Browse Topic: Defense industry

Items (3,074)
ABSTRACT Semiconductor manufacturers are creating new System on Chips that allow embedded system developers to design consolidated architectures to reduce size, weight, power, and cost. However, combining software functions onto a single computing resource creates safety and security concerns due to reduced fault containment and increased coupling between software components. Safety and security-conscious industries use various software separation solutions to isolate software functions logically in order to achieve a comparable level of decoupling and fault containment that distributed/federated systems enjoy as a by-product of their system architecture. This paper will assess the suitability of common separation solutions for use in embedded systems and explain our preference for Xen, an open source Type I hypervisor. This paper will also examine reasons for porting operating systems to run in virtual machines, also known as paravirtualization, and evaluate how certain properties of
Roach, Jarvis
ABSTRACT The demand for mobile, secure communications has been and will continue to be a fundamental requirement for dismounted, urban and distributed operations in the field. It is imperative that soldiers on the front lines receive actionable information in a timely, secured and uninterrupted manner to increase force protection and effectiveness. In this paper, we describe a novel, high technical maturity (TRL 8+) communications link that offers the mounted and dismounted soldier secure, beyond line of sight, encrypted capability for weapons control and command & control of multiple platforms. An innovative spread spectrum waveform was designed from the ground up to deliver necessary functionality for reliable communications amongst multiple nodes with a data rate and range commensurate with battlefield scenarios
Mehta, Amish A.Cambridge, AndrewGardner, Brian
ABSTRACT The importance of hardening robotic and autonomous systems (RAS) considered for field deployment against cyber threats has been recognized by organizations across the Department of Defense (DoD). Among these needs is the ability to securely provide these modern military vehicles with software updates containing critical new functionality and security improvements. A secure update process and system for military RAS has been implemented building on a framework designed for the automotive industry. Demonstrations of the capabilities and mitigations against possible attacks on the update process will be performed on a RAS MRZR in a mock field environment. Citation: S. Pereira, C. Mott, D. Mikulski, “Secure Update Process For Robotic And Autonomous Systems,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Pereira, SabrinaMott, CameronMikulski, Dariusz
ABSTRACT Synthetic terrain generation and scene generation is a critical component of performing meaningful simulation assessments across many simulation domains. The U.S. Army Combat Capabilities Development Command Aviation and Missile Center (CCDC AvMC) has developed a process for rapidly generating and characterizing large-scale, multispectral terrain models and thermal signatures for use in a wide range of simulation tools from ground vehicles and air platforms to smart weapons and AI algorithms. This process has allowed the replacement of legacy terrain generation methods of on-site collections or statistics-based models with high-fidelity, physics-based terrain signature modeling at a fraction of the schedule and cost by leveraging modern high-performance computing paradigms and algorithms. This allows for rapid generation of terrain models of any location in the world at any time of day or season. Citation: P. Etheredge, M. Rigney, B. Seal, J. Burns, T. Fronckowiak, J. Walters
Etheredge, PaulRigney, MattSeal, BradBurns, JamieFronckowiak, TomWalters, Josh
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT The latest advancements in common rail fuel injection system, material science, engine control strategies, and manufacturing technologies have challenged and allowed engine designers to create a high power density, fuel efficient, reliable, and environmental friendly multi-fuel engine. To increase power density a novel high-speed 2-stroke turbocharged compression ignition engine will feed the pressurized air directly into the combustion chamber without going through the crankcase. Thus, only pressurized clean air will be used for combustion and oil consumption will be dramatically reduced. To further improve volumetric efficiency and reduce emissions, a computer controlled dynamic variable valve timing system can be incorporated such that the optimum amount of pressurized air will be available for combustion at various loads and conditions. Combustion efficiency at different loads can be optimized by adjusting the compression ratio dynamically through computer control. By
Chue, Stephen
ABSTRACT The Integrated Systems Engineering Framework (ISEF) is an Army Research, Development, and Engineering Command (RDECOM) solution to address stovepiped systems engineering(SE) information and processes, disparate tools united by custom, one-off integrations, and a lack of accepted, common standards that exists in today’s Department of Defense (DoD) operating environment. Ever increasing technical complexity of fielded solutions combined with budgetary constraints push DoD engineers to “do more with less,” requiring a technical management solution that allows them collaborate virtually yet effectively with distributed engineers and other stakeholders. Easy access to systems engineering tools and information through a single “cloud” based application allows connections between federated databases, and facilitates knowledge preservation over time to avoid “reinventing the wheel” when new programs replace retired ones. ISEF is an ever-expanding collection of systems engineering
Umpfenbach, EdwardMendonza, PradeepGraf, Lisa
ABSTRACT The Army Acquisition community has a significant deficiency in the amount of operational expertise to influence a particular S&T technology or acquisition program. As a result, emerging materiel solutions often fall short of their desired utility in the eyes of the warfighter. In a fiscally constrained environment, the product development team must use all available resources in the most efficient manner to produce the highest quality product in the shortest time possible for the end user. By repurposing the information contained in the Combined Arms Training Strategies (CATS) task database, an engineering team can gain the operational knowledge and environment from the training tools the Army uses, requiring less burden on the few operational experts that exist within the Acquisition Corps. A process to accomplish this is being developed at TARDEC and has had early success in characterizing vehicle operator behaviors beyond what occurs within structure of a vehicle
Horning, Matthew A.
