Browse Topic: Standardization
This paper reviews the current situation in the terms and definitions that influence the development of testing and prediction in automotive, aerospace and other areas of engineering. The accuracy of these terms and definitions is very important for correct simulation, testing and prediction. This paper aims to define accurate terms and definitions. It also includes the author’s recommendations for improving this situation and preparing new standards.
Aerospace and defense system designers are demanding scalable and high-performance I/O solutions. While traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements. This challenge is particularly evident in aerospace and defense applications where high-speed data processing must align with stringent size, weight, and power (SWaP) constraints. Current mezzanine solutions also face significant limitations in scalability, thermal management, and I/O density. These constraints can lead to compromised system performance and limited upgrade paths in applications where adaptability is crucial. This article explores how the new VITA 93 (QMC) standard addresses these challenges through its innovative QMC architecture, enabling unprecedented flexibility, scalability, and rugged reliability while maintaining compatibility with existing and future systems. It also covers how VITA 93 (QMC) builds on lessons learned from
SAE J3108 Recommended Practice (RP) provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of SAE J3108-1 is to present responders with a limited number of intuitive letters and colors. The International community is in the process of adopting International Standards Organization (ISO) 17840, which provides first and second responders with a standardized format for emergency information. While the ISO 17840 format in coloring and lettering can be adopted and should be encouraged when possible, it is intended for large and heavy vehicles. SAE J3108-1 provides a means for responders to recognize fuel and vehicle type on North American light duty vehicles due to size constraints preventing use of ISO 17840 labels.1 While encouraged to be adopted or referenced by vehicle manufacturers, this RP has been developed for the use of States and other Governmental bodies. The RP is not intended to replace the standards
When a physician injects a patient with medication from a glass vial, they want to know that the drug inside that vial is sterile and stable. That’s where Genesis Packaging Technologies comes in. Genesis Packaging Technologies, formally a division of the West Company, was founded in 1946. Today, Genesis is a one of the leaders in the science and technology of parenteral vial sealing and residual seal force testing.
Pulsed field ablation (PFA) is a nonthermal method of tissue ablation technology that uses high amplitude pulsed electrical fields (PEF) to create irreversible electroporation (IRE) in tissues. Unlike traditional thermal ablation technologies, PFA does not rely on heating to damage and destroy tissue. Instead, PFA creates nanopores in cell membranes due to transient, high-voltage exposure that disrupts cell wall integrity, which leads to cell death.1
This standard applies to all products and services produced for Aeronautics and Space enterprises and regulatory environments, including those produced by component facilities and technical and service support centers. If applied, this standard must be cited in the CM requirements of Enterprise Planning, Facilities Programs, Projects, and Supplier agreements. This standard applies throughout all phases of the program and project life cycle. CM is about the truth, trust, and traceability of products, data used to produce products, and processes throughout their life cycle and should be applied across the Enterprise at the process and product level. The significant data to which CM is applied includes scientific and engineering data; data that drives mission success; data that ensures IT security; and data used to make technical, programmatic, and business decisions. Proper application of CM is essential for product integrity and overall effectiveness. Acquirers complying with the
SAE updates gasoline fuel-injection standards, additions expected Gasoline Fuel Injection Standards Committee (GFISC) updates three standards and plans to publish two more. The Gasoline Fuel Injection Standards Committee (GFISC) plays a pivotal role in developing and maintaining SAE's Standards, Recommended Practices (RP) and Information Reports (IR) for the mechanical and electrical components of gasoline fuel-injection systems. Since a prior update was published in May 2019, the committee has made significant progress to ensure the relevancy and accuracy of these standards, with three updated standards published since 2021 and the expected publication of two more in 2024.
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5.
This SAE Recommended Practice establishes the antilock brake system (ABS) sensor interface and envelope dimensions for standardizing the location of the ABS rings mounted on or integral to the inboard end of spoke wheels, hubs, rotors, and hub-rotor assemblies on the following axle designations as defined in SAE J1842. a FF b FL c FC d FH e L f R g U h W j N k P
SAE International announced in late June, 2023, that it intended to standardize the Tesla-developed North American Charging Standard (NACS) EV charging connector for North America. SAE then created the J3400 NACS Task Force to expedite creation of the J3400 NACS Electric Vehicle Coupler standard. Grayson Brulte, host of SAE's Tomorrow Today podcast, subsequently interviewed Christian Thiele, Director, Global Ground Vehicle Standards, SAE International, and Dr. Rodney McGee, Ph.D., P.E. Chairman, SAE J3400 NACS Task Force and Chief Engineer at the University of Delaware, regarding the work of the J3400 Task Force and other aspects of standardization as electrification technology proliferates throughout the light- and heavy-duty vehicle sectors. This Q&A is an abbreviated portion of that interview and the podcast can be heard in its entirety at: https://www.sae.org/podcasts/tomorrow-today/episodes/sae-to-standardize-teslanacs-connector
Since the standardization of Ethernet in the 1980s, progressive performance advances and economies of scale have made this the leading digital networking technology for commercial, consumer, and industrial applications. Although Ethernet in the factory has now been widely adopted, it lagged behind commercial implementations due to difficulties installing the media in harsh industrial environments, and in the early years, a lack of determinism required for critical applications.
