Browse Topic: People and personalities

Items (10,215)
In this study, an initial approach using deep reinforcement learning to replicate the complex behaviors of motorcycle riders was presented. Three learning examples were demonstrated: following a target velocity, maintaining stability at low speeds, and following a target trajectory. These examples serve as a starting point for further research. Additionally, the proficiency of the constructed models was examined using rider proficiency evaluation methods developed in previous studies. Initial results indicated that the models have the potential to mimic real rider behaviors; however, challenges such as differences between the model’s output and what humans can produce were also identified for future work.
Mitsuhashi, YasuhiroMomiyama, YoshitakaYabe, Noboru
Fuel cell vehicles (FCVs) offer a promising solution for achieving environmentally friendly transportation and improving fuel economy. The energy management strategy (EMS), as a critical technology for FCVs, faces significant challenges of achieving a balanced coordination among the fuel economy, power battery life, and durability of fuel cell across diverse environments. To address these challenges, a learning-based EMS for fuel cell city buses considering power source degradation is proposed. First, a fuel cell degradation model and a power battery aging model from the literature are presented. Then, based on the deep Q-network (DQN), four factors are incorporated into the reward function, including comprehensive hydrogen consumption, fuel cell performance degradation, power battery life degradation, and battery state of charge deviation. The simulation results show that compared to the dynamic programming–based EMS (DP-EMS), the proposed EMS improves the fuel cell durability while
Song, DafengYan, JinxingZeng, XiaohuaZhang, Yunhe
Drivers sometimes operate the accelerator pedal instead of the brake pedal due to driver error, which can potentially result in serious accidents. To address this, the Acceleration Control for Pedal Error (ACPE) system has been developed. This system detects such errors and controls vehicle acceleration to prevent these incidents. The United Nations is already considering regulations for this technology. This ACPE system is designed to operate at low speeds, from vehicle standstill to creep driving. However, if the system can detect errors based on the driver's operation of the accelerator pedal at various driving speeds, the system will be even more effective in terms of safety. The activation threshold of ACPE is designed to detect operational errors, and it is necessary to prevent the system from being activated during operational operations other than operational errors, i.e., false activation. This study focuses on the pedal operation characteristics of pedal stroke speed and
Natsume, HayatoShen, ShuncongHirose, Toshiya
In the automotive industry, there have been many efforts of late in using Machine Learning tools to aid crash virtual simulations and further decrease product development time and cost. As the simulation world grapples with how best to incorporate ML techniques, two main challenges are evident. There is the risk of giving flawed recommendations to the design engineer if the training data has some suspect data. In addition, the complexity of porting simulation data back and forth to a Machine Learning software can make the process cumbersome for the average CAE engineer to set up and execute a ML project. We would like to put forth a ML workflow/platform that a typical CAE engineer can use to create training data, train a PINN (Physics Informed Neural Network) ML model and use it to predict, optimize and even synthesize for any given crash problem. The key enabler is the use of an industry first data structure named mwplot that can store diverse types of training data - scalars, vectors
Krishnan, Radha
This literature review examines the concept of Fitness to Drive (FTD) and its impairment due to drug consumption. Using a Systematic Literature Review (SLR) methodology, the paper analyzes literature from mechanical engineering and related fields to develop a multidisciplinary understanding of FTD. Firstly, the literature is analysed to provide a definition of FTD and collect methods to assess it. Secondly, the impact of drug use on driving performance is emphasized. Finally, driving simulators are presented as a valid possibility for analysing such effects in a safe, controlled and replicable environment. Key findings reveal a lack of a comprehensive taxonomy for FTD, with various assessment protocols in use. Only static simulators are employed for drug evaluation, limiting realism and result reliability. Standard Deviation of Lane Position (SDLP) emerges as a gold-standard measure for assessing driver performance. Future research should focus on developing standard definitions for
Uccello, LorenzoNobili, AlessandroPasina, LucaNovella, AlessioElli, ChiaraMastinu, Gianpiero