ABSTRACT In any active safety system, it is desired to measure the “performance”. For the estimation case, generally a cost function like Mean-Square Error is used. For detection cases, the combination of Probability of Detection and Probability of False Alarm is used. Scenarios that would really expose performance measurement involve complex, dangerous and costly driving situations and are hard to recreate while having a low probability of actually being acquired . Using a virtual tool, we can produce the trials necessary to adequately determine the performance of active safety algorithms and systems. In this paper, we will outline the problem of measuring the performance of active safety algorithms or systems. We will then discuss the approach of using complex scenario design and Monte Carlo techniques to determine performance. We then follow with a brief discussion of Prescan and how it can help in this endeavor. Finally, two Monte Carlo type examples for particular active safety
Gioutsos, TonyBlackburn, Jeff
ABSTRACT BAE Systems has developed a system level approach for identifying the issues associated with collocating Blue Force Communications with other on-board emitters. Specific scenarios include broadband interference caused by Electronic Warfare (EW) and radio congestion. Our approach is divided into three (3) functional areas to resolve this complex situation: (1) the proper selection and placement of Advanced Antenna Structures. (2) Receiver front end overloading protection through the use of a Wide Band Frequency Domain Cancellation Analog/Digital RF cancellation process. (3) The further refinement of the signal through the use of Digital Signal Processing for interference estimation, tracking, and cancellation based on efficient adaptive algorithms
Beltz, RandolphHombs, BandonMouyos, William
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on measured vehicle parameters. This paper presents an overview of a vehicle prognostic system, including the critical tasks associated with configuring such a system. The end user of a vehicle prognostic system focuses on the reports generated by the system that provide indications of vehicle readiness, condition and remaining useful life. These reports are based on measurements recorded from sensors on the vehicle and analyzed either on the vehicle or remotely by a “back office” information management system; the latter also provides usage severity trends. To implement such a system, an engineer must first define the vehicle components of interest and determine “damage correlates”: the relationship between damage occurring on key component(s) and key vehicle parameters that can be obtained from vehicle “bus data”. These “damage correlates” and the associated analysis methods
Pompetzki, MarkDabell, BrianGothamy, JosephBechtel, James
ABSTRACT General Dynamics Land Systems has developed an Auxiliary Power Unit (APU) that provides 508A at 28VDC, for 14.2 KW. It is a stand-alone system, independent of the vehicle systems, except for utilizing vehicle fuel and vehicle batteries. Power is generated by a 570 amp alternator that is belt-driven by a diesel engine. It is load following which improves fuel efficiency and eliminates the probability of “wet stacking.” All the major components are commercially available and the APU is ready for production
Humble, Jeff
ABSTRACT The Department of Defense is a major consumer of petroleum products – over 700 million gallons per day. While the majority of fuel consumed is for aircraft, in terms of logistics and exposure of personnel to hazardous conditions, the amount of fuel consumed in ground vehicles is considerable, with the cost (in-theatre, delivered) ranging from $100 to $600/gallon. This paper addresses the impact that parasitic friction mechanisms (boundary lubrication and lubricant viscosity) have on engine friction and overall vehicle efficiency. A series of mechanistic models of friction losses in key engine components was applied to investigate the impact of low-friction technologies on the fuel consumption of heavy-duty, on-road vehicles. The results indicate that fuel savings in the range of 3 to 5% are feasible by reducing boundary friction and utilizing low-viscosity engine lubricants. The paper will discuss the implications of the studies (as performed for commercial heavy-duty trucks
Fenske, G. R.Erck, R. A.Ajayi, O. O.Masoner, A.Comfort, A. S.
