Browse Topic: Research and development

Items (11,468)
The electro-mechanical brake (EMB) is a promising brake actuating system for electrified vehicle. To enhance the system function safety while saving space from redundancy sensors, this paper studied sensorless climbing force control for the EMB where a new climbing force estimator is proposed by fusing the information from vehicle dynamics and EMB states. The work was done with three contributions: 1) The priori clamping force characteristics were implemented to build the estimator with two parallel models, one of which was derived from the actuator rigid-body dynamics while the other was derived from vehicle longitudinal dynamics model; 2) a proportional-integral (PI) observer utilizing wheel speed residual signals was developed to correct the initial estimates iteratively; 3) a fuzzy control controller was proposed to optimize the key parameters of the PI observer. Comparative study was conducted on a co-simulation platform and the results showed that the actuator-to-vehicle joint
Xing, YipuZhou, QuanCheng, YulinLi, CongcongHan, WeiZhuo, GuirongXiong, Lu
This study investigates the correlation between moisture behavior and corrosion stiction mechanisms in NAO friction materials. While previous studies on corrosion stiction have primarily focused on electrochemical approaches, this study aims to elucidate the mechanism by examining moisture behavior within the friction material. Although recent research has investigated changes in pad properties in humid environments, most studies have primarily focused on variations in pad stiffness and the friction coefficient. To date, no studies have investigated the behavior of moisture within pads using Fick’s Second Law and its impact on corrosion stiction. In this study, Fick’s Second Law was applied to model moisture behavior in friction materials. The diffusion coefficient and maximum moisture content were quantified, revealing that moisture behavior in the friction material can be divided into two distinct stages: one following Fick’s Second Law and the other not. For NAO friction materials
Choi, NakcheonJu, JoungsuYoun, Deokki
Moisture is known to be a relevant factor during a friction material life, affecting tribological behaviors such as friction coefficient and torque variations. In this study we investigated the interaction between friction materials and water; employing various techniques such as contact angle measurements, water adsorption, and exposure to controlled environmental condition changes. Focusing on NAO friction material, mix modifications were studied to highlight differences and understand mechanisms, in particular, organic content and hydrophobic agents, were examined. Characterization results showed that brake pads hydrophobicity can be influenced by water interaction conditions; even low-wettability surfaces, such as those treated with hydrophobic modifiers, can still absorb water depending on internal factors (e.g., porosity) and external conditions (e.g., contact time, humidity). Additionally, we investigated the capacity of a friction material to adsorb water and desorb it back to
Iodice, ValentinaDurando, PietroBalestra, SimonePellerej, Diego
Brake wear emissions are a significant contributor to particle mass (PM) emissions originating from road transport. In Europe, this is taken into consideration by including emission limits for brake wear particles in the legislation. UN GTR (United Nations Global Technical Regulation) No.24 is a technical description of how to measure the particle number (PN) and PM emissions of brakes. PN measurement includes solid particle number (SPN) and total particle number (TPN), meaning excluding and including the volatile particle matter, respectively. In this study, we examine over 500 TPN and SPN emission factors, in terms of SPN-TPN ratio. To interpret the emission factor data, we present results of a characterization of SPN and TPN measurement instruments in a laboratory setting. We discuss the benefits of using a flow splitter in the PN measurement and present an experimental demonstration of its suitability for measurement of brake wear PN. Combining the results of this investigation
Martikainen, SampsaPramstrahler, MadlenWeidinger, ChristophRainer, AndreasEngler, DieterHuber, Michael
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
In order to improve the efficiency of verification and optimization of control strategies for air-conditioning systems, a thermal management platform is established based on a rapid control prototyping (RCP) approach in the article. The platform is composed of a HVAC hardware bench, a real-time control system, and a control software model. This article describes the overall architecture of the platform, the control strategy, and an efficient method for development and optimization of air-conditioning control strategies. The cooling and heating modes of the air conditioner are tested. The results show that the control strategy can be directly modified via the platform to improve the performance of the whole system. The experimental results show that after modifying the control strategy, the cooling effect of the air conditioner is optimized and the cooling time is reduced by 10.6%. The CLTC cycle is also tested in this work to verify the dynamic control performance of the air