Vehicle sideslip is a valuable measurement for ground vehicles in both passenger vehicle and racing contexts. At relevant speeds, the total vehicle sideslip, beta, can help drivers and engineers know how close to the limits of yaw stability a vehicle is during the driving maneuver. For production vehicles or racing contexts, this measurement can trigger Electronic Stability Control (ESC). For racing contexts, the method can be used for driver training to compare driver techniques and vehicle cornering performance. In a fleet context with Connected and Autonomous Vehicles (CAVS) any vehicle telemetry reporting large vehicle sideslip can indicate an emergency scenario. Traditionally, sideslip estimation methods involve expensive and complex sensors, often including precise inertial measurement units (IMUs) and dead reckoning, plus complicated sensor fusion techniques. Standard GPS measurements can provide Course Over Ground (COG) with quite high accuracy and, surprisingly, the most
Hannah, AndrewCompere, Marc
This study evaluates the performance of alternative powertrains for Class 8 heavy-duty trucks under various real-world driving conditions, cargo loads, and operating ranges. Energy consumption, greenhouse gas emissions, and the Levelized Cost of Driving (LCOD) were assessed for different powertrain technologies in 2024, 2035, and 2050, considering anticipated technological advancements. The analysis employed simulation models that accurately reflect vehicle dynamics, powertrain components, and energy storage systems, leveraging real-world driving data. An integrated simulation workflow was implemented using Argonne National Laboratory's POLARIS, SVTrip, Autonomie, and TechScape software. Additionally, a sensitivity analysis was performed to assess how fluctuations in energy and fuel costs impact the cost-effectiveness of various powertrain options. By 2035, battery electric trucks (BEVs) demonstrate strong cost competitiveness in the 0-250 mile and 250-500 mile ranges, especially when
Mansour, CharbelBou Gebrael, JulienKancharla, AmarendraFreyermuth, VincentIslam, Ehsan SabriVijayagopal, RamSahin, OlcayZuniga, NataliaNieto Prada, DanielaAlhajjar, MichelRousseau, AymericBorhan, HoseinaliEl Ganaoui-Mourlan, Ouafae
This paper presents a new regression model-based method for accurate predictions of stiffness of different glass laminate constructions with a point-load bending test setup. Numerical FEA models have been developed and validated with experimental data, then used to provide training data required for the statistical model. The multi-variable regression method considered six input variables of total glass thickness, thickness ratio of glass plies as well as high-order terms. Highly asymmetrical, hybrid laminates combining a relatively thick soda-lime glass (SLG) ply joined with a relatively thin Corning® Gorilla® Glass (GG) ply were analyzed and compared to standard symmetrical SLG-SLG constructions or a monolithic SLG with the same total glass thickness. Both stiffness of the asymmetrical laminates and the improvement percentage over the standard symmetrical design can be predicted through the model with high precision.
Yu, ChaoCleary, ThomasJoubaud, Laurentkister, EvanFisher, W Keith
This paper examines the challenges and mechanisms for ensuring Freedom from Interference in Adaptive AUTOSAR-based platforms, with a focus on managing Memory, Timing, and Execution challenges. It explores the robust safety mechanisms in Classic AUTOSAR that ensure Freedom from Interference and the significant challenges in achieving interference-free operation in Adaptive AUTOSAR environments while adhering to ISO26262 standards. The study emphasizes strategies for managing complexities and outlines the multifaceted landscape of achieving interference-free operation. Additionally, it discusses ASIL-compliant Hypervisor, memory partitioning, and Platform Health Management as mechanisms for ensuring safety execution. The paper also raises open questions regarding real-time problems in live projects that are not solved with existing safety mechanisms. Adaptive AUTOSAR plays a crucial role in the development of autonomous and connected vehicles, where functional safety is of utmost
Jain, Yesha
The ISO TR 5469 Technical Report provides a framework to classify the AI/ML technology based on usage level and the properties and requirements to mitigate cyber and functional safety risks for the technology. This paper provides an overview of the approach used by ISO TR 5469 as well as an example of how one of the six ISO TR 5469 desirable properties (resilience to adversarial and intentional malicious input) can be analyzed for adversarial attacks. This paper will also show how a vehicle testbed can be used to provide a student with an AI model that can be used to simulate a non-targeted cyber security attack. The testbed can be used to simulate a poisoning attack where the student can manipulate a training data set to deceive the AI model during a simulated deployment.1 The University of Detroit Mercy (UDM) has developed Cyber-security Labs as a Service (CLaaS) to support teaching students how to understand and mitigate cyber security attacks. The UDM Vehicle Cyber Engineering (VCE