ABSTRACT Crowdsourcing is an overarching term that denotes a number of ways to use the web as means to enlist a large number of individuals to perform a particular task. The tasks can range from simply providing an opinion, to contributing material, to solving a problem. Because the term crowdsourcing is used to denote a variety of activities in many different contexts, strong opinions have formed in many minds. This paper is an attempt to inform the reader of the complexity that underlies the simple term “crowdsourcing.” We then describe the connection between the DARPA Adaptive Vehicle Make program with the potential limitations of crowdsourcing complex tasks using examples from industry. Using these examples, we present a research motivation detailing areas to be improved within current crowdsourcing frameworks. Finally, an agent-based simulation using machine learning techniques is defined, preliminary results are presented, and future research directions are described
Gerth, Richard J.Burnap, AlexPapalambros, Panos
ABSTRACT This paper addresses the Program Management Office’s perspective of the robotic technology needs required to meet the capability gaps identified by the Warfighter. The objective is to relay these needs to the Science and Technology (S&T) community and industry in order to guide their investment dollars in the right direction. The Robotic Systems Joint Project Office (RS JPO) has been working closely with the Tank Automotive Research, Development, and Engineering Center (TARDEC) to establish near, mid and far term needs for robotic technologies. The hope is to communicate those needs to successfully steer the robotic research and development efforts to meet the capabilities most needed by our Warfighters
Brennan, AdamHart, Aaron D.Saxon, NancyRappold, RobertMazzara, Mark
ABSTRACT Product Development (PD) remains a highly uncertain process for both commercial and DoD programs. The presence of multiple stakeholders (e.g., DoD and allied agencies, soldiers/users, PEO, contractors, manufacturing, service, logistics) with varying requirements, preferences, constraints, and evolving priorities make this particularly challenging for the DoD. These risks are well recognized by agencies, and it is widely understood that acquisition is about risk management and not certainties. However, almost all the DoD acquisition processes still require critical reviews, and most importantly, structured decision support for the fuzzy front-end of the acquisition process. What is lacking, are effective decision support tools that explicitly recognize the sequential milestone structure embedded with multi-stakeholder decision making in all acquisition programs. We describe the Resilient Program Management & Development (RPMD) framework to support complex decision making with
Murat, AlperChinnam, Ratna BabuRana, SatyendraRapp, Stephen H.Hartman, Gregory D.Lamb, David A.Agusti, Rachel S.
ABSTRACT This paper examines the current state of scalable CFD for high-performance computing (HPC) clusters at industry-scale, and provides a review of novel technologies that can enable additional levels of CFD parallelism beyond today’s conventional approach. Recent trends in HPC offer opportunities for CFD solution performance increases from the use of parallel file systems for parallel I/O, and a second level of solver parallelism through hybrid CPU-GPU co-processing
Posey, Stan
ABSTRACT The integration of software into transportation systems is growing and requires the adoption of safety standards and software development systems. There are several different safety standards that could be applied based on the specific category of use. The basic methodologies used in these standards can be applied to any transportation system including Ground Based systems. This paper evaluates two different safety development standards and provides a high level comparison between a well-used standard for aviation and a more recent standard for automotive that can be applied to other transportations systems with no available standards
Crots, KevinSkentzos, PaulBartz, Dan
ABSTRACT One of the best ways to achieve full hardware utilization while maintaining a strict level of security and safety in a single System on a Chip (SoC) is through the use of virtualization. In this paper, we will explain the capabilities of the Xilinx Zynq UltraScale+ MultiProcessor SoC (MPSoC) and how they relate to target technology areas such as ARM processors and multi-core technology. We will also explain the features of Xen that aid in improving the safety and security of a virtualized system. We will provide examples of how to utilize these features, identify benefits, and explain how they can be used to implement several technology features including: SWAP-C reductions via consolidations, modular software architectures, and integration of multiple real-time operating systems
VanVossen, Robert
