Browse Topic: Data management

Items (12,643)
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
AS-1A Avionic Networks Committee
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
AS-1A Avionic Networks Committee
Multiple-ion-probe method consists of multiple ion probes placed on the combustion chamber wall, where each individual ion probe detects flame contact and records the time of contact. From the recorded data, it is also possible to indirectly visualize the inside of the combustion chamber, for example, as a motion animation of moving flame front. In this study, a thirty-two ion probes were used to record flames propagating in a two-stroke gasoline engine. The experiment recorded the combustion state in the engine for about 3 seconds under full load at about 6500 rpm, and about 300 cycles were recorded in one experiment. Twelve experiments were conducted under the same experimental conditions, and a total of 4,164 cycles of signal data were obtained in the twelve experiments. Two types of analysis were performed on this data: statistical analysis and machine learning analysis using a linear regression model. Statistical analysis calculated the average flame detection time and standard
Yatsufusa, TomoakiOkahira, TakehiroNagashige, Kohei
In traditional four-wheeled automobiles, the imbalance between the roll moment, which is the product of the centrifugal force during a turn acting on the center of gravity and the height of the center of gravity, and roll stiffness, which is the product of the left-right difference in tire vertical load and the tread width and commonly used among automotive suspension engineers, of the front and rear sections necessitates body torsional rigidity. However, there is a lack of specific cases and guidelines for constructing the body structure of three-wheeled PMVs (Personal Mobility Vehicles) with a tilting mechanism from the perspective of vehicle dynamics characteristics. In this paper, the basic considerations related to the dynamics of such three-wheeled PMVs are investigated. We use the term “torsional rigidity” to refer to the stiffness as the torsional deformation of the body itself, and the term “roll stiffness” to refer to the moment that counteracts the roll moment during a turn
Haraguchi, TetsunoriKaneko, Tetsuya
In order to rapidly achieve the goal of global net-zero carbon emissions, ammonia (NH3) has been deemed as a potential alternative fuel, and reforming partial ammonia to hydrogen using engine exhaust waste heat is a promising technology which can improve the combustion performance and reduce the emission of ammonia-fueled engines. However, so far, comprehensive research on the correlation between the reforming characteristic for accessible engineering applications of ammonia catalytic decomposition is not abundant. Moreover, relevant experimental studies are far from sufficient. In this paper, we conducted the experiments of catalytic decomposition of ammonia into hydrogen based on a fixed-bed reactor with Ru-Al2O3 catalysts to study the effects of reaction temperature, gas hour space velocity (GHSV) and reaction pressure on the decomposition characteristics. At the same time, energy flow analysis was carried out to explore the effects of various reaction conditions on system
Li, ZeLi, TieChen, RunLi, ShiyanZhou, XinyiWang, Ning
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Cooling Systems Standards Committee
This document provides definitions, terminology, and classifications for automated truck and bus vehicle applications. Vehicles covered by this document are those with a GVWR of more than 10000 pounds and where each vehicle utilizes driving automation systems that perform part or all of the driving task on a sustained basis and that range in level from some driving automation to full driving automation. The document also provides levels of driving automation that apply to the driving automation feature engaged in any given instance of operation of an equipped vehicle. A vehicle may be equipped with a driving automation system that is capable of delivering multiple driving automation features that perform at different levels; the level of driving automation exhibited in any given instance is determined by the feature(s) that are engaged. This document provides guidance for the elements of the dynamic driving task (DDT) for a truck or bus equipped with an Automated Driving System (ADS).
Truck and Bus Automation Safety Committee
This document describes machine-to-machine (M2M)1 communication to enable cooperation between two or more traffic participants or CDA devices hosted or controlled by said traffic participants. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle equipped with an engaged driving automation system feature and a CDA device. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of conventional vehicles or pedestrians or cyclists carrying compatible personal devices), or compatible road operator devices (e.g., those used by personnel who maintain or operate traffic signals or work zones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the safer and more efficient movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be
Cooperative Driving Automation(CDA) Committee
This SAE Recommended Practice provides uniform definitions and classifications for motorcycles and motorized three-wheel cycles.