Zachos, MarkSeifert, Heinz
Reproducing driving scenarios involving near-collisions and collisions in a simulator can be useful in the development and testing of autonomous vehicles, as it provides a safe environment to explore detailed vehicular behavior during these critical events. CARLA, an open-source driving simulator, has been widely used for reproducing driving scenarios. CARLA allows for both manual control and traffic manager control (the module that controls vehicles in autopilot manner in the simulation). However, current versions of CARLA are limited to setting the start and destination points for vehicles that are controlled by traffic manager, and are unable to replay precise waypoint paths that are collected from real-world collision and near-collision scenarios, due to the fact that the collision-free pathfinding modules are built into the system. This paper presents an extension to CARLA’s source code, enabling the replay of exact vehicle trajectories, irrespective of safety implications
Ai, YanAdhikari, BikramPark, Chung-KyuKan, Cing-DaoWijesekera, Duminda
Drivers present diverse landscapes with their distinct personalities, preferences, and driving habits influenced by many factors. Though drivers' behavior is highly variable, they can exhibit clear patterns that make sorting them into one category or another possible. Discrete segmentation provides an effective way to categorize and address the differences in driving style. The segmentation approach offers many benefits, including simplification, measurement, proven methodology, customization, and safety. Numerous studies have investigated driving style classification using real-world vehicle data. These studies employed various methods to identify and categorize distinct driving patterns, including naturalist differences in driving and field operational tests. This paper presents a novel hybrid approach for segmenting driver behavior based on their driving patterns. We leverage vehicle acceleration data to create granular driver segments by combining event and trip-based methodologies
Chavan, Shakti PradeepChinnam, Ratna Babu
The research activity aims at defining specific Operational Design Domains (ODDs) representative of Italian traffic environments. The paper focuses on the human-machine interaction in Automated Driving (AD), with a focus on take-over scenarios. The study, part of the European/Italian project “Interaction of Humans with Level 4 AVs in an Italian Environment - HL4IT”, describes suitable methods to investigate the effect of the Take-Over Request (TOR) on the human driver’s psychophysiological response. The DriSMI dynamic driving simulator at Politecnico di Milano has been used to analyse three different take-over situations. Participants are required to regain control of the vehicle, after a take-over request, and to navigate through a urban, suburban and highway scenario. The psychophysiological characterization of the drivers, through psychological questionnaires and physiological measures, allows for analyzing human factors in automated vehicles interactions and for contributing to
Gobbi, MassimilianoBoscaro, LindaDe Guglielmo, VeronicaFossati, AndreaGalbiati, AndreaMastinu, LedaPonti, MarcoMastinu, GianpieroPreviati, GiorgioSabbioni, EdoardoSignorini, Maria GabriellaSomma, AntonellaSubitoni, LucaUccello, Lorenzo
The development of connected and automated vehicles (CAVs) is rapidly increasing in the next generation and the automotive industry is dedicated to enhancing the safety and efficiency of CAVs. A cooperative control strategy helps CAVs to collaborate and share information among the neighboring CAVs, improving efficiency, optimizing traffic flow, and enhancing safety. This research proposes a safe cooperative control framework for CAVs designed for highway merging applications. In the urban transportation system, highway merging scenarios are high-risk collision zone, and the CAVs on the main and merging lanes should collaborate to avoid potential accidents. In the proposed framework, the on-ramp CAVs merge at 40 mph within the same and opposite directions to the main lane CAVs. The proposed framework includes the consensus controller, safety filter, and quadratic programming (QP) optimization method. The consensus controller incorporates the communication between CAVs and designs the
Chang, PeiYuBhatti, SidraJaved, Nur UddinAhmed, Qadeer
Model-based developers are turning to DevOps principles and toolchains to increase engineering efficiency, improve model quality and to facilitate collaboration between large teams. Mature DevOps processes achieve these through automation. This paper demonstrates how integrating modern version control (Git) with collaborative development practices and automated quality enforcement can streamline workflows for large teams using Simulink. The focus is on enhancing model consistency, enabling team collaboration, and development speed.