Liu, ShuqiYu, YilongWang, WeiWang, YuanZhang, YilunXu, Xiang
Li-ion battery performance is highly dependent on the electrode materials. The composition of the negative and positive electrodes influences crucial aspects of the Li-ion cell, including energy density, ageing behavior and thermal stability. Recent Li-ion technologies include the use of composite graphite-silicon negative electrodes to improve the energy storage capacity of the otherwise graphite-only negative electrode. This article evaluates the impact of negative electrode composition (standard graphite vs. Si-Gr) on the performance of two recent technologies of Li-ion batteries from the same manufacturer, focusing on electrical performance and safety behavior. The studied technologies are the LG M50LT and LG M58T, the latest one introducing a considerable increase of capacity, passing from 4.80 to 5.65 in nominal capacity. This article abords the comparison of both technologies in electric performance, electrode composition, cell design and thermal stability. Electrical
Cruz Rodriguez, Jesus ArmandoLecompte, MatthieuRedondo-Iglesias, EduardoPelissier, SergeAbada, Sara
This study presents a comprehensive methodology for the design and optimization of hybrid electric powertrains across multiple vehicle segments and electrification levels. A full-factorial simulation framework was developed in MATLAB/Simulink, featuring a modular, physics-based vehicle model combined with a backward simulation approach and an ECMS (Equivalent Consumption Minimization Strategy) -based energy management algorithm. The objective is to evaluate three hybrid powertrain architectures, namely Series Hybrid (SH), Series-Parallel Hybrid with a single gear stage (SHP1), and Series-Parallel Hybrid with a double gear stage (SHP2), across three vehicle classes (Sedan, Mid-SUV, Large-SUV), four different internal combustion engines (ICEs), and three application types (HEV, PHEV, REEV). More than 10,000 unique configurations were simulated and filtered through a two-step performance requirements analysis. The first phase assessed individual vehicle-level performance targets, while
Amati, NicolaMarello, OmarMancarella, AlessandroCavallaro, DavideIanni, LucaCascone, ClaudioPaulides, Johannes JH
Accurate cell thermal characterisation is vital for battery modelling and thermal management, especially in motorsport, where minor temperature estimation errors can have severe consequences. Conventional methods for determining key thermal parameters, such as the specific heat capacity, often require costly calorimeters or destructive testing. Recent studies propose an alternative approach using a 1D lumped thermal network to solve the thermal balance of a heat-generating cell. However, these studies often overlook critical aspects of the heat generation equation, particularly the entropic term, which is essential for capturing nonlinear thermal behaviour, especially under dynamic cycling conditions. This study presents a cost-effective approach for rapid cell thermal characterisation and accurate surface temperature prediction. A pouch LCO cell was first tested to determine the entropic coefficient, followed by experiments under two convective conditions to evaluate its specific heat
Sciortino, Davide DomenicoSchommer, AdrianoCosta, Andre
A design is presented for an electro-mechanical switchgear, intended for reconfiguring the windings of an electric machine whilst in operation. Specifically, the design is developed for integration onto an in-wheel automotive motor. The motor features 6 phase fractions, which can be reconfigured by the switchgear between series-star or parallel-star arrangements, thereby doubling the torque or speed range of the electric machine. The switchgear has a mass of only 1.8kg – around one tenth of the equivalent 2-speed transmission which might otherwise be employed to achieve a similar effect. As well as the extended operating envelope, the reconfigurable winding motor offers benefits in efficiency and power density. The mechanical solution presented is expected to achieve efficiency and cost advantages over equivalent semiconductor-based solutions, which are practical barriers to adoption in automotive applications. The design uses only mechanical contacts and a single actuator, thereby
Vagg, ChristopherThomas, LukePickering, SimonHerzog, MaticTrinchuk, DanyloRomih, Jaka