Motorcycle Technical Steering Committee
Hurricane evacuations generate high traffic demand with increased crash risk. To mitigate such risk, transportation agencies can adopt high-resolution vehicle data to predict real-time crash risks. Previous crash risk prediction models mainly used limited infrastructure sensor data without covering many road segments. In this article, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data that contain vehicle speed and acceleration information collected at a high frequency (mean = 14.32, standard deviation = 6.82 s). The dataset was extracted from a database of connected vehicle data for the evacuation period of Hurricane Ida on Interstate-10 in Louisiana. Five machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data. The results indicate that the Gaussian process boosting and extreme gradient
Syed, Zaheen E MuktadiHasan, Samiul
Bendix® EC-80™ and certain EC-60™ ABS control units contain an event data recorder called the Bendix® Data Recorder (BDR). Raw BDR data is obtained using commercially available software, however, the translation of the raw data into an event report has only been performed by the manufacturer. In this paper, the raw data structures of the commercially available datasets are examined. It is demonstrated that the data follows uniform and repeatable patterns. The raw BDR data is converted into a conventional report and then validated against translation reports performed by the manufacturer. The techniques outlined in this research allow investigators to access and analyze BDR records independently of the manufacturer and in a way previously not possible.
DiSogra, MatthewHirsch, JeffreyYeakley, Adam
Bicycle computers record and store kinematic and physiologic data that can be useful for forensic investigations of crashes. The utility of speed data from bicycle computers depends on the accurate synchronization of the speed data with either the recorded time or position, and the accuracy of the reported speed. The primary goals of this study were to quantify the temporal asynchrony and the error amplitudes in speed measurements recorded by a common bicycle computer over a wide area and over a long period. We acquired 96 hours of data at 1-second intervals simultaneously from three Garmin Edge 530 computers mounted to the same bicycle during road cycling in rural and urban environments. Each computer recorded speed data using a different method: two units were paired to two different external speed sensors and a third unit was not paired to any remote sensors and calculated its speed based on GPS data. We synchronized the units based on the speed signals and used one of the paired
Booth, Gabrielle R.Siegmund, Gunter P.
This literature review examines the concept of Fitness to Drive (FTD) and its impairment due to drug consumption. Using a Systematic Literature Review (SLR) methodology, the paper analyzes literature from mechanical engineering and related fields to develop a multidisciplinary understanding of FTD. Firstly, the literature is analysed to provide a definition of FTD and collect methods to assess it. Secondly, the impact of drug use on driving performance is emphasized. Finally, driving simulators are presented as a valid possibility for analysing such effects in a safe, controlled and replicable environment. Key findings reveal a lack of a comprehensive taxonomy for FTD, with various assessment protocols in use. Only static simulators are employed for drug evaluation, limiting realism and result reliability. Standard Deviation of Lane Position (SDLP) emerges as a gold-standard measure for assessing driver performance. Future research should focus on developing standard definitions for
Uccello, LorenzoNobili, AlessandroPasina, LucaNovella, AlessioElli, ChiaraMastinu, Gianpiero
Video analysis plays a major role in many forensic fields. Many articles, publications, and presentations have covered the importance and difficulty in properly establishing frame timing. In many cases, the analyst is given video files that do not contain native metadata. In other cases, the files contain video recordings of the surveillance playback monitor which eliminates all original metadata from the video recording. These “video of video” recordings prevent an analyst from determining frame timing using metadata from the original file. However, within many of these video files, timestamp information is visually imprinted onto each frame. Analyses that rely on timing of events captured in video may benefit from these imprinted timestamps, but for forensic purposes, it is important to establish the accuracy and reliability of these timestamps. The purpose of this research is to examine the accuracy of these timestamps and to establish if they can be used to determine the timing
Molnar, BenjaminTerpstra, TobyVoitel, Tilo
Experimental studies of wind tunnel blockage for road vehicles have usually been conducted in model wind tunnels. Models have been made in a range of scales and tested in a working section of fixed size. More recently CFD studies of blockage have been undertaken, which allow a fixed vehicle size and the blockage is varied by changing the cross section of the flow domain. This has some inherent advantages. A very recent database of CFD derived drag and lift coefficients for different road vehicle shapes and simple bodies tested in a closed wall tunnel with a wide range of blockage ratios has become available and provides some additional insight into the blockage phenomenon. In this paper a process is developed to derive the parameters influencing wind tunnel blockage corrections from CFD data. These are shown to be reasonably effective for correcting the measured drag and lift coefficients at blockage ratios up to 10%.
