Browse Topic: Vehicles, Equipment, and Performance
The growing environmental, economic, and social challenges have spurred a demand for cleaner mobility solutions. In response to the transformative changes in the automotive sector, manufacturers must prioritize digital validation of products, manufacturing processes, and tools prior to mass production. This ensures efficiency, accuracy, and cost-effectiveness. By utilizing 3D modelling of factory layouts, factory planners can digitally validate production line changes, substantially reducing costs when introducing new products. One key innovation involves creating 3D models using point cloud data from factory scans. Traditional factory scanning processes face limitations like blind spots and periodic scanning intervals. This research proposes using drones equipped with LiDAR (Light Detection and Ranging) technology for 3D scanning, enabling real-time mapping, autonomous operation, and efficient data collection. Drones can navigate complex areas, access small spaces, and optimize
This paper presents the design and implementation of a Semi-Autonomous Light Commercial Vehicle (LCV) capable of following a person while performing obstacle avoidance in urban and controlled environments. The LCV leverages its onboard 360-degree view camera, RTK-GNSS, Ultrasonic sensors, and algorithms to independently navigate the environment, avoiding obstacles and maintaining a safe distance from the person it is following. The path planning algorithm described here generates a secondary lateral path originating from the primary driving path to navigate around static obstacles. A Behavior Planner is utilized to decide when to generate the path and avoid obstacles. The primary objective is to ensure safe navigation in environments where static obstacles are prevalent. The LCV's path tracking is achieved using a combination of Pure Pursuit and Proportional-Integral (PI) controllers. The Pure Pursuit controller is utilized as lateral control to follow the generated path, ensuring
The rapid introduction of new Automated Driving Systems (ADS) in the last years has led to an urge for robust methodologies for the type approval of vehicles equipped with such technologies. As a result, different Regulations addressing this field have been adopted. These Regulations are mainly based in the New Assessment and Testing Methodology (NATM) developed within the World Forum for the Harmonisation of Vehicle Regulations (WP29). However, the complexity of the regulatory ecosystem extends beyond type approval. This complexity requires a thorough analysis in order to avoid any possible gap which may jeopardise the feasibility of Automated Driving Vehicles deployment. This paper analyses the possible mismatches among the different regulations currently in place or under development and proposes a holistic approach, where the concept of the Operational Design Domain (ODD) takes a relevant role.
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Items per page:
50
1 – 50 of 60377