ABSTRACT This paper discusses various soft security considerations that should be accounted for in the next generation of advanced military unmanned systems. By modeling unmanned system teams as mobile ad hoc networks, we underscore the different types of information-based security vulnerabilities that motivated adversaries may be able to exploit in unmanned systems. Then we provide an overview of computational trust and show that it can be used to defend against these vulnerabilities by finding the most reliable agents to interact with from a pool of potential agents. Finally, we discuss ongoing work at U.S. Army TARDEC that is applying computational trust within a vehicle controller for autonomous convoy operations
Mikulski, Dariusz
ABSTRACT The United States military stands to greatly benefit from perpetual advances in vehicle-borne 360-degree Situational Awareness (SA) systems. However, in recent years, a gap has emerged that hinders development of vehicle-borne 360 SA. At a fundamental level, military ground vehicle designers require unambiguous requirements to build effective 360-degree SA systems; and, critical decision-makers must define requirements that offer substantial operational value. To ensure that 360-degree SA systems effectively address Warfighter requirements, the military ground vehicle research and development communities must better understand vehicle-borne 360 SA evaluation parameters and their relevance to current military operations. This paper will therefore describe a set of evaluation parameters across five broad categories that are vital to effective 360-degree SA: namely, vehicle-mounted visual sensors, data transmission systems, in-vehicle displays, intelligent cuing technologies, and
Mikulski, ThomasBerman, David
ABSTRACT Programs have traditionally defined system requirements based on mission requirements and former system characteristics with limited knowledge on how their decisions impact the overall design space. This paper describes a methodology that combines model based systems engineering (MBSE) and multi-criteria decision-making (MCDM) to define affordable requirements prior to the design cycle. Two unmanned aerial vehicle (UAV) concepts were modeled in a multi-disciplinary simulation process environment using SIMULIA’s Process Composer application. Then the results were loaded into SIMULIA’s Results Analytics application, an advanced analytics and decision support tool, for performance versus affordability requirement trade-off analysis. Results Analytics is able to uncover data patterns, show design space sensitivity to requirements, and explicitly prioritize and quantify requirements employing a design ranking algorithm
Ceisel, JohannaKoch, PatrickVelden, Alex Van Der
ABSTRACT The current reliability growth planning model used by the US Army, the Planning Model for Projection Methodology (PM2), is insufficient for the needs of the Army. This paper will detail the limitations of PM2 that cause Army programs to develop reliability growth plans that incorporate unrealistic assumptions and often demand that infeasible levels of reliability be achieved. In addition to this, another reliability growth planning model being developed to address some of these limitations, the Bayesian Continuous Planning Model (BCPM), will be discussed along with its own limitations. This paper will also cover a third reliability growth planning model that is being developed which incorporates the advantageous features of PM2 and BCPM but replaces the unrealistic assumptions with more realistic and customizable ones. The internal workings of this new TARDEC developed simulation-based model will be delved into with a focus on the advantages this model holds over PM2 and BCPM
Kosinski, Daniel
ABSTRACT The United States Army Tank Automotive Research, Development and Engineering Center (TARDEC) is actively investigating and researching ways to advance the state of combat hybrid-electric power system technology for use in military vehicles including the Future Combat Systems’ family of manned and unmanned ground vehicles. Science Applications International Corporation (SAIC) is the lead contractor for operating the Power and Energy System Integration Laboratory (P&E SIL) in Santa Clara, CA. The P&E SIL houses a combat hybrid electric power system including a diesel engine, generator, high voltage bus, DC-DC converter, lithium ion battery pack, left and right induction motors, and left and right dynamometers. The power system is sized for a 20-22 ton tracked vehicle. The dynamometers are responsible for emulating loads that the vehicle would see while running over a course. This paper discusses the control system design for achieving mobility load emulation. Mobility load
Goodell, JarrettSmith, WilfordWong, Byron
ABSTRACT Battelle has built multiple auxiliary power generators using liquid logistic fuels that tightly couple fuel cell and fuel processing systems, providing new control challenges. Acting as an auxiliary power supply places difficult requirements for load following and transients. Additional challenges arise from the differing time constraints of the fuel processor and fuel cell systems and the need to maintain water balance. A novel method of controlling the system has been formulated and applied, providing pushbutton start capabilities. The control system has proven to be robust and easily adaptable to system design and operating parameter changes. In addition to control concerns, the requirements for vehicle integration and desulphurization have been investigated
