Browse Topic: People and personalities

Items (10,204)
Tunnel linings are an important safeguard for the integrity and stability of tunnels. However, cracks in the tunnel lining may have extremely unfavourable consequences. With the acceleration of urbanisation and the increasing construction of tunnels, the problem of cracks in the concrete lining is becoming more and more prominent. These cracks not only seriously affect the stability of the structure, but also pose a serious threat to the safety of tunnel operation. If left unchecked, the cracks may expand further and cause various safety hazards, such as water leakage and falling blocks. This in turn will undermine the normal function of the tunnel and endanger the lives of tunnel users. It has been proved that the traditional manual method of detecting cracks in tunnels has problems such as low accuracy and low efficiency. In order to solve this problem, it is very necessary for this study to pioneer an intelligent method for identifying tunnel lining cracks using the YOLOv11
Zhang, YalinNiu, PeiGuo, FengYan, WeiLiu, JianKou, Lei
Developing models for predicting the low-temperature cracking resistance of asphalt mixtures is a complex process with a wide variety and complex influence mechanisms of variables, leading to higher uncertainty in the prediction results. Several models have been developed in this regard. This study developed a Bayesian neural network (BNN) model for predicting the fracture energy of low-temperature semi-circular bending (SCB) tests based on pavement condition measurements, traffic, climate, and basic parameters of the material. The model was trained and evaluated using low-temperature SCB test data from in-situ pavement core samples, and the results showed that the coefficient of determination (R2) of the BNN model was greater than 0.8 for both the training and testing sets. The variable importance scores showed that the decrease of transverse crack rating index (TCEI) and gradation were the most important factor affecting low-temperature fracture energy and that the ambient
Song, ZiyuNi, FujianHuang, JiaqiJiang, Jiwang
The performance differences of multiple sensors lead to inconsistencies, incompleteness, and distortion in the perception data of multi-source vehicle information in highway scenarios. Optimizing data fusion methods is important for intelligent toll collection systems on highways. First, this paper constructs a dataset for matching and fusing multi-source vehicle information in highway gantry scenarios. Second, it develops convolutional neural network models, Match-Pyramid-MVIMF-EGS and CDSSM-MVIMF-EGS, for this purpose. Finally, comparative experiments are conducted based on the constructed dataset to assess the performance of the Match-Pyramid-MVIMF-EGS and CDSSM-MVIMF-EGS models. The experimental results indicate that the Match-Pyramid-MVIMF-EGS model performs better than the CDSSM-MVIMF-EGS model, achieving matching and fusion accuracy of 93.07%, precision of 95.71%, recall of 89.17%, F1 scores of 92.32%, and 186 of training throughput respectively.
Wang, JunjunZhao, Chihang
Nowadays, cognitive distraction in the process of driving has become a frequent phenomenon, which has led to a certain proportion of traffic accidents, causing a lot of property losses and casualties. Since the fact that cognitive distraction is mostly reflected in the driver's reception and thinking of information unrelated to driving, it is difficult to recognize it from the driver's facial features. As a result, the accuracy of prediction is usually lower relying solely on facial performance to detect cognitive distraction. In this research, fifty participants took part in our simulated driving experiment. And each participant conducted the experiment in four different traffic scenarios using a high-fidelity driving simulator, including three cognitive distraction scenarios and one normal driving scenarios. Firstly, we identified the facial performance indicators and vehicle performance indicators that had a significant effect on cognitive distraction through one-way ANOVA. Then we
Qu, ChixiongBao, QiongQu, QikaiShen, Yongjun
Technology for lane line semantic segmentation is crucial for ensuring the safe operation of intelligent cars. Intelligent cars can now comprehend the distribution and meaning of scenes in an image more precisely thanks to semantic segmentation, which calls for a certain degree of accuracy and real-time network performance. A lightweight module is selected, and two previous models are improved and fused to create the lane line detection model. Finally, experiments are conducted to confirm the model's efficacy. This paper proposes a lightweight replacement program with the aim of addressing the issue of large parameterization in the generative adversarial network (GAN) model and difficult training convergence. The overall network structure is selected from the Pix2Pix network in the conditional generative adversarial network, and the U-net network of the generator is cut and replaced by the Ghost Module, which consists of a modified downsampling module that enhances the global fusion
