Browse Topic: Vehicles and equipment
With the growing energy crisis, people urgently need green energy sources to replace fossil ones. As a zero-emission clean energy source, the proton-exchange membrane fuel cell (PEMFC) has received growing attention from researchers due to its broad practical application. However, the large-scale application of PEMFC is currently impeded by their unsatisfying power output and high cost. PEMFC is composed of multiple components, among which the catalyst layer significantly affects the output power and cost of PEMFC. Drastically reducing the amount of platinum in the catalyst layer can bring great benefits to PEMFC, yet causing the large voltage loss associated with enlarged local oxygen molecule transport. Cutting down the platinum content in the catalyst layer can yield substantial cost savings for PEMFC. Developing an efficient catalyst possessing enhanced oxygen reduction reaction (ORR) catalytic performance is conducive to the commercialization of low-Pt proton exchange membrane
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements, arises the need for increased electric current supply to motors. Increased amperage through the stator causes higher losses resulting in elevated temperature across the motor components and its housing. In most of the cases, stator is mounted on the housing through interference fit to avoid any slippage during operation conditions. High temperature across the stator and housing causes significant thermal expansions of the components which is uneven in nature due to the differences in corresponding coefficient of thermal expansion (CTE) values. Housings are generally made of aluminium and tends to expand more having higher value of CTE than that of steel core of stator which may give rise to a failure mode related to stator slippage. To address this slippage if the amount of interference fit is increased, that’ll result in another failure mode
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
Items per page:
50
1 – 50 of 42741