Mathews, JonTamrawi, AhmedFerrero, SergioSauceda, Jeremias
This paper describes a novel invention which is an Intrusion Detection System based on fingerprints of the CAN bus analogue features. Clusters of CAN message analogue signatures can be associated with each ECU on the network. During a learning mode of operation, fingerprints can be learnt with the prior knowledge of which CAN identifier should be transmitted by each ECU. During normal operation, if the fingerprint of analogue features of a particular CAN identifier does not match the one that was learnt then there is a strong possibility that this particular CAN identifier’s message is symptomatic of a problem. It could be that the message has been sent by either an intruder ECU or an existing ECU has been hacked to send the message. In this case an intruder can be defined as a device that has been added to the CAN bus OR a device that has been hacked/manipulated to send CAN messages that it was not designed to (i.e. could be originally transmitted by another device). It could also be
Quigley, ChristopherCharles, David
To provide an affordable and practical platform for evaluating driving safety, this project developed and assessed 2 enhancements to an Unreal-based driving simulator to improve realism. The current setup uses a 6x6 military truck from the Epic Games store, driving through a pre-designed virtual world. To improve auditory realism, sound cues such as engine RPM, braking, and collision sounds were implemented through Unreal Engine's Blueprint system. Engine sounds were dynamically created by blending 3 distinct RPM-based sound clips, which increased in volume and complexity as vehicle speed rose. For haptic feedback, the road surface beneath each tire was detected, and Unreal Engine Blueprints generated steering wheel feedback signals proportional to road roughness. These modifications were straightforward to implement. They are described in detail so that others can implement them readily. A pilot study was conducted with 3 subjects, each driving a specific route composed of a straight
Duan, LingboXu, BoyuGreen, Paul
In 2022, the U.S. transportation sector was the largest source of greenhouse gas emissions in the country, with the combination of passenger and commercial vehicles contributing 80% of these emissions. As adoption of passenger electric vehicles continues to climb, sights are being set on the electrification of heavy-duty commercial vehicle (HDCV) fleets. The sustainability of these shifts relies in part on the addition of significant renewable energy generation resources to both bolster the grid in the face of increased demand, and to prevent a shift in the source of greenhouse gas (GHG) emissions to the grid, as opposed to a true net reduction. Additionally, it is necessary to quantify the variations in economic viability across the country for these technologies as it pertains to their productive capabilities. Doing so will encourage investment and ensure that the transition to electrified HDCV fleets is commercially viable, as well as sustainable. In an effort to meet these goals
Miller, BrandonSun, RuixiaoSujan, Vivek
Automotive industry is growing rapidly with innovations leading to increase in new features and improving the Quality of vehicles. These new components are developed with the available design standards across global OEMs. This Quality research paper aims to address the need of revision of design standards due to environmental factors prevailing in India. With the increase towards autonomous mobility, the number of electronics is also increasing, and this involves hardware & software evaluation. The hardware testing is a point of concern due to increase in the failure rate from the markets. Environment changes are very much evident with the growing economies and OEMs are developing the components with innovation, but if the basic design standards are not revised in parallel with the changing environment, the issues will continue to trouble the end customers. The failed cases data received from across the country was analyzed and observed that the cases are majorly reported from urban
Marwah, RamnikPyasi, PraveenBindra, RiteshGarg, Vipin
In numerous automotive and industrial applications, efficient heat extraction is crucial to prevent system inefficiencies or catastrophic failures. The design of heat exchangers is inherently complex, involving multiple stages defined by the depth of analysis, number of design variables, and the accuracy of physical models. Designers must navigate the trade-offs between highly accurate yet computationally expensive models and less accurate but computationally cheaper alternatives. Multi-fidelity modeling offers a solution by integrating different fidelity models to deliver precise results at a reduced computational cost. In addition to managing these trade-offs, designers often face multi-objective challenges, where optimizing one aspect may lead to compromises in others. Multi-objective optimization, therefore, becomes essential in balancing these competing objectives to achieve the best overall design. In this context, Gaussian Process-based methods have gained prominence as
Chaudhari, PrathameshTovar, Andres
