Browse Topic: Product development
As electric vehicles (EVs) become more advanced, so ensuring the reliability of critical components like the motor and Motor Control Unit (MCU) is essential. This paper presents a digital twin model designed to predict failures in motor and MCU components using machine learning. The approach focuses on detecting early signs of failure through real-world data and advanced analytics. We collected thermal and performance data from field vehicles, capturing both normal (healthy) and abnormal (faulty) operating conditions. Using this dataset, we developed and trained an Auto Encoder-based machine learning model that learns what “normal” looks like and flags deviations as potential issues. One key outcome of this study is the successful early prediction of Insulated Gate Bipolar Transistor (IGBT) degradation, where the system identified subtle behavioral changes long before any visible failure symptoms appeared. This digital twin acts as a virtual replica of the physical components
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Simulation-driven product development involves numerous computer aided engineering (CAE) model iterations, where each version represents a critical difference. Usually, these multiple model versions are generated by hundreds of simulation engineers working in teams distributed across the globe, making functional collaboration a key to effective product development. To manage vast amounts of CAE data generated by engineers working simultaneously on a project, it is imperative to have a robust version management system to track changes in the CAE data. A robust version management is the backbone of an effective simulation data management (SDM) system. It involves capturing and documenting model changes at every design iteration. Accurate documentation of the model changes is crucial as it helps in understanding the model evolution and collaboration among engineers. However, documenting is usually considered a boring and tedious task by many engineers. This often leads to bad change
Items per page:
50
1 – 50 of 4082