Thornton, DouglasContini, VinceMcCandlish, Todd
ABSTRACT Product Lines are a group of related products manufactured or produced within or between collaborating organizations. To effectively manage a product line, one needs to understand both the similarities and differences between the different products and optimize the development lifecycle to leverage the similarities, and concentrate development on the differences. ISO 26550:2013 Software & Systems Engineering – Reference Model for Product Line Management & Engineering provides a standard for defining these similarities and differences as well as the choices between them. Model-Based Systems and Software Engineering (MBSE) using the Systems Modeling Language (SysML) and the Unified Modeling Language (UML) provide a means of modeling systems and software. Bringing the two together allows users to model product lines in industry standard formats. Combining these with an execution engine means that product models can be created for specific products, whilst maintaining the original
Hause, Matthew
ABSTRACT Program Executive Office (PEO) Ground Combat Systems (GCS) initiated a Green Belt project in 2007 to develop a risk management process. The Integrated Product Team (IPT) built on Defense Acquisition University (DAU) and Department of Defense (DoD) risk management guidance to create a process for risk analysis, mitigation, and rules for Risk Review Board approval. To automate this process, the IPT eventually created an Army owned, customizable tool (Risk Recon) that matched the PEO GCS process. Risk Recon is used to track risks throughout the acquisition life-cycle. Changing the culture of the PEO has been the most significant challenge. Training and follow-up of risk progress is required to keep the process from becoming stagnant. Partnership with the Original Equipment Manufacturer (OEMs)s is an integral part of all programs and a balance is needed between how the PEO and its OEMs perform risk management and communicate those risks. The software requirements continue to
Rassette, CherylGraf, LisaOlsem, MikeDmoch, Barb
ABSTRACT Of the tests of any good theory or suppositional work, the most critical is whether it can forecast the need or accurately describe the number, timing, event and impact of the endeavor. In order to reduce the risk and to exponentially increase the rate of success a continual reevaluation of the data and reconfiguration of the plan will be required, must be properly front-loaded with the appropriate human capital. This is precisely where the application of Six Sigma, Project Management and, Six Sigma for Human Capital works’ intimately with Risk Management to mitigate error and insure the ultimate success of the effort. This is critical in business, critical in the field for greater energy efficiency for soldiers. Unified in concert as core disciplines, the identification of human capital for specialists required at any particular point in the project especially in the definition and design phases, is determined with greater accuracy. Critically predictable and integrated into
Maholick, WilliamGodell, Carl J
ABSTRACT This GVSETS paper outlines the strategy for integrating Digital Engineering (DE) practices into the Detroit Arsenal (DTA) acquisition, engineering, and sustainment communities. A DTA DE Community of Practice (CoP) is being led by Program Executive Office (PEO) Ground Combat Systems (GCS), PEO Combat Support & Combat Service Support (CS&CSS), Combat Capabilities Development Command (DEVCOM) Ground Vehicles Systems Center (GVSC), and Tank-Automotive & Armaments Command (TACOM). In addition, Program Management Offices (PMOs) will document their DE implementation plans as part of all planning documents per Assistant Secretary of the Army for Acquisition, Logistics & Technology (ASA[ALT]) guidance [1]. In this paper, each of the DTA organizations will address the following: Ongoing DE Related Efforts; Upcoming / Planned Efforts / Opportunities; Lessons Learned; and Challenges / Issues / Help Needed. Additionally, each DTA organization explains its current and future states along
Alexander, EricReilly, GlennKwietniewski, AndrewBerklich, Bill
ABSTRACT Leveraging an open standard may still not achieve the desired interoperability between systems. Addressing “lessons learned” from past implementations of open standards for various Department of Defense (DoD) acquisition programs is critical for future success. This paper discusses past issues which range from insufficient technical detail, when and how to apply a given specification, verification of an implementation’s compliance, to inconsistent and imprecise contractual language. This paper illustrates how the Vehicular Integration for C4ISR/EW Interoperability (VICTORY) initiative addresses these challenges to enable interoperability on Army ground vehicles, as well as facilitate rapid technology insertion and incorporation of new capabilities. VICTORY represents a leap ahead in solving interoperability challenges and defining open standards
Dirner, JasonMelber, AdamPankowski, John A.