Howell, JeffButcher, DanielGleason, Mark
This study validates the use of the pedestrian multibody model in the simulation software PC-Crash. If reasonable inputs are used, the pedestrian model will yield accurate simulations of pedestrian collisions, particularly in terms of accurately simulating the contact points between the pedestrian and the vehicle and in predicting the throw distance of the pedestrian. This study extends prior studies of the PC-Crash pedestrian multibody model by simulating additional staged collisions, by comparing the results of the model to widely utilized throw distance equations, by providing guidance on inputs for the pedestrian multibody, and by providing documentation of the characteristics of the multibody pedestrian. In addition, two new staged pedestrian collisions are discussed and simulated. This study demonstrates the following: (1) The center of gravity height of the PC-Crash pedestrian model is comparable to the center of gravity height reported for pedestrians in anthropometric data. (2
Rose, NathanSmith, ConnorCarter, NealMetanias, Andrew
Toyota vehicles equipped with Toyota Safety Sense (TSS) can record detailed information surrounding various driving events, including crashes. Often, this data is employed in accident reconstruction. TSS data is comprised of three main categories: Vehicle Control History (VCH), Freeze Frame Data (FFD), and image records. Because the TSS data resides in multiple Electronic Control Units (ECUs), the data recording is susceptible to catastrophic power loss. In this paper, the effects of a sudden power loss on the VCH, FFD, and images are studied. Events are triggered on a TSS 2.5+ equipped vehicle by driving toward a stationary target. After system activation, a total power loss is induced at various delays after activation. Results show that there is a minimum time required after system initiation in order to obtain full VCH, FFD, and image records. Power losses occurring within this time frame produce incomplete records. Data accuracy is unaffected, even in partial records.
Getz, CharlesDiSogra, MatthewSpivey, HeathJohnson, TaylorPatel, Amit
The vehicle wake region is of high importance when analyzing the aerodynamic performance of a vehicle. It is characterized by turbulent separated flow and large low-pressure regions that contribute significantly to drag. In some cases, the wake region can oscillate between different modes which can pose an engineering challenge during vehicle development. Vehicles that exhibit bimodal wake behavior need to have their drag values recorded over a sufficient time period to take into account the low frequency shift in drag signal, therefore, simulating such vehicle configurations in CFD could consume substantial CPU hours resulting in an expensive and inefficient vehicle design iterations process. As an alternative approach to running simulations for long periods of time, the impact of adding artificial turbulence to the inlet on wake behavior and its potential impact on reduced runtime for design process is investigated in this study. By adding turbulence to the upstream flow, the wake
DeMeo, MichaelParenti, GuidoMartinez Navarro, AlejandroShock, RichardFougere, NicolasRazi, PooyanOliveira, DaniloLindsey, CraigYu, ChenxingBreglia Sales, Flavio
This paper reviews the current situation in the terms and definitions that influence the development of testing and prediction in automotive, aerospace and other areas of engineering. The accuracy of these terms and definitions is very important for correct simulation, testing and prediction. This paper aims to define accurate terms and definitions. It also includes the author’s recommendations for improving this situation and preparing new standards.
Klyatis, Lev
This technical report provides a taxonomy and classification of powered micromobility vehicles. These vehicles may be privately owned or be available via shared- or rental-fleet operations. This technical report does not provide specifications or otherwise impose minimum safety design requirements for powered micromobility vehicles.
Powered Micromobility Vehicles Committee
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
Drivetrain Standards Committee
The scope of this document is to provide an overview and guidance to enable and monitor the use of Digital Thread data standards and the quantification of digital tread efficacy with the Digital Thread Qualitative Index. This document does not standardize the process. However, it does provide a methodology to determine efficiencies and inefficiencies of Digital Thread utilization across various phases of the product lifecycle.
