Browse Topic: Research and development
Systems Engineering is a method for developing complex products, aiming to improve cost and time estimates and ensure product validation against its requirements. This is crucial to meet customer needs and maintain competitiveness in the market. Systems Engineering activities include requirements, configuration, interface, deadlines, and technical risks management, as well as definition and decomposition of requirements, implementation, integration, and verification and validation testing. The use of digital tools in Systems Engineering activities is called Model-Based Systems Engineering (MBSE). The MBSE approach helps engineers manage system complexity, ensuring project information consistency, facilitating traceability and integration of elements throughout the product lifecycle. Its benefits include improved communication, traceability, information consistency, and complexity management. Major companies like Boeing already benefit from this approach, reducing their product
During the early phase of vehicle development, one of the key design attributes to consider is the trunk. Trunk is the pillar that is responsible for user’s accommodate their baggage and make into customer needs in engineer metrics. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain internal vehicle trunk characteristics such as the trunk height and length are engineer metrics that influence the occupants’ perception for trunk. One specific characteristic influencing satisfaction is the rear opening width lower for notch back segment, which is the subject of this paper. The objective of this project is to analyze the relationship between the rear opening width lower with the occupant’s satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics
Design validation plays a crucial role in the overall cost and time allocation for product development. This is especially evident in high-value manufacturing sectors like commercial vehicle electric drive systems or e-axles, where the expenses related to sample procurement, testing complexity, and diverse requirements are significant. Validation methodologies are continuously evolving to encompass new technologies, yet they must be rigorously evaluated to identify potential efficiencies and enhance the overall value of validation tests. Simulation tools have made substantial advancements and are now widely utilized in the development phase. The integration of simulation-based or simulation-supported validation processes can streamline testing timelines and sample quantities, all the while upholding quality standards and minimizing risks when compared to traditional methods. This study examines various scenarios where the implementation of advanced techniques has led to a reduction in
The properties of organic nitrate ester that inhibit scale formation were investigated in order to acquire a better understanding of ferrous carbide precipitation from supersaturated solutions. When the scale inhibitor was present, precipitation rates were much lower than when it was missing, even at very low concentrations. When the temperature and time are increased simultaneously, more scale is deposited. The effect of nitrate ester on scale deposition demonstrates that the inhibitory dosage is relatively low at low temperatures but rapidly increases when exposed to high temperatures. The inhibitor is thought to alter the shape of the first crystals by binding to dynamic growth sites and inhibiting the threshold level of development
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a highly promising method for creating intricate shapes using different materials. Polyethylene Terephthalate Glycol (PETG) is a highly utilized thermoplastic that is recognized for its exceptional strength, resistance to chemicals, and effortless processing. This study aims to optimize the process parameters of the FDM technique for PETG material using Taguchi Grey Relational Analysis (GRA). An empirical study was carried out to examine the impact of various FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on important outcome variables like dimensional accuracy, surface quality, and mechanical properties. The Taguchi method was used to systematically design a series of experiments, while GRA was used to optimize the process parameters and performance characteristics. The results unveiled the most effective parameter combinations for attaining
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
Road infrastructure has a significant impact on the performance of the truck components which includes ATS & turbocharger. Therefore, it is important for research and development teams to analyze the road infrastructure of the region in which trucks are going to be operated in the future, this helps the teams to make decision on component specification which will exactly cater the customer need in those regions and suggest the optimal design of the component. This paper shows a method to summarize and visualize the road infrastructure particularly focusing on length of road segment and its elevation profile distribution and other is an analysis on continuous road segments (without intersections) and their truck speed limit which will help engineers to identify critical routes & locations in those regions and choose precise parameters for their system using statistical data driven approach. This paper uses OpenStreetMap and Digital Elevation Models for elevation from open-source data
Researchers at the Johns Hopkins Applied Physics Laboratory have developed a machine learning method that could have a huge impact on understanding how material is formed during the additive manufacturing process. John Hopkins Applied Physics Laboratory, Laurel, MD Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin. “We anticipate that this new approach will be extremely impactful in helping design and understand material formation during additive manufacturing processes, and this fits into our overarching strategy focused on accelerating materials development for national security,” said
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
A research team led by Rice University’s Edward Knightly has uncovered an eavesdropping security vulnerability in high-frequency and high-speed wireless backhaul links, widely employed in critical applications such as 5G wireless cell phone signals and low-latency financial trading on Wall Street
Backed by a consortium of companies, Southwest Research Institute's demonstrator vehicle aims to prove the commercial viability of hydrogen engines for on-road trucks. For decades, the running joke around hydrogen being a viable fuel for commercial trucks has been that it's “ten years away from being ten years away.” Though hydrogen-fueled rigs operating at scale has long seemed like a pipe dream, shifting winds around the globe blowing towards decarbonization have finally pushed this technology to be ready for the road. With the demand for the development of new propulsion technologies rising, organizations such as the Southwest Research Institute (SwRI) have ramped up R&D efforts to make this tech commercially viable. SwRI is an independent provider of research services and can rapidly assemble teams to tackle problems. SwRI's main mission is to push the boundaries of science and technology to develop innovative solutions
Items per page:
50
1 – 50 of 11193