Browse Topic: Data management
Simulation-driven product development involves numerous computer aided engineering (CAE) model iterations, where each version represents a critical difference. Usually, these multiple model versions are generated by hundreds of simulation engineers working in teams distributed across the globe, making functional collaboration a key to effective product development. To manage vast amounts of CAE data generated by engineers working simultaneously on a project, it is imperative to have a robust version management system to track changes in the CAE data. A robust version management is the backbone of an effective simulation data management (SDM) system. It involves capturing and documenting model changes at every design iteration. Accurate documentation of the model changes is crucial as it helps in understanding the model evolution and collaboration among engineers. However, documenting is usually considered a boring and tedious task by many engineers. This often leads to bad change
Automotive OEMs can derive significant cost savings by reducing the quantity of physical crash tests and thereby accelerate product development, when they follow the Euro NCAP Virtual Testing procedure. It helps in optimizing the overall vehicle development process via more efficient simulations, as well as facilitates in early adoption of new safety regulations. In this pursuit, companies must comply with strict Euro NCAP requirements, which includes transparency and traceability of virtual tests. A major challenge therein is model validation – which requires highly precise detailing and extensive use of data for accurately replicating real physics of the problem. Deploying these workflows into an existing simulation process can be a complicated and time-consuming task, particularly when integrating various simulation and testing methods. A powerful simulation process and data management system (SPDM) can thereby assist companies to automate their entire simulation process, ensures
This paper presents an in-depth study on configuration management for civil aircraft electromechanical systems, grounded in process methodologies and practical experience of configuration management. Beginning with the definition and significance of configuration management, the study analyzes existing configuration management practices in domestic and international aviation enterprises. It systematically examines the requirements and frameworks for configuration management in civil aircraft electromechanical systems, refining critical elements through two primary dimensions: the establishment, refinement and implementation of configuration management processes. Critical refined elements are highlighted to offer actionable insights for civil aviation enterprises in advancing their configuration management practices.
The global electronics supply chain has always run in cycles — tight supply followed by sudden gluts — but in recent years, the pace and scale of disruption have accelerated. From semiconductor shortages to shifting trade policies and pandemic-driven bottlenecks, OEMs across every sector have been forced to rethink how they source and secure critical components.
This SAE Aerospace Information Report presents a glossary of terms commonly used in the ground delivery of fuel to an aircraft and pertinent terms relating to the aircraft being refueled.
In view of the complexity of railway engineering structure, the systematicness of professional collaboration and the high reliability of operation safety, this paper studied the spatial-temporal information data organization model with all elements in whole domain for Shuozhou-Huanghua Railway from the aspect of Shuozhou-Huanghua Railway spatial-temporal information security. Taking the unique spatial-temporal benchmark as the main line, the paper associated different spatial-temporal information to form an efficient organization model of Shuozhou-Huanghua Railway spatial-temporal information with all elements in the whole domain, so as to implement the effective organization of massive spatial-temporal information in various specialties and fields of Shuozhou-Huanghua Railway; By using GIS (Geographic Information System) visualization technology, spatial analysis technology and big data real-time dynamic rendering technology, it was realized the real-time dynamic visualization display
According to the engineering characteristics and general control management requirements of large rail transit depots, this paper establishes a set of modular general control management system based on information model through the division of engineering management modules, the application of BIM model of design and construction integration and the application of multi module control network.The relevant engineering application practice shows that the system can effectively solve the problem of the decomposition of the general control module of large-scale complex projects and the scientific estimation of the control management indexs, and has a significant role in improving the integrated management and information management level of large-scale rail transit depot projects.
An important characteristic of battery electric vehicles (BEVs) is their noise signature. Besides tire and wind noise, noise from auxiliaries as pumps, the electric drive unit (EDU) is one of the major contributors. The dynamic and acoustic behavior of EDUs can be significantly affected by production tolerances. The effects that lead to these scatter bands must be understood to be able to control them better and thus guarantee a consistently high quality of the products and a silent and pleasant drive. The paper discusses a simulation driven approach to investigate production tolerances and their effect on the NVH behavior of the EDU, using high precision transient multi-body dynamic analysis. This approach considers the main effects, influences, and the interaction from elastic structures of electric motor and transmission with accurate gear contact models in a fully coupled way. It serves as virtual end of line test, applicable in all steps of a new EDU development, by increasing
This terminology document is intended to provide a common nomenclature for use in publishing road vehicle aerodynamics data and reports.