ABSTRACT This paper offers a technical strategy to use Future Airborne Capability Environment™ (FACE Data Modeling and Transport Services Segment (TSS) mechanisms to address interoperability concerns between multiple open standards. It discusses features of the FACE Technical Standard that facilitate interoperability including data modeling constructs to address various common digital schema technologies, TSS capability approaches to allow flexible interoperability, and open standards that can be addressed with the approach. Citation: M. Snyder, C. Allport “Using FACETM Technical Standard Features to Address Interoperability Between Ground Vehicle Domain Open Standards,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2023.
It was impossible to miss in late May what surely will be one of the year's highest-profile electrification stories. Ford, quickly followed by GM and many others, announced they will adopt the Tesla-developed “North American Charging Standard” (NACS) EV charging connector (see pg. 4). The shift ostensibly displaces the SAE International-developed Standard J1772 “Combined Charging System” (CCS) connector that has been the predominant connector standard for just about every EV that isn't a Tesla. Although most who've handled both connectors wouldn't argue the NACS connector and its thinner cable generally is more user-friendly, the more impactful aspect of the connector transition “deal” was that much of Tesla's vaunted Supercharger public DC fast-charging network - some 12,000 chargers at 2000 sites in North America - will be available to non-Tesla EVs starting next year. This was the Holy Grail for Ford, GM and others anxious to reassure current and future EV purchase “intenders
SAE International announced that it will standardize the Tesla-developed North American Charging Standard (NACS) charging connector for EVs. The global engineering organization that engages nearly 200,000 engineers, technical experts and volunteers said in a press release that it will work to help with deployment of the NACS connector, an alternative to the longstanding SAE J1772 Combined Charging System (CCS) connector, after Ford, General Motors and a number of EV public-charging equipment suppliers recently indicated they intend to adopt the NACS connector design. “Standardizing the NACS connector will provide certainty, expanded choice, reliability and convenience to manufacturers and suppliers and, most of all, increase access to charging for consumers,” explained Frank Menchaca, president of Sustainable Mobility Solutions, an innovation arm of SAE's parent company, Fullsight. The organization in a statement credited the U.S.'s Joint Office of Energy and Transportation for
Micromobility is often discussed in the context of minimizing traffic congestion and transportation pollution by encouraging people to travel shorter (i.e., typically urban) distances using bicycle or scooters instead of single-occupancy vehicles. It is also frequently championed as a solution to the “first-mile/last-mile” problem. If the demographics and intended users of micromobility vary largely by community, surely that means we must identify different reasons for using micromobility. Micromobility, User Input, and Standardization considers potential options for standardization in engineering and public policy, how real people are using micromobility, and the relevant barriers that come with that usage. It examines the history of existing technologies, compares various traffic laws, and highlights barriers to micromobility standardization—particularly in low-income communities of color. Lastly, it considers how engineers and legislators can use this information to effectively
This Aerospace Standard covers all automatic pressure altitude code generating equipment manufactured under this standard and complying with the requirements specified herein up to the maximum range of pressure altitude as indicated on the equipment nameplate. In those cases where the code generating equipment forms part of an aircraft system, such as a pressure altimeter, an air data computer or an ATC Transponder, this standard applies only to the code generating equipment as defined in paragraph 1.2.
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
ISO/SAE 21434 [1] Final International Standard was released September 2021 to great fanfare and is the most prominent standard in Automotive Cybersecurity. As members of the Joint Working Group (JWG) the authors spent 5 years developing the 84 pages of precise wording acceptable to hundreds of contributors. At the same time the auto industry had been undergoing a metamorphosis probably unmatched in its hundred-year history. A centerpiece of the metamorphosis is the adoption of the Agile development method to meet market demands for time-to-market and flexibility of design. Unfortunately, a strategic decision was made by the JWG to focus ISO/SAE 21434 on the V-Model method. Agile does not break ISO/SAE 21434. Agile is a framework that can be adapted to suit any process. In the end the goals are the same regardless of development method; security by design must be achieved. This paper will outline the work products of ISO/SAE 21434 and discuss how the work products required by the
Items per page:
50
1 – 50 of 1231