Browse Topic: Regulations
You've got regulations, cost and personal preferences all getting in the way of the next generation of automated vehicles. Oh, and those pesky legal issues about who's at fault should something happen. Under all these big issues lie the many small sensors that today's AVs and ADAS packages require. This big/small world is one topic we're investigating in this issue. I won't pretend I know exactly which combination of cameras and radar and lidar sensors works best for a given AV, or whether thermal cameras and new point cloud technologies should be part of the mix. But the world is clearly ready to spend a lot of money figuring these problems out
Heavy-duty vehicle regulations from the European Union specify a 43% carbon emissions reduction by 2030. The EU's carbon emissions reduction mandate climbs to 64% by 2035 before soaring to 90% by 2040. “The hydrogen combustion engine has a role to play to reduce CO2 emissions,” said Vincent Giuffrida, CFD engineer for IFP Energies novellas (IFPEN), a Rueil-Malmaison, France-headquartered public research and innovation organization. Giuffrida and IFPEN colleague and research engineer Olivier Colin were the presenters for a webinar addressing the “Development of a Dedicated Hydrogen Combustion System for Heavy-Duty Applications” in July. The webinar was hosted by Madison, Wisconsin-headquartered Convergent Science, whose CONVERGE CFD software simulates three-dimensional fluid flows. Features of the CFD software include autonomous meshing, complex moving geometries, a detailed chemical kinetics solver, advanced physical models, conjugate heat transfer model, fluid structure interaction
Artificial intelligence (AI)-based solutions are slowly making their way into mobile devices and other parts of our lives on a daily basis. By integrating AI into vehicles, many manufacturers are looking forward to developing autonomous cars. However, as of today, no existing autonomous vehicles (AVs) that are consumer ready have reached SAE Level 5 automation. To develop a consumer-ready AV, numerous problems need to be addressed. In this chapter we present a few of these unaddressed issues related to human-machine interaction design. They include interface implementation, speech interaction, emotion regulation, emotion detection, and driver trust. For each of these aspects, we present the subject in detail—including the area’s current state of research and development, its current challenges, and proposed solutions worth exploring
The pursuit of maintaining a zero-sideslip angle has long driven the development of four-wheel-steering (4WS) technology, enhancing vehicle directional performance, as supported by extensive studies. However, strict adherence to this principle often leads to excessive understeer characteristics before tire saturation limits are reached, resulting in counter-intuitive and uncomfortable steering maneuvers during turns with variable speeds. This research delves into the phenomenon encountered when a 4WS-equipped vehicle enters a curved path while simultaneously decelerating, necessitating a reduction in steering input to adapt to the increasing road curvature. To address this challenge, this paper presents a novel method for dynamically regulating the steady-state yaw rate of 4WS vehicles. This regulation aims to decrease the vehicle's sideslip angle and provide controlled understeer within predetermined limits. As a result, the vehicle can maintain a zero-sideslip angle during turns with
Medical devices are becoming smaller and smaller, and the need for advanced material solutions keeps growing. There’s also a critical call for manufacturers to adhere to stringent regulations while improving device functionality. Through our deep understanding and application of fundamental chemistry, Chemours materials have emerged as effective alternatives — helping innovators in the medical industry achieve continued success across medical device design
Advanced Autonomous Vehicles (AV) for SAE Level 3 and Level 4 functions will lead to a new understanding of the operation phase in the overall product lifecycle. Regulations such as the EU Implementing Act and the German L4 Act (AFGBV) request a continuous field surveillance, the handling of critical E/E faults and software updates during operation. This is required to enhance the Operational Design Domain (ODD) during operation, offering Functions on Demand (FoD), by increasing software features within these autonomous vehicle systems over the entire digital product lifecycle, and to avoid and reduce downtime by a malfunction of the Autonomous Driving (AD) software stack. Supported by implemented effective management systems for Cyber Security (R155), Software Update Management System (R156) and a Safety Management System (SMS) (in compliance to Automated Lane Keeping System (ALKS) (R157)), the organizations have to ensure safe and secure development, deployment and operation to