The authors will present findings from their cradle-to-cradle Product Carbon Footprint (PCF) study which captures an objective and comprehensive system level evaluation of the greenhouse gas (GHG) footprint of four different material types used in the same automotive application: Unsaturated Polyester Resin (UPR) SMC, steel, aluminum and glass fiber reinforced polypropylene (PP-GF). This study includes the simulation driven design of four mid-sized pickup boxes which were designed according to automotive requirements and relevant design guidelines for each material. OEM experts were consulted to validate the relevant specifications and boundary conditions. The technical paper includes details on the geometric design, simulation, production processes, life cycle and environmental impact assessment all in compliance with ISO standards (14040/14044) for the Cradle-to-Cradle PCF. This paper provides guidance and insights to help engineers develop effective strategies for material selection
Halsband, AdamLeinemann, TomkeBeer, MarkusHaiss, Eric
Under extreme driving conditions, such as emergency braking, rapid acceleration, and high-speed cornering, the tire, as the vehicle’s only direct connection to the road, plays a critical role in influencing dynamic performance and driving stability. Accurately predicting and tire longitudinal force under such combined slip conditions is key to improving vehicle control precision and ensuring driving safety. This study proposes a tire longitudinal force estimation strategy based on an intelligent tire system. The core of this system consists of three integrated PVDF (Polyvinylidene Fluoride) sensors embedded in the tire, which, due to their exceptional sensitivity, can precisely capture dynamic deformation information of the tire under varying conditions. This provides real-time, detailed data to better understand the complex interaction forces between the tire and the road. To study and validate the longitudinal force estimation model, the research team employed a high-precision indoor
Zhang, ZipengXu, NanTang, ZepengChen, Hong
In this paper, an incremental coordinated control method through anti-squat/lift/dive suspension is proposed based on and suited to a distributed drive electric vehicle with front and rear dual motors. The precise relationship between the suspension reaction force and the driving force of the wheel is derived as the control model through an in-depth analysis of the wheel motion and force. Through imposing the first-order dynamics, the proposed method not only provides the longitudinal speed control of the vehicle but also suppresses the longitudinal, vertical and pitch vibration of the vehicle. Simulation results show that the suspension reaction force formula derived in this paper is more suitable for dynamic conditions, and compared with the control method based on the simplified suspension anti-squat/lift/dive control model, the proposed method using the accurate control model has superior comprehensive control performance.
Feng, CongWu, GuangqiangYang, Yuchen
Automated driving is an important development direction of the current automotive industry. Level 3 automated driving allows the driver to perform non-driving related tasks (NDRTs) during automated driving, however, once the operating conditions exceed the designed operating domain, the driver is still required to take over. Therefore, it is important to rationally design takeover requests (TORs) in Level 3 conditional automated driving. This paper investigates the effect of directional tactile guidance on driver takeover performance in emergency obstacle avoidance scenarios during the transfer of control from automated driving mode to manual driving. 18 participants drove a Level 3 conditional automated driving vehicle in a driving simulator on a two-way four-lane urban road, performed a takeover, and avoided obstacles while performing non-driving related tasks. The driver's takeover performance during the takeover process was measured and subjective driver evaluation data was
Liang, XinyingLiang, YunhanMa, XiaoyuanWang, LuyaoChen, GuoyingHu, Hongyu
Topology reasoning plays a crucial role in understanding complex driving scenarios and facilitating downstream planning, yet the process of perception is inevitably affected by weather, traffic obstacles and worn lane markings on road surface. Combine pre-produced High-definition maps (HDMaps), and other type of map information to the perception network can effectively enhance perception robustness, but this on-line fused information often requires a real-time connection to website servers. We are exploring the possibility to compress the information of offline maps into a network model and integrate it with the existing perception model. We designed a topology prediction module based on graph attention neural network and an information fusion module based on ensemble learning. The module, which was pre-trained on offline high-precision map data, when used online, inputs the structured road element information output by the existing perception module to output the road topology, and
Kuang, QuanyuRui, ZhangZhang, SongYixuan, Gao
Nikola announced on February 19 that it had filed for Chapter 11 bankruptcy and had begun pursuing “value-maximizing sale transactions” for its operations. Also a maker of battery-electric heavy-duty trucks, the company began back in 2015 with an emphasis on hydrogen fuel cell technology for long-haul transport and began serial production of the Tre FCEV in 2023. The company also aspired to establish an extensive hydrogen fueling network through its HYLA brand. In its filing, Nikola stated that it intended to continue certain service and support operations for trucks currently in the field, including certain HYLA fueling operations, through the end of March 2025. The company would need one or more partners to support such activities beyond that point.