ABSTRACT The purpose of this paper is to describe a methodology for applying Model-Based Systems Engineering (MBSE) practices to Test and Evaluation (T&E) practices. The Georgia Tech Research Institute GTRI has developed a process which includes using MBSE tooling & modeling languages, automatic test case generation based on modeling, and requirements coverage thereof. This paper describes the developed process and the benefits that it brings to T&E practices. Citation: R. Dunning, W. Matteson, R. Wise, J. Sharpe, “Using a Model-based Approach for Test and Evaluation”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
Dunning, RetonyaMatteson, WhitWise, RichardSharpe, Jennifer
ABSTRACT This paper discusses the semi-active suspension system developed by A.M. General to provide mobility and maneuverability for tactical, wheeled vehicles
Tackett, WendellLovell, JeffreyBrown, Chris
ABSTRACT The proliferation of information technology adds expanded capabilities and exposes new vulnerabilities through cyber warfare. To combat new threats software quality must go beyond CMMI maturity levels and embrace a software development lifecycle (SDLC) with measurable cybersecurity assurance. Standard cybersecurity artifacts throughout the SDLC should be expected and available for inspection. Integrated software applications can confidently and rapidly reduce their threat exposure by incorporating reusable data management components with a pedigree of cybersecurity SDLC assurance evidence
Dorny, JonathanIngenthron, SusanErian, JoeTarka, MattHansen, Kurt
ABSTRACT Problem: The traditional four (4) methods for improving reliability; 1) High design safety margin, 2) Reduction in component count or system architectural complexity, 3) Redundancy, and 4) Back-up capability, are often ignored or perceived as being excessively costly in weight, space claim as well as money. Solution 1: Discussed here are the practical and very cost effective methods for achieving improved reliability by Functional Interface Stress Hardening (FISHtm or FISHingtm). The Author has been able to apply FISH to eliminate 70-92% of unscheduled equipment downtime, within 30-60 days, for more than 30 of the Fortune 500 and many other large companies which utilize automation controls, computers, power electronics and hydraulic control systems. Solution 2: From Structured Innovation the 33 DFR Methods & R-TRIZ Tool can be used to grow or improve reliability, via rapid innovation. The R-TRIZ tool) is provided so that users can instantly select the best 2, 3 or 4 of these
Cooper, Howard C
ABSTRACT A bainite phase-based alloy and associated thermomechanical process were developed to produce (2.5 to over 5 cm) thick armor-grade steel with uniform through-thickness high hardness and strength. The alloy composition and the final-critical (austenite to bainite) isothermal transformation step were specifically designed to utilize a simple and versatile air-cool/quench method to keep a low upfront capital cost and to provide the ability to continuously control the cooling rate in real time, in order to produce maximum volume fraction of bainite phase, and promote uniformly distributed strength and hardness. Final thickness of 1.9 cm and 5.7 cm steel plates were fabricated for characterization, testing and evaluation and found to possess uniform through-thickness hardness between 53 to 55 HRC and dynamic compressive strength of up to 2 GPa
Chu, Henry S.Lillo, Thomas M.Anderson, Jeffrey A.Zagula, Thomas A.
ABSTRACT Use of Model-Based Design (MBD) processes for embedded controls software Development has been purported for nearly the last decade to result in cost, quality, and delivery improvements. Initially the business case for MBD was rather vague and qualitative in nature, but more data is now becoming available to support the premise for this development methodology. Many times the implementation of MBD in an organization is bundled with other software process improvements such as CMMI or industry safety standards compliance, so trying to unbundle the contributions from MBD has been problematic. This paper addresses the dominant factors for MBD cost savings and the business benefits that have been realized by companies in various industries engaged in MBD development. It also summarizes some key management best practices and success factors that have helped organizations achieve success in MBD deployment
Lannan, Ron
ABSTRACT Reliability Physics simulations for electronic assemblies has matured to become best practice during specification and design. However, the potential advantages of these simulations to programs and integrators are more far reaching. This paper will explore how the simulations can be used for virtual qualification, reliability assurance, maintenance scheduling and obsolescence management. Citation: Ed Dodd, “Reliability Simulations for Electronic Assemblies: Virtual Qualification, Reliability Assurance, Maintenance Scheduling and Obsolescence Mitigation”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Dodd, Ed
ABSTRACT Ballistic validation testing typically involves firing multiple shots at a nominal velocity and ensuring the target stops every round with only partial penetrations, no completes. This testing is specified as a consequence of the binary nature of the test, and the need to meet a particular probability of penetration at a specified velocity with a certain confidence level. This legacy process has significant shortcomings owing to both the test procedures involved as well as the nature of the statistical interpretation of the results. This paper describes an alternative test and analysis procedure that produces the required level of performance and confidence information at a specified velocity, as well as the confidence over a wide range of other velocities and performance levels. In addition, this procedure eliminates many of the shortcomings associated with the legacy “no penetration” test protocol, and requires no more shots at the target. Citation: J. Eridon, S. Mishler
Eridon, JamesMishler, Scott
