Browse Topic: Product development
ABSTRACT The importance of hardening robotic and autonomous systems (RAS) considered for field deployment against cyber threats has been recognized by organizations across the Department of Defense (DoD). Among these needs is the ability to securely provide these modern military vehicles with software updates containing critical new functionality and security improvements. A secure update process and system for military RAS has been implemented building on a framework designed for the automotive industry. Demonstrations of the capabilities and mitigations against possible attacks on the update process will be performed on a RAS MRZR in a mock field environment. Citation: S. Pereira, C. Mott, D. Mikulski, “Secure Update Process For Robotic And Autonomous Systems,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
ABSTRACT This paper presents a new terrain traversability mapping method integrated into the Robotic Technology Kernel (RTK) that produces ground slope traversability cost information from LiDAR height maps. These ground slope maps are robust to a variety of off-road scenarios including areas of sparse or dense vegetation. A few simple and computationally efficient heuristics are applied to the ground slope maps to produce cost data that can be directly consumed by existing path planners in RTK, improving the navigation performance in the presence of steep terrain. Citation: J. Ramsey, R. Brothers, J. Hernandez, “Creation of a Ground Slope Mapping Methodology Within the Robotic Technology Kernel for Improved Navigation Performance,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
ABSTRACT Model Based Systems Engineering (MBSE) has been a dominant methodology for defining and developing complex systems; however, it has not yet been paired with cutting-edge digital engineering transformation. MBSE is constrained to represent a whole system, but lacks other capabilities, such as dynamic simulation and optimization, as well as integration of hardware and software functions. This paper provides the key elements for developing a Smart MBSE (SMBSE) modeling approach that integrates Systems Engineering (SE) functionality with the full suite of other development tools utilized to create today’s complex products. SMBSE connects hardware and software with a set of customer needs, design requirements, program targets, simulations and optimization functionalities. The SMBSE modeling approach is still under development, with significant challenges for building bridges between conventional Systems Engineering methodology, with additional capabilities to reuse, automate
ABSTRACT This study applies an augmentation to systems engineering methodology based on the integration of adaptive capacity, which produces enhanced resilience in technological systems that operate in complex operating environments. The implementation of this methodology enhances system resistance to top-level function failure or accelerates the system’s functional recovery in the event of a top-level function failure due to functional requirement shift, evolutions, or perturbations. Specifically, this study employs a methodology to integrate adaptive resilience and demonstrates key aspects of its implementation in a relevant explosive reactive armor (ERA) system case study. The research and resulting methodology supplements and enhances traditional systems engineering processes by offering systems designers a method to integrate adaptive capacity into systems, enhancing their resilient resistance, or recovery to top-level function failure in complex operating environments. This
ABSTRACT This paper reviews the UK Defence Standard 23-009 for Generic Vehicle Architecture (GVA), describes how the standard is being applied to the UK vehicle procurement programme, and the benefits expected from adopting the approach and standard. The expansion of the use of GVA to other countries will be discussed including the adoption of the fundamental approach by NATO/ 5 eyes countries
ABSTRACT L-3 Combat Propulsion Systems (L-3CPS) and Kinetics Drive Solutions (Kinetics) have teamed together to present this paper that discusses infinitely variable transmission technologies with high gear ratio & efficient steering systems for cross-drive transmissions across a family of combat vehicles. Traditionally, cross-drive transmissions for tracked vehicles are very rigid systems, which are tailored for a specific application or vehicle weight class. This becomes a problem throughout the vehicle’s lifecycle, as vehicle weights continue to grow when armor and other systems are added to protect and support the war-fighter. Increased weight leads to degraded vehicle mobility performance. To regain the vehicle mobility performance more power is needed at the vehicle sprockets. Traditionally this is accomplished by increasing the engine power of the propulsion system, which requires an increased transmission size for higher input and output torques, resulting in increased losses
ABSTRACT The Integrated Systems Engineering Framework (ISEF) is an Army Research, Development, and Engineering Command (RDECOM) solution to address stovepiped systems engineering(SE) information and processes, disparate tools united by custom, one-off integrations, and a lack of accepted, common standards that exists in today’s Department of Defense (DoD) operating environment. Ever increasing technical complexity of fielded solutions combined with budgetary constraints push DoD engineers to “do more with less,” requiring a technical management solution that allows them collaborate virtually yet effectively with distributed engineers and other stakeholders. Easy access to systems engineering tools and information through a single “cloud” based application allows connections between federated databases, and facilitates knowledge preservation over time to avoid “reinventing the wheel” when new programs replace retired ones. ISEF is an ever-expanding collection of systems engineering