Gehm, Ryan
To alleviate the problem of reduced traffic efficiency caused by the mixed flow of heterogeneous vehicles, including autonomous and human-driven vehicles, this article proposes a vehicle-to-vehicle collaborative control strategy for a dedicated lane in a connected and automated vehicle system. First, the dedicated lane’s operating efficiency and formation performance are described. Then, the characteristics of connected vehicle formations are determined, and a control strategy for heterogeneous vehicle formations was developed. Subsequently, an interactive strategy was established for queueing under the coordination of connected human-driven and autonomous vehicles, and the queue formation, merging, and splitting processes are divided according to the cooperative interaction strategy. Finally, the proposed lane management and formation strategies are verified using the SUMO+Veins simulation software. The simulation results show that the dedicated lane for connected vehicles can
Zhang, XiqiaoCui, LeqiYang, LonghaiWang, Gang
Scenario-based testing has become one of the important elements to evaluate the performance of automated vehicle systems before deploying on actual road. There are several approaches that can be used to conduct scenario-based testing via simulation approach. One of the important aspects in scenario-based safety testing is the driver-in-the-loop (DiL) simulation where it involves integration of hardware and human interaction. Therefore, motion platform-based vehicle driving simulators are commonly used for the DiL simulation for scenario-based testing. Generally, a high degree of freedom driving simulator is used for scenario-based testing such as 6 degrees of freedom (DoF) to achieve high accuracy to represent an actual vehicle response. Moreover, most of the motion platforms are designed using hexapod configuration, which also contributes to 6-DoF. However, this type of design requires large space to conduct the testing because the field of motion (FoM) is high in three axes and high
Kleolee, KahOnnAparow, Vimal RauCheok, Jun Hongde Boer, NielsJamaluddin, Hishamuddin
Having an in-depth comprehension of the variables that impact traffic is essential for guaranteeing the safety of all drivers and their automobiles. This means avoiding multiple types of accidents, particularly rollover accidents, that may have the capacity of causing terrible repercussions. The non-measured factors in the system state can be estimated employing a vehicle model incorporating an unknown input functional observer, this gives an accurate estimation of the unknown inputs such as the road profile. The goal of the proposed functional observer design constraints is to reduce the error of estimation converging to a value of zero, which results in an improved calculation of the observer parameters. This is accomplished by resolving linear matrix inequalities (LMIs) and employing Lyapunov–Krasovskii stability theory with convergence conditions. A simulator that enables a precise evaluation of environmental factors and fluctuating road conditions was additionally utilized. This
Saber, MohamedOuahi, MohamedNaami, GhaliEl Akchioui, Nabil
Handling and ride comfort optimization are key vehicle design challenges. To analyze vehicle performance and investigate the dynamics of the vehicle and its subcomponents, we rely heavily on robust experimental data. The current article proposes an outdoor cleat test methodology to characterize tire dynamics. Compared to indoor procedures, it provides an effective tire operating environment, including the suspensions and the vehicle chassis motion influence. In addition, it overcomes the main limitation of existing outdoor procedures, the need for dedicated cleat test tracks, by using a set of removable cleats of different sizes. A passenger vehicle was equipped with sensors including an inertial measurement unit, a noncontact vehicle speed sensor, and a wheel force transducer, providing a setup suitable to perform both a handling test routine and the designed cleat procedure, aimed at ride testing and analysis. Thus, the outdoor cleat test data were compared with indoor test
Gravante, GerardoNapolitano Dell’Annunziata, GuidoBarbaro, MarioFarroni, Flavio
It is a fool's errand to make timely comments - in print! - about our current political turmoil. Even so, it feels important to place a marker in the sand to note the ongoing political reign of tariff threats, the upheaval potential of a demolished regulatory state affecting road and vehicle safety, and the damage that cuts to electric vehicle support might do to American automakers attempting to keep technological pace with their global automaker peers. It's a lot. The mainstream press is reporting the broad strokes of the industry's reaction to the new president. Ford CEO Jim Farley said Trump's erratic threats and changes are adding “a lot of cost and a lot of chaos” to the automotive industry and that a 25% tariff would “blow a hole in the U.S. industry that we've never seen.” Volvo Cars CEO Jim Rowan said that profitability would suffer under any tariffs, whether those are the general 25% tariffs on Canada and Mexico (now seemingly canceled after Trump backed down), just-announced
Blanco, Sebastian
Since the 1860 Hippomobile, hydrogen has been a part of powered mobility. Today, most hydrogen storage applications use cylindrical tanks, but other solutions are available. At a recent Bosch-sponsored event, SAE Media noted Linamar's Flexform conformable storage, which the company says uses the same or less material for a given storage volume while delivering anywhere from 5-25% more volumetric efficiency than conventional cylindrical tanks within that volume. “We see space as a regular bounding box where all you're losing is this area around the corners, closer to five to 10% [loss]. Where Flexform really shines and where the value proposition really is, is irregular spaces, such as between frame rails,” said representatives from the Linamar engineering team.
