Browse Topic: Research and development
This specification covers a shampoo type carpet cleaner in the form of a liquid
ABSTRACT This study applies an augmentation to systems engineering methodology based on the integration of adaptive capacity, which produces enhanced resilience in technological systems that operate in complex operating environments. The implementation of this methodology enhances system resistance to top-level function failure or accelerates the system’s functional recovery in the event of a top-level function failure due to functional requirement shift, evolutions, or perturbations. Specifically, this study employs a methodology to integrate adaptive resilience and demonstrates key aspects of its implementation in a relevant explosive reactive armor (ERA) system case study. The research and resulting methodology supplements and enhances traditional systems engineering processes by offering systems designers a method to integrate adaptive capacity into systems, enhancing their resilient resistance, or recovery to top-level function failure in complex operating environments. This
Abstract The Dismounted Soldier Autonomy Tools (DSAT) program is the result of the evolution and reuse of work from multiple industry Internal Research & Development (IR&D) programs, as well as work stemming from various multi-service investments made over the past several years. The DSAT program is a direct offshoot of MARTI (Mobile Autonomous Robotics Technology Initiative) - a 5 year IR&D program at Southwest Research Institute (SwRI) from 2006-2011 that created a foundation for autonomy and on road capability. The MARTI work was subsequently leveraged into the Office of Naval Research (ONR) Code 30 SUMET (Small Unit Mobility Enhancement Technologies) program starting in 2009. The DSAT program builds off of these SwRI efforts, as well as previous work by TARDEC and DCS Corp in the areas of vehicle architectures and warrior-machine interfaces to build a consolidated, coordinated program. Working together, the team has made several improvements to the collective code base, resulting
ABSTRACT Situations exist that require the ability to preposition a basic level of energy infrastructure. Exploring and developing the arctic’s oil potential, providing power to areas damaged by natural or man-made disasters, and deploying forward operating bases are some examples. This project will develop and create a proof-of-concept electric power prepositioning system using small autonomous swarm robots each containing a power electronic building block. Given a high-level power delivery requirement, the robots will self-organize and physically link with each other to connect power sources to storage and end loads. Each robot mobile agent will need to determine both its positioning and energy conversion strategy that will deliver energy generated at one voltage and frequency to an end load requiring a different voltage and frequency. Although small-scale robots will be used to develop the negotiation strategies, scalability to existing, large-scale robotic vehicles will be
ABSTRACT The Integrated Systems Engineering Framework (ISEF) is an Army Research, Development, and Engineering Command (RDECOM) solution to address stovepiped systems engineering(SE) information and processes, disparate tools united by custom, one-off integrations, and a lack of accepted, common standards that exists in today’s Department of Defense (DoD) operating environment. Ever increasing technical complexity of fielded solutions combined with budgetary constraints push DoD engineers to “do more with less,” requiring a technical management solution that allows them collaborate virtually yet effectively with distributed engineers and other stakeholders. Easy access to systems engineering tools and information through a single “cloud” based application allows connections between federated databases, and facilitates knowledge preservation over time to avoid “reinventing the wheel” when new programs replace retired ones. ISEF is an ever-expanding collection of systems engineering
ABSTRACT The Army Operating Concept and the Cross Domain Maneuver Concept describe more capable Brigade Combat Teams that can operate semi-independently across wide areas on the future battlefield. Robotics and Autonomous Systems can increase capabilities of Brigade Combat Teams by increasing situational awareness, facilitating movement and maneuver, improving protection, extending a small unit’s area of operations, and sustaining the force with increased distribution, throughput, and efficiency. Army industry partners, in concert with Army labs, must provide the affordable technologies that can provide these autonomous and semi-autonomous operational capabilities to the future force. While acknowledging that there must be significant technology development to realize this vision, this concept paper aims to take a realistic look at enabling Brigade Combat Teams with third-offset capabilities by 2035
ABSTRACT In this paper, we discuss a neuroimaging experiment that employed a mission-based scenario (MBS) design, a new approach for designing experiments in simulated environments for human subjects [1]. This approach aims to enhance the realism of the Soldier-task-environment interaction by eliminating many of the tightly-scripted elements of a typical laboratory experiment; however, the absence of these elements introduces several challenges for both the experimental design and statistical analysis of the experimental data. Here, we describe an MBS experiment using a simulated, closed-hatch crewstation environment. For each experimental session, two Soldiers participated as a Commander-Driver team to perform six simulated low-threat security patrol missions. We discuss challenges faced while designing and implementing the experiment before addressing analysis approaches appropriate for this type of experimentation. We conclude by highlighting three example transition pathways from
ABSTRACT The Department of Defense is a major consumer of petroleum products – over 700 million gallons per day. While the majority of fuel consumed is for aircraft, in terms of logistics and exposure of personnel to hazardous conditions, the amount of fuel consumed in ground vehicles is considerable, with the cost (in-theatre, delivered) ranging from $100 to $600/gallon. This paper addresses the impact that parasitic friction mechanisms (boundary lubrication and lubricant viscosity) have on engine friction and overall vehicle efficiency. A series of mechanistic models of friction losses in key engine components was applied to investigate the impact of low-friction technologies on the fuel consumption of heavy-duty, on-road vehicles. The results indicate that fuel savings in the range of 3 to 5% are feasible by reducing boundary friction and utilizing low-viscosity engine lubricants. The paper will discuss the implications of the studies (as performed for commercial heavy-duty trucks