This paper deals with the hydrogen-to-helium jets comparison within the framework of the assessment of helium as a potential hydrogen surrogate. The comparison is centred on the assessment of the combined action of pressure ratio with gas properties on the dynamics of the jet exiting an outward-opening injector. The shots are performed at injection pressures and backpressures ranging from 21 to 36 bar and from 1.2 to 5 bar, respectively. The Schlieren technique is deployed to capture the jets images. The study demonstrates that at certain pressure ratios helium is an appealing solution bridging the lab safety with fidelity to hydrogen-like jet behaviour. Decreasing pressure ratio minimizes the hydrogen-to-helium difference in axial penetration and area, enabling helium to yield a hydrogen-like development. The findings underscore the impact of the pressure ratio on how the gas properties, such as density and diffusivity, dictate the evolution of the axial propagation and area
Coratella, CarloTinchon, AlexisHespel, CamilleDober, GavinFoucher, Fabrice
Engineers have developed a smart capsule called PillTrek that can measure pH, temperature, and a variety of different biomarkers. It incorporates simple, inexpensive sensors into a miniature wireless electrochemical workstation that relies on low-power electronics. PillTrek measures 7 mm in diameter and 25 mm in length, making it smaller than commercially available capsule cameras used for endoscopy but capable of executing a range of electrochemical measurements.
A research team led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new fabrication technique that could improve noise robustness in superconducting qubits, a key technology for enabling large-scale quantum computers.
Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses. But light scatters when it shines into biological tissue, limiting how deeply it can penetrate and hampering the resolution of captured images.
The increased functionality of today’s medical devices is astounding. Optical devices, for example, analyze chemicals, toxins, and biologic specimens. Semiconductor devices sense, analyze, and communicate. Microelectromechanical system (MEMS) devices utilize inertial methods to detect motion, direct light, and move components over short distances. Radiofrequency (RF) devices communicate wirelessly to other devices directly and remotely over the Internet. Handheld acoustic devices scan the body and build a virtual 3D model that shows conditions in the body. The innovation currently happening in the medical device industry is staggering, limited only by imagination and finding technical methods to implement the vision.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
Gears are essential components in industrial machinery, and their design needs to be optimized to ensure the proper functioning of mechanical systems across various industrial applications. In this study, an optimization approach is proposed to determine the optimal design of a spur gear. This approach is based on an improved Jaya algorithm, which features a straightforward formulation without any algorithm-specific control parameters. Utilizing a simple and parameter-free updating mechanism, the strength of this algorithm lies in its iterative ability to enhance candidate solutions by moving them toward the best solution while avoiding the worst one, providing a flexible framework for optimization. However, since the original Jaya algorithm was primarily designed for continuous optimization problems, this research incorporates adjustments to adapt it effectively for mixed-variable optimization problems and to manage multi-objective functions. The effectiveness of the proposed
Rezki, InesFerhat, DjeddouHamouda, AbdelatifAbderazek, Hammoudi
The automation of labor-intensive picking and planting operations is having an immediate impact in the agricultural indutry. In its simplest form, robotic automation can reduce the labor and soil disturbance while enabling organic soil cover and increasing species diversification through precision approaches to planting, weeding, and spraying. With this, pesticides and fertilizers can be applied in a more targeted way, and with machinery visiting fields more frequently, earlier and more targeted intervention can occur before pests become established. Small, Mobile, and Autonomous Agricultural Robots identifies issues that need to be resolved fo for this technology to thrive, including improving methods of acquiring and labeling training data to facilitate more accurate models for specific applications. It also discusses concepts such as general-purpose mechanical platforms for use as carriers of agricultural automation systems with high stability, positional accuracy, and variable
Muelaner, Jody E.
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
How quickly our society can maximize the benefit of electrification hinges on finding cheaper, higher performance batteries — a reality closer to hand through new research from Virginia Tech.
Items per page:
1 – 50 of 11468