Cannell, Thom
Nestled in a commercial park in Sunnyvale, California, sits the Mercedes-Benz research and development North America office. A spinning star sits in the front of the building. It is one of six locations across North America and joins research facilities in Asia and Europe. During a recent media roundtable, Mercedes-Benz CEO Ola Källenius told journalists that the original purpose for the facility 30 years ago was because it recognized that Silicon Valley was a unique place where top academia meets with venture capital and where smart people from around the world gather. “So the very first intent with the first few baby steps of coming to Silicon Valley was like, it's almost like you send out a group of people to do reconnaissance, create contact, be part of the conversation, and figure out what's going on,” Källenius said.
Baldwin, Roberto
Tunnel linings are an important safeguard for the integrity and stability of tunnels. However, cracks in the tunnel lining may have extremely unfavourable consequences. With the acceleration of urbanisation and the increasing construction of tunnels, the problem of cracks in the concrete lining is becoming more and more prominent. These cracks not only seriously affect the stability of the structure, but also pose a serious threat to the safety of tunnel operation. If left unchecked, the cracks may expand further and cause various safety hazards, such as water leakage and falling blocks. This in turn will undermine the normal function of the tunnel and endanger the lives of tunnel users. It has been proved that the traditional manual method of detecting cracks in tunnels has problems such as low accuracy and low efficiency. In order to solve this problem, it is very necessary for this study to pioneer an intelligent method for identifying tunnel lining cracks using the YOLOv11
Zhang, YalinNiu, PeiGuo, FengYan, WeiLiu, JianKou, Lei
Developing models for predicting the low-temperature cracking resistance of asphalt mixtures is a complex process with a wide variety and complex influence mechanisms of variables, leading to higher uncertainty in the prediction results. Several models have been developed in this regard. This study developed a Bayesian neural network (BNN) model for predicting the fracture energy of low-temperature semi-circular bending (SCB) tests based on pavement condition measurements, traffic, climate, and basic parameters of the material. The model was trained and evaluated using low-temperature SCB test data from in-situ pavement core samples, and the results showed that the coefficient of determination (R2) of the BNN model was greater than 0.8 for both the training and testing sets. The variable importance scores showed that the decrease of transverse crack rating index (TCEI) and gradation were the most important factor affecting low-temperature fracture energy and that the ambient
Song, ZiyuNi, FujianHuang, JiaqiJiang, Jiwang
The performance differences of multiple sensors lead to inconsistencies, incompleteness, and distortion in the perception data of multi-source vehicle information in highway scenarios. Optimizing data fusion methods is important for intelligent toll collection systems on highways. First, this paper constructs a dataset for matching and fusing multi-source vehicle information in highway gantry scenarios. Second, it develops convolutional neural network models, Match-Pyramid-MVIMF-EGS and CDSSM-MVIMF-EGS, for this purpose. Finally, comparative experiments are conducted based on the constructed dataset to assess the performance of the Match-Pyramid-MVIMF-EGS and CDSSM-MVIMF-EGS models. The experimental results indicate that the Match-Pyramid-MVIMF-EGS model performs better than the CDSSM-MVIMF-EGS model, achieving matching and fusion accuracy of 93.07%, precision of 95.71%, recall of 89.17%, F1 scores of 92.32%, and 186 of training throughput respectively.
Wang, JunjunZhao, Chihang
Items per page:
1 – 50 of 10215