Browse Topic: People and personalities
The article is devoted to a comprehensive analysis of the digital transformation of education using the example of a project to train engineering personnel for the innovative transport industry in Russia. Special attention is paid to the introduction of hybrid formats, digital platforms, inclusivity, issues of digital inequality, as well as the experience of the National Research Center of the Russian Federation FSUE NAMI and interaction with leading universities in the country. A comparative analysis with foreign initiatives, including modern AI solutions for inclusive education, is presented, as well as the impact of the project to create educational and methodological centers on the professional motivation of teachers.
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Simulation-driven product development involves numerous computer aided engineering (CAE) model iterations, where each version represents a critical difference. Usually, these multiple model versions are generated by hundreds of simulation engineers working in teams distributed across the globe, making functional collaboration a key to effective product development. To manage vast amounts of CAE data generated by engineers working simultaneously on a project, it is imperative to have a robust version management system to track changes in the CAE data. A robust version management is the backbone of an effective simulation data management (SDM) system. It involves capturing and documenting model changes at every design iteration. Accurate documentation of the model changes is crucial as it helps in understanding the model evolution and collaboration among engineers. However, documenting is usually considered a boring and tedious task by many engineers. This often leads to bad change
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Items per page:
50
1 – 50 of 10496