Yang, KunWang, Jian
Shared autonomous vehicles systems (SAVS) are regarded as a promising mode of carsharing service with the potential for realization in the near future. However, the uncertainty in user demand complicates the system optimization decisions for SAVS, potentially interfering with the achievement of desired performance or objectives, and may even render decisions derived from deterministic solutions infeasible. Therefore, considering the uncertainty in demand, this study proposes a two-stage robust optimization approach to jointly optimize the fleet sizing and relocation strategies in a one-way SAVS. We use the budget polyhedral uncertainty set to describe the volatility, uncertainty, and correlation characteristics of user demand, and construct a two-stage robust optimization model to identify a compromise between the level of robustness and the economic viability of the solution. In the first stage, tactical decisions are made to determine autonomous vehicle (AV) fleet sizing and the
Li, KangjiaoCao, YichiZhou, BojianWang, ShuaiqiYu, Yaofeng
The introduction of autonomous vehicles (AVs) promises significant improvements to road safety and traffic congestion. However, mixed-autonomy traffic remains a major challenge as AVs are ill-suited to cooperate with human drivers in complex scenarios like intersection navigation. Specifically, human drivers use social cooperation and cues to navigate intersections while AVs rely on conservative driving behaviors that can lead to rear-end collisions, frustration from other road users, and inefficient travel. Using a virtual driving simulator, this study investigates the use of a human factors-informed cooperation model to reduce AV reliance on conservative driving behaviors. Four intersection scenarios, each involving a left-turning AV and a human driver proceeding straight, were designed to obfuscate the right-of-way. The classification models were trained to predict the future priority-taking behavior of the human driver. Results indicate that AVs employing the human factors-informed
Ziraldo, ErikaOliver, Michele
Noise, Vibration, and Harshness (NVH) simulations of vehicle bodies are crucial for assessing performance during the design phase. However, these simulations typically require detailed computer-aided design (CAD) models and are time-consuming. In the early stages of vehicle development, when only high-level vehicle sections are available, designing the body-in-white (BIW) structure to meet target values for bending and torsional stiffness is challenging and often requires multiple iterations. To address these challenges, this study deploys a reduced-order beam modelling approach. This method involves identifying the beam-like sections and major joints within the BIW and calculating their sectional properties (area, area moments of inertia along the plane’s independent axes, and torsion constant). These components form a simplified skeleton model of the BIW. Load and boundary conditions are applied to the suspension mount locations at the front and rear of the vehicle, and torsional and
Khan, Mohd Zishan AliThanapati, AlokDeshmukh, Chandrakant
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
J, Vinoth Kumar
This study introduces the Total Cost of Ownership per Unit Operating Time (TCOP) as a novel indicator to assess the economic impact of vehicle durability. A comprehensive analysis is conducted for fuel cell vehicles (FCVs), battery electric vehicles (BEVs), and internal combustion engine vehicles (ICEVs) in light- and heavy-duty scenarios. The results show that in HDVs, the advantages of low prices for hydrogen and electricity are fully demonstrated due to their high durability. In contrast, for LDVs, the purchase cost plays a much larger role, accounting for 68% of the total cost, indicating a significant difference between vehicles. Improving durability can significantly enhance the competitiveness of FCVs. For FCVs, increasing the durability from the current levels of 150,000 km for LDVs and 600,000 km for HDVs to 20,8500 km and 1,122,000 km, respectively, would align their TCOP with that of current ICEVs. A sensitivity analysis shows that for HDVs. The focus should be placed on
Qin, ZhikunYin, YanZhang, FanYao, JunqiGuo, TingWang, Bowen
The degradation of vehicle performance resulting from powertrain degradation throughout the lifecycle of alternative energy vehicles (AEVs) has consistently been a focal issue among scholars and consumers. The purpose of this paper is to utilize a one-dimensional vehicle simulation model to analyze the changes in power performance and economy of fuel cell vehicles as the Proton Exchange Membrane Fuel Cell (PEMFC) stack degrades. In this study, a simulation model was developed based on the design parameters and vehicle architecture of a 45kW fuel cell vehicle. The 1D model was validated for accuracy using experimental data. The results indicate that as the stack performance degrades, the attenuation rate of the fuel cell engine is further amplified, with a degradation of up to 13.6% in the system's peak output power at the End of Life (EOL) state after 5000 hours. Furthermore, the level of economic performance degradation of the complete vehicle in the EOL state is dependent on the