In late 2022, the EU Medical Device Regulation (MDR) was expanded by the addition of the common specifications (CS) 2022/20346. The spe00cifications describe the aspects that must be examined for devices without an intended medical purpose. These aspects apply in addition to the classical MDR requirements and include certain aspects of risk management. In other words, even products that only serve aesthetic purposes, such as colored contact lenses, will be assessed in accordance with the strict MDR regulations and, in addition, will have to fulfill the requirements laid down in the CS 2022/2346
Next-generation vehicle electrical architectures will be based on highly sophisticated domain controllers called HPCs (high-performance computers). These HPCs are more alike gaming PCs than as the traditional ECUs (electronic control units). Today’s diagnostic communication protocol, e.g., UDS (Unified Diagnostic Services, ISO 14229-1) was developed for ECUs and is not fit to be used for HPCs. There is a new protocol being developed within ASAM, SOVD (service-oriented vehicle diagnostics), which is based on a RESTful API (REpresentational State Transfer Application Programming Interface) sent over http (hypertext transfer protocol). But OBD (OnBoard Diagnostic) under the emissions regulation is not yet updated for this shift of protocols and therefore vehicle manufacturers must support older OBD protocols (e.g., SAE J1979-2) during the transition phase. Another problem is that some of the software packages may fall under the DEC-ECU (diagnostic or emission critical electronic control
Electric aviation mirrors the early stages of the electric vehicle revolution After decades of tantalizing breakthroughs in battery technology, the last decade witnessed the emergence of energy storage as a challenger to fossil fuels for powering vehicles. We are now in the midst of a once-in-a-lifetime opportunity to change the energy landscape and electrify all forms of transportation: light duty passenger cars, heavy duty commercial vehicles, as well as various forms of transportation such as trains, ships, and aircraft. Such a dramatic transition will require a multifaceted approach that takes into consideration technology needs, infrastructure support, workforce transitions, safety and regulations, and energy justice. The U.S. Department of Energy's (DOE) Argonne National Laboratory, with numerous public and private sector collaborators, has been strategizing about this transition to ensure the lessons from the past are applied to the future
Micromobility is often discussed in the context of minimizing traffic congestion and transportation pollution by encouraging people to travel shorter (i.e., typically urban) distances using bicycle or scooters instead of single-occupancy vehicles. It is also frequently championed as a solution to the “first-mile/last-mile” problem. If the demographics and intended users of micromobility vary largely by community, surely that means we must identify different reasons for using micromobility. Micromobility, User Input, and Standardization considers potential options for standardization in engineering and public policy, how real people are using micromobility, and the relevant barriers that come with that usage. It examines the history of existing technologies, compares various traffic laws, and highlights barriers to micromobility standardization—particularly in low-income communities of color. Lastly, it considers how engineers and legislators can use this information to effectively
This specification covers nonfluorescent, magnetic particles having black, red, gray, or other color, as specified, supplied in the form of dry powders
E-vehicles can generate strong tonal components that may disturb people inside the vehicle. However, such components, deliberately generated, may be necessary to meet audibility standards that ensure the safety of pedestrians outside the vehicle. A tradeoff must be made between pedestrian audibility and internal sound quality, but any iteration that requires additional measurements is costly. One solution to this problem is to modify the recorded signals to find the variant with the best sound quality that complies with regulations. This is only possible if there is a good separation of the tonal components of the signal. In this work, a method is proposed that uses the High-resolution Spectral Analysis (HSA) to extract the tonal components of the signal, which can then be recombined to optimize any sound quality metric, such as the tonality using the Sottek Hearing Model (standardized in ECMA 418-2