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education. It is multidisciplinary, theory-based, hands-on, team implemented, outcome assessed, and based on product realization. It encompasses the very latest technologies impacting industrial development and taps subjects of high interest to students. Design and construction of an Intelligent Vehicle fits well in a two semester senior year design capstone course, or an extracurricular activity earning design credit. The deadline of an end-of-term competition is a real-world constraint that includes the excitement of potential winning recognition and financial gain. Students at all levels of undergraduate and graduate education can contribute to the team effort, and those at the lower levels benefit greatly from the experience and mentoring of those at higher levels. Team organization and leadership are practiced, and there are even roles for team members from business and engineering
Kosinski, AndrewTarakhovsky, JaneIyengar, KiranLane, JerryCheok, KaCTheisen, Bernie
ABSTRACT A newly developed structural adhesive demonstrates a unique combination of high strength (43 ± 2 MPa) and displacement (4.7 ± 1.2 mm) in aluminum lap joint testing. Bulk material characterization of the prototype adhesive reveals its extreme ductility, with nearly 80% shear strain before failure and a 2.5-fold increase in strain energy density as compared to commercial structural adhesives. The prototype adhesive is found to maintain 67 to 82% of its initial strength under extreme environmental conditions, including at high temperatures (71°C), after high humidity (63°C hot water soak, 2 weeks), and after corrosive conditions (B117 salt spray, 1000 hours). The prototype structural adhesive is shown to also generate high strength bonds with multiple substrates, including steel, carbon fiber, and mixed material joints, while also providing galvanic isolation
Pollum, MarvinKriley, JosephNakajima, MasaTan, Kar TeanStalker, JeffreyFleischauer, RichardRearick, Brian
ABSTRACT Digital Engineering (DE) strategy is defined by the Department of Defense and establishes five goals [1]. One of the goals includes providing an enduring, authoritative source of truth, which moves the primary means of communication from documents to digital models and data. This enables access, management, analysis, use, and distribution of information from a common set of digital models and data. As a result, stakeholders have the current, authoritative, and consistent information for use over the lifecycle. The DE Model Based Systems Engineering (MBSE) Reference Architecture Framework (RAF) defines, at a minimum, the digital model authoritative source of truth, model structure, stakeholder needs, systems and subsystem context, process model elements, architecture types, views, viewpoints, and supporting methodologies and best practices. This framework is defined using the Systems Modeling Language, semantics, and constructs. The RAF structure is expressed to support DE
Griffin, Kevin W.Suffredini, Giuseppe D.Kanon, Robert J.Dua, Surender K.Yeh, Jihsiang J.Alexander, Eric J.Feury, Mark R.Kouba, Russell D.
Abstract: The Team Cybernet vehicle for the 2007 DARPA Urban Challenge1 incorporated a route planning approach that uses sensed obstacles in the environment as the basis for potential turn placement prior to performing path search. The path search is confined to finding a set of straight-line tangents that connect circles of maximum curvature that are constructed adjacent to sensed obstacles. This approach is substantially different from traditional approaches in that the complexity of the search space is not based on the length of the path, but rather on the number of obstacles in the field. For sparse obstacle fields, this approach allows for very fast plan generation and results in paths that are guaranteed by construction to not violate steering constraints
Rowe, SteveJacobus, CharlesHaanpaa, Douglas
ABSTRACT Accurate reliability assessment requires accurate output distribution. To obtain correct output distribution, a very large number of output physical test data is required, which is prohibitively expensive. Regarding this, simulation-based methods have been developed under the assumption that: (1) accurate input distribution models obtained from large number of input test data; and (2) accurate simulation model (including surrogate model if utilized) that correctly represents physical phenomena. However, in real application, only limited numbers of input test data are available. Thus, input distribution models are uncertain. In addition, the simulation model could be biased due to assumptions and idealizations. Furthermore, only a limited number of physical output test data is available. As a result, a target output distribution to which simulation model can be validated is uncertain and the corresponding reliability is also uncertain. This paper proposes a confidence-based
Choi, K.K.Cho, HyunkyooMoon, Min-yeongGaul, NicholasLamb, DavidGorsich, David
ABSTRACT The Joint Operational Energy Initiative (JOEI) models energy (and all classes of supply) consumption, generation, and sustainment across a virtual battlefield area of operations utilizing the System of Systems Analysis Toolset (SoSAT) and the Fully Burdened Cost Tool (FBCT). Recent advances in SoSAT provide a capability to model condition-based scenarios that better represent complex dynamic scenario changes and provide more accurate, realistic operational scenario and sustainment modeling. In addition, the JOEI team developed a new operational metric called Combat Effective Operational Endurance (CEOE) using SoSAT system-level outputs to determine unit combat power over time based on system availability and system combat weights. FBCT improvements include increased synchronization with SoSAT and expansion of capabilities to model Class V (ammunition), Class VII (major end item) transport, troop movement, convoy generation and higher fidelity cost allocation. The new SoSAT