Li, YouDu, JingGuo, DonglaiWang, KaiWang, Yupeng
Monitoring the rotor temperature of drive machines is crucial for the safety and performance of electric vehicles. However, due to the complex operating conditions of electric vehicles, the thermal parameters of vehicular induction machines (IMs) vary significantly and are difficult to identify accurately. This article first establishes a concise but effective thermal network for IMs and analyzes the influencing factors of thermal parameters. Then, a parameter identification network (PIN) with multiple parallel branches is constructed to learn the mapping relationship between electromechanical variables and thermal parameters. Afterward, temperature datasets for network training are built through bench testing. Finally, the effectiveness of identified parameters for rotor temperature estimation application is verified, demonstrating improved interpretability, generalization ability, and accuracy compared to an end-to-end neural network.
Jiang, ShangHu, Zhishuo
As a clean energy, low carbon and pollution-free, hydrogen is the preferred alternative fuel for traditional internal combustion engines. However, how to use hydrogen internal combustion engine to achieve satisfactory performance under vehicle conditions is still a challenge.In this paper, a vehicle simulation model is established based on a modified 25-ton hydrogen internal combustion engine truck, and the model is designed as a hybrid model by selecting a suitable motor. The two models are used to simulate the CHTC (China Heavy-duty Commercial Vehicle Test Cycle) cycle conditions. According to the simulation results, compared with the original vehicle's power performance and economy, the results show that the power performance is increased by 100%, and the economy is increased by 20%. Hybrid technology can effectively improve the performance of the vehicle.
Bai, Xueyan
This paper presents the strategy design, development, and detailed simulation of an Energy Management System (EMS) for a range extender energy storage microgrid project. Initially, a microgrid system model including photovoltaic (PV) and energy storage devices was established. Secondly, the Latin Hypercube Sampling (LHS) method was employed to generate possible operational scenarios, and an improved K-means clustering algorithm was used for scenario classification. Subsequently, a series of constraints were constructed for the economic viability of the microgrid to minimize its annualized comprehensive cost, while satisfying power balance and equipment operation. Finally, the microgrid system was simulated and solved using the GUROBI solver, covering cost analyses of the energy storage system and diesel generators under different configurations, as well as the State of Charge (SOC) variations of the energy storage system. The simulation results indicate that, after considering the one
Hua, YuweiJin, ZhenhuaHuang, HuilongWang, Zihao
At present, due to the complexity and nonlinearity, the thermal safety and economic feasibility assessment and optimization of the Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) system under variable loads is important to extend the service life and reduce the cost. To solve these problems, this paper proposes a top-level cyclic SOFC-GT system, which considers the design of two-stage preheaters, as well as the impact of material reaction kinetics and thermoelectric coupling characteristics on system performance. Furthermore, the multi-criteria evaluation of the SOFC-GT system under variable loads has been studied, with evaluation indicators primarily including thermodynamic and economic indicators. Afterwards, a Spearman-based parametric sensitivity analysis is used to explore the response trends of performance indicators within the SOFC-GT system. Additionally, an intelligent learning method based on convolutional neural network is designed to determine the dynamic behavior between
Fan, LiyunKui, XuChen, ChenShen, ChongchongLi, BoWei, Yunpeng
Current work details the preliminary CFD analysis performed on custom-built race car by Team Sakthi Racing team as part of Formula SAE competition using OpenFOAM. The body of the race car is designed in compliance with FSAE regulations, OpenFOAM utilities and solvers are used to generate volumetric mesh and perform CFD analysis. Formula student tracks are typically designed with numerous sharp turns and a few long straights to maintain low speeds for safety. In order to enhance the cars’ performance in sharp turns, the race car should be equipped with aerodynamic devices like nose cone and wings on both the rear and front ends within the confines of the formula student racing rules. Thus, efficient aerodynamic design is highly critical to maximizing tire grip by ensuring consistent contact with the track, reducing the risk of skidding, and maintaining control, especially during high-speed maneuvers. In this work, the performance and behavior of the race car, both with and without the
