Browse Topic: Research and development
In order to improve the efficiency of verification and optimization of control strategies for air-conditioning systems, a thermal management platform is established based on a rapid control prototyping (RCP) approach in the article. The platform is composed of a HVAC hardware bench, a real-time control system, and a control software model. This article describes the overall architecture of the platform, the control strategy, and an efficient method for development and optimization of air-conditioning control strategies. The cooling and heating modes of the air conditioner are tested. The results show that the control strategy can be directly modified via the platform to improve the performance of the whole system. The experimental results show that after modifying the control strategy, the cooling effect of the air conditioner is optimized and the cooling time is reduced by 10.6%. The CLTC cycle is also tested in this work to verify the dynamic control performance of the air
A design is presented for an electro-mechanical switchgear, intended for reconfiguring the windings of an electric machine whilst in operation. Specifically, the design is developed for integration onto an in-wheel automotive motor. The motor features 6 phase fractions, which can be reconfigured by the switchgear between series-star or parallel-star arrangements, thereby doubling the torque or speed range of the electric machine. The switchgear has a mass of only 1.8kg – around one tenth of the equivalent 2-speed transmission which might otherwise be employed to achieve a similar effect. As well as the extended operating envelope, the reconfigurable winding motor offers benefits in efficiency and power density. The mechanical solution presented is expected to achieve efficiency and cost advantages over equivalent semiconductor-based solutions, which are practical barriers to adoption in automotive applications. The design uses only mechanical contacts and a single actuator, thereby
Engineers have developed a smart capsule called PillTrek that can measure pH, temperature, and a variety of different biomarkers. It incorporates simple, inexpensive sensors into a miniature wireless electrochemical workstation that relies on low-power electronics. PillTrek measures 7 mm in diameter and 25 mm in length, making it smaller than commercially available capsule cameras used for endoscopy but capable of executing a range of electrochemical measurements.
A research team led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new fabrication technique that could improve noise robustness in superconducting qubits, a key technology for enabling large-scale quantum computers.
Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses. But light scatters when it shines into biological tissue, limiting how deeply it can penetrate and hampering the resolution of captured images.
The increased functionality of today’s medical devices is astounding. Optical devices, for example, analyze chemicals, toxins, and biologic specimens. Semiconductor devices sense, analyze, and communicate. Microelectromechanical system (MEMS) devices utilize inertial methods to detect motion, direct light, and move components over short distances. Radiofrequency (RF) devices communicate wirelessly to other devices directly and remotely over the Internet. Handheld acoustic devices scan the body and build a virtual 3D model that shows conditions in the body. The innovation currently happening in the medical device industry is staggering, limited only by imagination and finding technical methods to implement the vision.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
The automation of labor-intensive picking and planting operations is having an immediate impact in the agricultural indutry. In its simplest form, robotic automation can reduce the labor and soil disturbance while enabling organic soil cover and increasing species diversification through precision approaches to planting, weeding, and spraying. With this, pesticides and fertilizers can be applied in a more targeted way, and with machinery visiting fields more frequently, earlier and more targeted intervention can occur before pests become established. Small, Mobile, and Autonomous Agricultural Robots identifies issues that need to be resolved fo for this technology to thrive, including improving methods of acquiring and labeling training data to facilitate more accurate models for specific applications. It also discusses concepts such as general-purpose mechanical platforms for use as carriers of agricultural automation systems with high stability, positional accuracy, and variable
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
How quickly our society can maximize the benefit of electrification hinges on finding cheaper, higher performance batteries — a reality closer to hand through new research from Virginia Tech.
Items per page:
50
1 – 50 of 11468