presented in the 2010 symposium. This paper discusses in more detail the integration of command and control (C2), video management, and collaboration capabilities, such as chat and telestration, with the sensor
Woody, AlanLindsey, Ken
Items per page:
1 – 50 of 10268