Rangarajan, KishorePushpananthan, BlesscinAnumolu, LakshmanSelvakumar, KumareshJayakumar, Shyam Sundar
2023–2024 Reviewers
Pilla, Srikanth
The transition from internal combustion engine (ICE) industry to electric vehicle (EV) industry has significant financial implications for both the automotive industry, government, and associated partners. The shift to EVs could lead to savings in foreign exchange reserves, the creation of new jobs, and a reduction in greenhouse gas emissions. However, the transition could also result in job losses in the automobile and its associated manufacturing industry. This study aims to analyze the impact of this transition on different stakeholders in India. The study takes into account the different financial aspects that includes production, technology, government policy, skilling, employability, job creation, and other associated aspects on Indian economy. For the projected study different cases were considered with 2030 as the projected year with 30% EVs. A modest attempt is made to analyze the impact on associated partners. The findings of the study suggest that the transition to EVs could
Vashist, DevendraMalik, VarunPandey, Sachchidanand
This research, path planning optimization of the deep Q-network (DQN) algorithm is enhanced through integration with the enhanced deep Q-network (EDQN) for mobile robot (MR) navigation in specific scenarios. This approach involves multiple objectives, such as minimizing path distance, energy consumption, and obstacle avoidance. The proposed algorithm has been adapted to operate MRs in both 10 × 10 and 15 × 15 grid-mapped environments, accommodating both static and dynamic settings. The main objective of the algorithm is to determine the most efficient, optimized path to the target destination. A learning-based MR was utilized to experimentally validate the EDQN methodology, confirming its effectiveness. For robot trajectory tasks, this research demonstrates that the EDQN approach enables collision avoidance, optimizes path efficiency, and achieves practical applicability. Training episodes were implemented over 3000 iterations. In comparison to traditional algorithms such as A*, GA
Arumugam, VengatesanAlagumalai, VasudevanRajendran, Sundarakannan
2023–2024 Reviewers
Ryan, Tom
Aerospace engineering programmes typically cover airworthiness philosophies, principles, structures, processes, and procedures. The industry has recently recognized the need to enhance the graduate engineers’ skills around airworthiness. This has led to introduction of standards acting as guides for developing curricula and content for university airworthiness courses. Concept maps, a visual mapping of concepts in a hierarchical way, enjoy wide use in engineering education (teaching and assessment). Airworthiness courses are both technical and legalistic, presenting challenges to students when it comes to understanding complex and intertwined regulations. Schematic representations of concepts can foster the cognitive processes of learning. Concept maps can assess efficiently and comprehensively a multitude of airworthiness topics. This study examines the feasibility of applying concept maps in airworthiness education. Fill-in-a-map concept maps were developed as assessment tools for an
Kourousis, KyriakosChatzi, Anna
2023–2024 Reviewers
Sandu, Corina
The automotive industry is facing unprecedented pressure to reduce costs without compromising on quality and performance, particularly in the design and manufacturing. This paper provides a technical review of the multifaceted challenges involved in achieving cost efficiency while maintaining financial viability, functional integrity, and market competitiveness. Financial viability stands as a primary obstacle in cost reduction projects. The demand for innovative products needs to be balanced with the need for affordable materials while maintaining structural integrity. Suppliers’ cost structures, raw material fluctuations, and production volumes must be considered on the way to obtain optimal costs. Functional aspects lead to another layer of complexity, once changes in design or materials should not compromise safety, durability, or performance. Rigorous testing and simulation tools are indispensable to validate changes in the manufacturing process. Marketing considerations are also
Oliveira Neto, Raimundo ArraisSouza, Camila Gomes PeçanhaBrito, Luis Roberto BonfimGuimarães, Georges Louis Nogueira
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
Items per page:
1 – 50 of 10204