Browse Topic: Product development
Physical testing is required to assess multiple vehicles in different conditions, specially to validate those related to regulations. The acoustic evaluations have difficulties and limitations in physical test; cost and time represent important considerations every time. Additionally, the physical validation happens once a prototype has been built, this takes place in a later phase of the development. Sound pressure is measured to validate different requirements in a vehicle, horn sound is one of these and it is related to a regulation of united nations (ECE28). Currently the validation happens in physical test only and the results vary depending on the location of the horn inside the front end of every vehicle. [7] In this article, the work for approaching a virtual validation method through CAE is presented with the intention to get efficiency earlier in product development process.
Model-Based Systems Engineering (MBSE) enables requirements, design, analysis, verification, and validation associated with the development of complex systems. Obtaining data for such systems is dependent on multiple stakeholders and has issues related to communication, data loss, accuracy, and traceability which results in time delays. This paper presents the development of a new process for requirement verification by connecting System Architecture Model (SAM) with multi-fidelity, multi-disciplinary analytical models. Stakeholders can explore design alternatives at a conceptual stage, validate performance, refine system models, and take better informed decisions. The use-case of connecting system requirements to engineering analysis is implemented through ANSYS ModelCenter which integrates MBSE tool CAMEO with simulation tools Motor-CAD and Twin Builder. This automated workflow translates requirements to engineering simulations, captures output and performs validations. System
Automotive chassis components are considered as safety critical components and must meet the durability and strength requirements of customer usage. The cases such as the vehicle driving through a pothole or sliding into a curb make the design (mass efficient chassis components) challenging in terms of the physical testing and virtual simulation. Due to the cost and short vehicle development time requirement, it is impractical to conduct physical tests during the early stages of development. Therefore, virtual simulation plays the critical role in the vehicle development process. This paper focuses on virtual co-simulation of vehicle chassis components. Traditional virtual simulation of the chassis components is performed by applying the loads that are recovered from multi-body simulation (MBD) to the Finite Element (FE) models at some of the attachment locations and then apply constraints at other selected attachment locations. In this approach, the chassis components are assessed
In the automotive industry, there have been many efforts of late in using Machine Learning tools to aid crash virtual simulations and further decrease product development time and cost. As the simulation world grapples with how best to incorporate ML techniques, two main challenges are evident. There is the risk of giving flawed recommendations to the design engineer if the training data has some suspect data. In addition, the complexity of porting simulation data back and forth to a Machine Learning software can make the process cumbersome for the average CAE engineer to set up and execute a ML project. We would like to put forth a ML workflow/platform that a typical CAE engineer can use to create training data, train a PINN (Physics Informed Neural Network) ML model and use it to predict, optimize and even synthesize for any given crash problem. The key enabler is the use of an industry first data structure named mwplot that can store diverse types of training data - scalars, vectors
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
The vehicle wake region is of high importance when analyzing the aerodynamic performance of a vehicle. It is characterized by turbulent separated flow and large low-pressure regions that contribute significantly to drag. In some cases, the wake region can oscillate between different modes which can pose an engineering challenge during vehicle development. Vehicles that exhibit bimodal wake behavior need to have their drag values recorded over a sufficient time period to take into account the low frequency shift in drag signal, therefore, simulating such vehicle configurations in CFD could consume substantial CPU hours resulting in an expensive and inefficient vehicle design iterations process. As an alternative approach to running simulations for long periods of time, the impact of adding artificial turbulence to the inlet on wake behavior and its potential impact on reduced runtime for design process is investigated in this study. By adding turbulence to the upstream flow, the wake
Items per page:
50
1 – 50 of 3913