G-31 Digital Transactions for Aerospace
The automotive industry is facing unprecedented pressure to reduce costs without compromising on quality and performance, particularly in the design and manufacturing. This paper provides a technical review of the multifaceted challenges involved in achieving cost efficiency while maintaining financial viability, functional integrity, and market competitiveness. Financial viability stands as a primary obstacle in cost reduction projects. The demand for innovative products needs to be balanced with the need for affordable materials while maintaining structural integrity. Suppliers’ cost structures, raw material fluctuations, and production volumes must be considered on the way to obtain optimal costs. Functional aspects lead to another layer of complexity, once changes in design or materials should not compromise safety, durability, or performance. Rigorous testing and simulation tools are indispensable to validate changes in the manufacturing process. Marketing considerations are also
Oliveira Neto, Raimundo ArraisSouza, Camila Gomes PeçanhaBrito, Luis Roberto BonfimGuimarães, Georges Louis Nogueira
The SAE Formula prototypes are developed by students, where in the competition, various aspects of project definitions are evaluated. Among the factors evaluated for scoring is the braking system, in which the present work aims to present the development and design of the braking system of a vehicle, prototype of Formula SAE student competition. As it is a project manufactured mostly by students, where the chassis, suspension system, electrical, transmission and powertrain are developed, it is important to first pass the static and safety tests, where the brakes of the four wheels are tested during deceleration at a certain distance from the track. To enable such approval and also to demonstrate, for the competition judges, the veracity of the system’s sizing, all the parameters and assumptions of the choice of the vehicle’s braking system are presented, thus ensuring their reliability, efficiency and safety. Using drawing and simulation software such as SolidWorks and Excel for
Gomes, Lucas OlenskiGrandinetti, Francisco JoséMartins, Marcelo SampaioSouza Soares, Alvaro ManoelReis de Faria Neto, AntônioCastro, Thais SantosAlmeida, Luís Fernando
The objective of this document is to provide a classification of AI techniques that may be used in AI-based systems for aeronautical products. Aeronautical products include products in Airborne and Air Traffic Management (ATM) and Air Navigation Systems (ANS) domains for crewed and uncrewed aircraft. This document is: Intended to provide an understanding of the AI space, which will improve over time Not intended to provide guidance, objectives, or safety considerations A scenario builder for AI technologies, in particular supervised learning The publication of a taxonomy document for the aviation domain is an opportunity to support other AI standardization initiatives that will also publish taxonomy documents. Disclaimer: This document provides content to support other products of the SAE G-34/EUROCAE WG-114 Committee.
G-34 Artificial Intelligence in Aviation
This specification covers performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in road vehicle applications that are: low voltage (0 to 60 VDC) or coaxial. Incomplete (mechanical) specifications for jacketed twisted pair connectors are also provided. These procedures are only applicable to terminals used for in-line, header, and device connector systems. They are not applicable to edge board connector systems, twist-lock connector systems, >60 VAC or DC, or to eyelet terminals. No electrical connector, terminal, or related component may be represented as having met USCAR specifications unless conformance to all applicable requirements of this specification have been verified and documented. All required verification and documentation must be done by the supplier of the part or parts. If testing is performed by another source, it does not relieve the primary
USCAR
This SAE Recommended Practice covers transfer cases used in passenger car and light truck applications. Transfer cases are of the chain, geared, manually and electronically shifted types although other configurations are possible. The operating points (speeds, temperatures, etc.) were chosen to mirror those of the United States Environmental Protection Agency Vehicle Chassis Dynamometer Driving Schedules (DDS).
Drivetrain Standards Committee
As vehicles adopt software-centric architectures, assessing vehicle software behavior becomes more complex, which can lead to the exploitation of overlooked or untreated vulnerabilities. Using these backdoors, attacks frequently targeted automotive products for malicious reasons. Automotive security incident management involves continuous monitoring of incidents and vulnerabilities. However, it faces challenges in reproducing attacks and revalidating security goals. The lack of visualization of attack scenarios, and vectors, and the knowledge required to replicate attacks hinders vulnerability assessment. The proposed approach aims to improve vulnerability assessment and document residual risks. It promotes replicating attack scenarios using cyber digital twins to support threat modeling, risk assessment, and threat analysis. The research paper focuses on utilizing digital twins for cybersecurity incident response, threat monitoring, and vulnerability exploitation by examining elastic
Venkatachalapathy, Sreenikethana
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included.
Machine Technical Steering Committee
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780.
E-34 Propulsion Lubricants Committee
This SAE Standard applies to horizontal earthboring machines of the following types: a Auger boring machines b Rod pushers c Rotary rod machines d Impact machines e Horizontal directional drilling (HDD) machines (tools only) The illustrations used are for classification and are not intended to resemble a particular machine. Only basic working dimensions are given. They may be supplemented by the machine manufacturer. This document is based on existing commercial horizontal earthboring machines. This document does not apply to HDD machines as defined in ISO 21467. It only covers tools used with HDD machines. It also does not apply to specialized mining machinery covered in SAE J1116, Table 1, nor does it apply to conveyors, tunnel boring machines, pipe jacking systems, microtunnelers, or well-drilling machines.
MTC9, Trenching and Horizontal Earthboring Machines
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
Researchers have developed a printing process that prints strong nonmetallic materials in record time — five times faster than traditional 3D printing. The process, called SWOMP, which stands for Selective dual-wavelength Olefin metathesis 3D printing, uses dual-wavelength light, unlike the traditional printing process.
In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brandnew showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious.
Items per page:
1 – 50 of 12643