The transport refrigeration market is in a transformation like what automotive experienced over the last 20 years using a systems engineering approach complemented with complex attribute optimization to manage product development. With a heavy push for electrification due to government regulations, sustainability initiatives, and designing the products to align with the OEMs electrified platforms Noise, Vibration, and Harshness (NVH) must be considered. Understanding the above along with refined customer expectations the NVH attribute has become even more critical to product quality. This paper showcases the acoustic design of an electrified system using a system engineering approach to achieve unit level targets deploying a system engineering V-model philosophy. Unit level requirements were set and flowed down to component level requirements. A 1D acoustic tool was developed leveraging classic physical acoustics theory and legacy product knowledge to target set what was possible for
SAE created its SMS team to help industry rethink itself as part of the new industrial revolution and the EV transition within it. SAE International has established a new, dedicated practice aimed at helping the transportation industry become truly sustainable, as OEMs and suppliers in automotive, aerospace and commercial vehicles work to meet net-zero climate goals. And the 118-year-old organization created its new group, SAE Sustainable Mobility Solutions (SMS), in a radical way. “I resigned from my previous job - gave up my duties - then hired on as first employee of the new group,” explained SMS president Frank Menchaca, formerly SAE's chief growth officer. An unconventional thinker with MIT training in sustainability and free-jazz guitarist and composer, Menchaca defines sustainability as “the convergence of many different systems - the vehicle, the entire manufacturing process, materials, the infrastructure, communications and regulations. We have to look at the constituent units
The Ferrari Purosangue scurries up the snowbound pitches of Italy's Monte Bondone, the Alpine peak whose auto-hillclimb exploits date to 1925. Ferrari's first “SUV” - really, more a genre-blurring crossover - slices through Bondone's 38 devilish corners, gaining nearly 4,900 ft (1,494 m) of elevation over an 11.2-mile (18-km) workout. Its 715-hp (533-kW) V12 sings like the tragically-fated opera hero it is, to an 8,250-rpm height that's as lofty as the surrounding Dolomites. Emissions regulations may soon spell the end of that barrel-chested, 6.5-L engine, whose 12 naturally-aspirated cylinders describe every roadgoing Ferrari built between 1947 and 1973. But the rest is modern magic, the kind of prestidigitation that's required to transform a 4,774-lb (2165-kg), AWD machine - the first Ferrari with four doors and four adult-sized seats - into a stunning performer that feels lighter and lither than any driver would ever expect
The pending Euro 7 vehicle-emissions regulations include a significant new sustainability wrinkle: first-ever restrictions for PM emissions from brakes. In a proposal submitted in November of 2022, the European Commission detailed its new Euro 7 vehicle emissions standard, which is widely expected to be approved by the European Parliament and Council and begin phase-in starting on July 1, 2025. Another phase of emissions legislation is nothing new, but one critical element of Euro 7 is new to the regulation chessboard: first-ever limits on how much particulate matter (PM) can be generated by a vehicle's brakes. This element of Euro 7 has auto and commercial-vehicle brake-component suppliers scurrying. Commercial vehicles are subject to their own compliance levels as they interpret how the new regulations will impact their existing technologies and what new solutions will be required. The proposed Euro 7 regulations also address the emissions of fine microplastic particles created by
Has there ever been a period of automotive history where the shift in trajectory, technology envelope and level of risk assumed has been so high - and happening as rapidly as the transition to electric vehicles? I'll submit that the post-WWII boom and competitive shakeout, the 1970s oil embargos and subsequent focus on light-weighting, and the bankruptcies of a couple of major U.S. OEMs come close. But those events will pale in comparison to the impact of the ICE-to-BEV transformation. The current S&P Global Mobility BEV production-share forecast for NA is almost 9% - up three percent from last year. By 2030, the forecast is for 39% of production to be battery-electrics. Of course, that leaves roughly 60% of production powered by IC engines, with most of them likely to be hybrids. Still, given this backdrop suppliers in the engine, transmission, driveline, fuel and exhaust spaces have been strategizing their future. Some are proactively making critical decisions while others are
There are four basic conditions requiring the dispensing of oxygen through oxygen masks to aircraft occupants in turbine powered aircraft during flight. The following conditions are derived from the Federal Aviation Regulations (FAR) as listed in Section 2
Items per page:
50
1 – 50 of 2792