Ernst, BrianAgusti, RachelAnderson, DennisLe, HaiKish, AlanBosselut, FrancoisPitluck-Schmitt, MeaganZabat, Michael
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education, with a particular focus in developing engineering control/sensor integration experience for the college student participants. A main challenge area for teams is the proper processing of all the vehicle sensor feeds, optimal integration of the sensor feeds into a world map and the vehicle leveraging that world map to plot a safe course using robust control algorithms. This has been an ongoing challenge throughout the 26 year history of the competition and is a challenge shared with the growing autonomous vehicle industry. High consistency, reliability and redundancy of sensor feeds, accurate sensor fusion and fault-tolerant vehicle controls are critical, as even small misinterpretations can cause catastrophic results, as evidenced by the recent serious vehicle crashes experienced by self-driving companies including Tesla and Uber Optimal control techniques & sensor selection
Kosinski, AndrewIyengar, KiranTarakhovsky, JaneLane, JerryCheok, KaCTheisen, BernieOweis, Sami
ABSTRACT System complexity continues to grow, creating many new challenges for engineers and decision makers. To maximize value delivery, amidst this complexity, “both” Systems Engineering and Decision Analysis capabilities are essential. For well over a decade the systems engineering profession has had a significant focus on improving systems engineering processes. While process plays an important role, the focus on process was often at the expense of foundational engineering axioms and their contribution to system value. As a consequence, Systems Engineers were viewed as process shepherds which diluted their technical influence on programs. With the recent shift toward Model Based Systems Engineering (MBSE) the Systems Engineering discipline is “getting back to basics,” focusing on value delivery via foundational engineering axioms built upon first principles, using established laws of engineering and science. This paper will share how Pattern Based Systems Engineering (PBSE), as
Peterson, TroySchindel, Bill
ABSTRACT Systems Engineering is an interdisciplinary approach that concentrates on the design and application of the whole as distinct from the parts. For complex systems, this includes the challenge that the behavior of the system as a whole is not intuitively understood by understanding the components. Classic System Engineering models establish a perception of a beginning and an end of the systems engineering process. Unfortunately, a long period between product launch and discovery of unexpected behavior for systems may occur with a protracted lifecycle. A Systems Engineering approach based upon the “control theory” model establishes a high correlation between interdisciplinary models to facilitate feedback throughout the system lifecycle to tune capabilities to user satisfaction. This close coupling extends well beyond tracing of requirements to qualification testing fulfillment as practiced in the traditional “V” model. The system itself is a traceability link providing lifecycle
Dorny, JonathanMiller, Tim
ABSTRACT Program offices and the test community all desire to be more efficient with respect to testing but currently lack the analytical tools to help them fit early subsystem level testing into a framework which allows them to perform assessments at the system level. TARDEC initiated a Small Business Innovative Research (SBIR) effort to develop and deploy a system reliability testing and optimization tool that will quantify the value of subsystem level tests in an overall test program and incorporate the results into system level evaluations. The concept software, named the Army Lifecycle Test Optimization (ALTO) tool, provides not only the optimization capability desired, but also other key features to quickly see the current status, metrics, schedule, and reliability plots for the current test plan. As the user makes changes to the test plan, either by running the optimization or adjusting inputs or factors, the impacts on each of these areas is computed and displayed
Luna, JoelSnider, SharonBrudnak, MarkLaRose, BryanMorgan, MelissaKosinski, DanScott, Mike
ABSTRACT Currently there is no method to ensure that the software loaded on a vehicle has been compromised at the software level. Common practice is to use physical port security to secure all network and data bus connection points with physical devices requiring tool, keys, or damage to tamper evident devices to prevent, inhibit, or discourage unauthorized connection; turn off access to the ports in the BIOS and password protect the BIOS. As well as give non-admin access to user accounts and password protect the operating systems. All these countermeasures help to prevent access but there is no way to tell if the software was compromised if not detected by these methods. Blockchain technology ensures that the software has not been compromised by comparing a hash generated at start up and comparing it to the distributed ledger. This technology helps to bring Warfighter technology into the future
Fortney, George G
ABSTRACT The U.S. Army must adapt and upgrade ground platforms at the speed of technology advancement to maintain competitive advantages over adversaries. The Program Executive Office (PEO) Ground Combat Systems (GCS) Common Infrastructure Architecture (GCIA) is a new ground systems approach to enable persistent modernization of future platforms. For legacy platforms, Project Lead Capability Transition and Product Integration (PL CTPI) is developing plans to incrementally incorporate standards and portions of GCIA where feasible and affordable on legacy platforms. The GCIA will enable rapid integration of ground system capabilities, increasing the Army’s ability to counter emergent threats on the battlefield. Citation: PEO GCS / PL CTPI, “Architecting for Persistent Modernization,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
CTPI, PEO GCS / PL
Items per page:
1 – 50 of 3074