ABSTRACT This paper addresses the Program Management Office’s perspective of the robotic technology needs required to meet the capability gaps identified by the Warfighter. The objective is to relay these needs to the Science and Technology (S&T) community and industry in order to guide their investment dollars in the right direction. The Robotic Systems Joint Project Office (RS JPO) has been working closely with the Tank Automotive Research, Development, and Engineering Center (TARDEC) to establish near, mid and far term needs for robotic technologies. The hope is to communicate those needs to successfully steer the robotic research and development efforts to meet the capabilities most needed by our Warfighters
ABSTRACT Machinery health management is becoming increasingly important and the diagnosis of failures based on machinery condition has been analyzed in-depth in the last few decades, and is relatively well understood. However, prognostic evaluation of faults in a machine is a harder task that involves predicting impending faults in the system and determining remaining useful life of the machinery. A survey of algorithms, and a detailed description of a hybrid CBM prognostic techniques being investigated for use in ground vehicle systems will be presented. The system incorporates a number of techniques to process and analyze the current condition of a ground vehicle, and to generate a prognosis for each subsystem in the vehicle. The discussion will describe a means of testing, verifying and iteratively improving prognostic capabilities throughout the lifecycle of the platform
ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a powerful tool with which they may analyze and design. Currently, parts of these complex mechanisms are introduced to multibody algorithms as rigid bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the bodies. The present investigation aims to establish appropriate means by which flexible three-dimensional track links, which allow large relative rotation between the elements, can be modeled. This will pave the way towards the incorporation of detailed flexible structural models into a multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket teeth and flexible chain is presented. Numerical results are introduced to illustrate the effects of flexible links on the dynamics of tracked vehicles
ABSTRACT A method for the evaluation of military hybrid electric vehicle thermal management systems has been developed. The approach allows for the generation of a set of evaluation metrics for determination of the effectiveness of existing systems and the means to assess alternative concepts and advanced approaches. Further, through the use of a set of deterministic performance metrics the methodology allows for evaluation of performance margins for adverse boundary conditions and system operations. The thermal management systems of military hybrid electric vehicles can face challenging performance goals under the burden of unfavorable operating conditions. The cooling requirements of engines, motors, and power electronics impose specific requirements on thermal management system performance in terms of threshold temperatures and heat rejection capability. In addition, vehicle packaging concerns impose restrictions in terms of both volumetric occupancy and system weight
ABSTRACT The purpose of this paper is to describe a methodology for applying Model-Based Systems Engineering (MBSE) practices to Test and Evaluation (T&E) practices. The Georgia Tech Research Institute GTRI has developed a process which includes using MBSE tooling & modeling languages, automatic test case generation based on modeling, and requirements coverage thereof. This paper describes the developed process and the benefits that it brings to T&E practices. Citation: R. Dunning, W. Matteson, R. Wise, J. Sharpe, “Using a Model-based Approach for Test and Evaluation”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
ABSTRACT Under the sponsorship of TARDEC, UTRC is developing 5–10 kW Solid Oxide Fuel Cell (SOFC) Auxiliary Power Units (APU) that will be capable of operating on JP-8 with a sulfur concentration of up to the specification’s upper limit of 3000 ppmw. These APUs will be sized to fit within the relatively tight space available on U.S. Army vehicles such as the Abrams, Bradley and Stryker. The objective of the base development program that commenced in August 2010 is a 1000 hour TRL-5 demonstration of an APU in an Abrams configuration by mid-2013. This SOFC system is expected to provide power to the 28 VDC vehicle bus at a net efficiency ≥35%. In addition, the noise level is anticipated to be far below that generated by combustion engine-based APU concepts. UTRC has completed the Preliminary Design of the system and has finalized the overall system configuration and the requirements for each of the components. During the Preliminary Design phase, evaluations of the performance of sub
ABSTRACT Automatic guided vehicles (AGV) have made big inroads in the automation of assembly plants and warehouse operations. There are thousands of AGV units in operation at OEM supplier and service facilities worldwide in virtually every major manufacturing and distribution sector. Although today’s AGV systems can be reconfigured and adapted to meet changes in operation and need, their adaptability is often limited because of inadequacies in current systems. This paper describes a wireless navigated (WN) omni-directional (OD) autonomous guided vehicle (AGV) that incorporates three technical innovations that address the shortfalls. The AGV features consist of: 1) A newly developed integrated wireless navigation technology to allow rapid rerouting of navigation pathways; 2) Omnidirectional wheels to move independently in different directions; 3) Modular space frame construction to conveniently resize and reshape the AGV platform. It includes an overview of the AGVs technical features
ABSTRACT A functionally-graded NPR (Negative Poisson’s Ratio) material concept has been developed for a critical Army application – blast protection. The objective is to develop a combined computational design methodology and innovative structural-material concept for a blast-protective deflector, which can concentrate material into areas most needed and adapt its shape utilizing the blast energy to improve blast mitigation and crew protection. Included in the computational design methodology is optimal deflector shape design and optimal NPR material distribution to further improve the protection while minimizing the C.G. height of the vehicle and the weight of the deflector. Structures fabricated using this new concept react to the explosion and reconfigure themselves under the blast force to provide maximum blast protection. The presented research work consists of two basic approaches to deflector design: optimal deflector shape design and optimal NPR material configuration and
Items per page:
50
1 – 50 of 11147