ABSTRACT As military vehicles expand in mission roles and in offensive and defensive weaponry, there is an ever-increasing demand for greater energy storage. Moreover, with the technological breakthroughs in Direct Energy Weapons and Active Protective Systems (e.g., high-energy laser and high-power microwave systems, especially for prevention of UAVs), there is a commensurate need for increased energy density military power supplies to provide electrification to these Next Generation Combat Vehicles (Lynx, Griffin III, and CV-90). Current lithiumion batteries for vehicles (e.g., 6T) have limited energy density (~100 Wh/kg), which are not sufficient for the high energy and power needs of military vehicles. Additionally, they typically use carbonate electrolytes which are extremely flammable. To address these issues, CRG developed a high specific energy (>225 Wh/kg) lithium ion battery (LIB) pouch cell that could be integrated into current military vehicle battery formats. This cell
ABSTRACT This paper will describe the operational demonstration that the Autonomous Mobility Appliqué System (AMAS) Joint Capability Technology Demonstration (JCTD) held to prove military utility of the system. First it provides a high level technical overview of the system to assist in understanding how the system and its subsystems work. The paper will then describe the demonstration and provide a summary of the results from the Military Utility Assessment (MUA
ABSTRACT As the industry looks towards Condition Based Maintenance (CBM) as the next maintenance paradigm, OEMs and suppliers are looking into their readiness in meeting the CBM challenges for the future. The US armed forces are currently investigating CBM for their Tactical and Combat vehicles as a means of improving combat readiness & equipment reliability, and reducing maintenance costs. Many cutting-edge technologies will have to be integrated in designing the CBM systems that will support the next generation of vehicles. While most of the required technologies exist, a comprehensive design will be required to make CBM systems feasible and economical
ABSTRACT Product Development (PD) remains a highly uncertain process for both commercial and DoD programs. The presence of multiple stakeholders (e.g., DoD and allied agencies, soldiers/users, PEO, contractors, manufacturing, service, logistics) with varying requirements, preferences, constraints, and evolving priorities make this particularly challenging for the DoD. These risks are well recognized by agencies, and it is widely understood that acquisition is about risk management and not certainties. However, almost all the DoD acquisition processes still require critical reviews, and most importantly, structured decision support for the fuzzy front-end of the acquisition process. What is lacking, are effective decision support tools that explicitly recognize the sequential milestone structure embedded with multi-stakeholder decision making in all acquisition programs. We describe the Resilient Program Management & Development (RPMD) framework to support complex decision making with
ABSTRACT This paper examines the current state of scalable CFD for high-performance computing (HPC) clusters at industry-scale, and provides a review of novel technologies that can enable additional levels of CFD parallelism beyond today’s conventional approach. Recent trends in HPC offer opportunities for CFD solution performance increases from the use of parallel file systems for parallel I/O, and a second level of solver parallelism through hybrid CPU-GPU co-processing
ABSTRACT This paper presents a hybrid CFD and reduced order modeling (ROM) approach for fast and accurate flow and thermal analysis of vehicles to enable rapid thermal signature prediction. The modular hybrid ROM solver includes several key components, such as the turbulence modeling, CFD full order model (FOM) customized for vehicle thermal analysis, FOM/ROM alternation, proper orthogonal decomposition (POD) for basis vector construction, and online model switch decision maker for coupled simulation, which are all developed in an integrated framework. Several case studies of Army relevance at increasing complexity levels are undertaken. The proposed hybrid ROM solver is able to accurately analyze flow, turbulence, and thermal phenomena under time-varying operating conditions with unprecedented computational performance. Quantitatively, the relative error of our hybrid CFD FOM/ROM simulation stays below 0.35% and the absolute error is less than 4 K. The ROM has a much smaller model
ABSTRACT Over time, the National Institute of Standards and Technology (NIST) has refined the 4Dimension / Real-time Control System (4D/RCS) architecture for use in Unmanned Ground Vehicles (UGVs). This architecture, when applied to a fully autonomous vehicle designed for missions in urban environments, can greatly assist in the process of saving time and lives by creating a more intelligent vehicle that acts in a safer and more efficient manner. Southwest Research Institute (SwRI®) has undertaken the Southwest Safe Transport Initiative (SSTI) aimed at investigating the development and commercialization of vehicle autonomy as well as vehicle-based telemetry systems to improve active safety systems and autonomy. This paper will discuss the implementation of the 4D/RCS architecture to the SSTI autonomous vehicle, a 2006 Ford Explorer
Items per page:
50
1 – 50 of 3887