Reliable antenna performance is crucial for aircraft communication, navigation, and radar detection systems. However, an aircraft's structure can detune the antenna input impedance and obstruct radiation, creating a range of potential problems from a low-quality experience for passengers who increasingly expect connectivity while in the air, to violating legal requirements around strict compliance standards. Determining appropriate antenna placement during the design phase can reduce risk of costly problems arising during physical testing stages. Engineers traditionally use a variety of CAD and electromagnetic simulation tools to design and analyze antennas. The use of multiple software tools, combined with globally distributed aircraft development teams, can result in challenges related to sharing models, transferring data, and maintaining the associativity of design and simulation results. To address these challenges, aircraft OEMs and suppliers are implementing unified modeling and
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, SAE appointed a committee to standardize terminology, test procedures, data recording, design symbols, and so forth in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Terminology within this document is limited to the dynamics and handling characteristics of single track, two-wheeled vehicles.
To provide standard terminology and definitions with regard to ignition systems for spark-ignited internal combustion engines.
In today’s electric age, the definition of ‘high-performance’ is being rewritten, courtesy of electric sports cars, supercars, and hypercars pushing limits that were once thought impossible to reach. Even Formula 1, quite surprisingly to many, has embraced electrification by integrating hybrid electric systems at the pinnacle of motorsport. Every jaw-dropping 0 to 60 mph time or record-breaking lap is backed by a battery system engineered with precision. Increasingly that precision is driven by simulation technology.
The following definitions and illustrations are intended to establish common nomenclature and terminology for driveshafts and their articulating joints used in various drivetrain applications. In addition, useful guidelines are included for the application of driveshafts and their joints. For more specific details, refer to AE-07.
The advent of EVs, ride sharing, global events such as the pandemic, chip shortage, and increasing dependency on suppliers are just some factors reshaping the automotive business. Consumer sentiment moving from product to experience resulted in more variants being launched at a record pace. Consequently, product development processes need to be more agile and yet more rigorous while bringing about cohesion and alignment across cross-functional teams to launch vehicles on time, on quality, and in budget. Automotive companies have been using Product Lifecycle Management (PLM) solutions for years to manage CAD, change, and BOMs. With changing business scenarios and increasing complexity of products, the sphere of influence of PLM solutions has expanded significantly over the last decade to manage all aspects of product development. Traditionally PLM software focused on integrating with different authoring tools and managing data in a central repository. The PLM solution had multiple such
This document applies to the development of Plans for integrating and managing electronic components in equipment for the military and commercial aerospace markets, as well as other ADHP markets that wish to use this document. Examples of electronic components described in this document include resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components, and relays. It is critical for the Plan owner to review and understand the design, materials, configuration control, and qualification methods of all “as-received” electronic components and their capabilities with respect to the application; and to identify risks and, where necessary, take additional action to mitigate the risks. The technical requirements are in Section 3 of this standard and the administrative requirements are in Section 4.
The document provides clarity related to multiple temperature coolant circuits used with on-highway and off-highway, gasoline, and light-duty to heavy-duty diesel engine cooling systems, or hybrid vehicle systems. These multiple temperature systems include engine jacket coolant plus at least one lower temperature system. Out of scope are the low temperature systems used in electric vehicles. This subject is covered in SAE J3073. Note that some content in SAE J3073 is likely to be of interest for hybrid vehicles. Out of scope are the terms and definitions of thermal flow control valves used in either low-temperature or high-temperature coolant circuits. This subject is covered in SAE J3142.
The scope of this SAE Aerospace Recommended Practice (ARP) is to establish the procedure for creating titles of aerospace tubing and clamp installation documents generated by SAE Subcommittee G-3E.
The transportation industry is transforming with the integration of advanced data technologies, edge devices, and artificial intelligence (AI). Intelligent transportation systems (ITS) are pivotal in optimizing traffic flow and safety. Central to this are transportation management centers, which manage transportation systems, traffic flow, and incident responses. Leveraging Advanced Data Technologies for Smart Traffic Management explores emerging trends in transportation data, focusing on data collection, aggregation, and sharing. Effective data management, AI application, and secure data sharing are crucial for optimizing operations. Integrating edge devices with existing systems presents challenges impacting security, cost, and efficiency. Ultimately, AI in transportation offers significant opportunities to predict and manage traffic conditions. AI-driven tools analyze historical data and current conditions to forecast future events. The importance of multidisciplinary approaches and
Items per page:
50
1 – 50 of 12474