Browse Topic: Fleets

Items (1,532)
Camera-based mirror systems (CBMS) are being adopted by commercial fleets based on the potential improvements to operational efficiency through improved aerodynamics, resulting in better fuel economy, improved maneuverability, and the potential improvement for overall safety. Until CBMS are widely adopted it will be expected that drivers will be required to adapt to both conventional glass mirrors and CBMS which could have potential impact on the safety and performance of the driver when moving between vehicles with and without CBMS. To understand the potential impact to driver perception and safety, along with other human factors related to CBMS, laboratory testing was performed to understand the impact of CBMS and conventional glass mirrors. Drivers were subjected to various, nominal driving scenarios using a truck equipped with conventional glass mirrors, CBMS, and both glass mirrors and CBMS, to observe the differences in metrics such as head and eye movement, reaction time, and
Siekmann, AdamPrikhodko, VitalySujan, Vivek
This paper presents findings on the use of data from next-generation Tire Pressure Monitoring Systems (TPMS), for estimating key tire states such as leak rates, load, and location, which are crucial for tire-predictive maintenance applications. Next-generation TPMS sensors provide a cost-effective and energy-efficient solution suitable for large-scale deployments. Unlike traditional TPMS, which primarily monitor tire pressure, the next-generation TPMS used in this study includes an additional capability to measure the tire's centerline footprint length (FPL). This feature offers significant added value by providing comprehensive insights into tire wear, load, and auto-location. These enhanced functionalities enable more effective tire management and predictive maintenance. This study collected vehicle and tire data from a passenger car hatchback equipped with next-generation TPMS sensors mounted on the inner liner of the tire. The data was analyzed to propose vehicle-tire physics
Sharma, SparshSon, Roman
In commercial vehicles, particularly in developing countries where they are heavily used for transporting goods, overloading poses serious risks, including vehicle imbalance, accidents, and financial losses. Overloading is prevalent in these regions, leading to frequent structural damage and endangering road users. To address these issues, efficient load monitoring systems are essential for maintaining vehicle stability, ensuring proper load distribution, and preventing accidents related to overloading. Traditional methods of load monitoring, which rely on manual checks or complex sensors, offer limited feedback and are often reactive rather than proactive. This paper introduces a novel system that detects the linear deflection of leaf springs to monitor cargo loads in commercial vehicles. By measuring axle deflection under different load conditions, the system establishes a threshold load value within the vehicle's controller. When this threshold is exceeded, alerts are promptly
Katta, EvaMaji, KundanSaha, SatyaTiwari, Sanjay
In the United States (US), the off-road sector (i.e., agriculture, construction, etc.) contributes to approximately 10% of the country’s transportation greenhouse gas (GHG) emissions, similar to the aviation sector. The off-road sector is extremely diverse; as the EPA MOVES model classifies it into 11 sub-sectors, which include 85 different types of equipment. These equipment types have horsepower ranging from 1 to greater than 3000 and have very different utilization, which makes decarbonization a complex endeavor. To address this, Argonne’s on-road vehicle fleet model, VISION, has been expanded to the off-road sector. The GHG emission factors for several energy carriers (biofuels, electricity, and hydrogen) have been incorporated from Argonne’s GREET model for a sector-wide well-to-wheel (WTW) GHG emissions analysis of the present and future fleet. Several technology adoption and energy decarbonization scenarios were modeled to better understand the appropriate actions required to
Tripathi, ShashwatKolodziej, ChristopherGohlke, DavidBurnham, AndrewZhou, YanLongman, Douglas
As the United States Army explores electrified tactical vehicles, wireless power transfer (WPT) has emerged as a promising recharging method. WPT allows multiple vehicles to recharge while in proximity of a charging station based on a mobile platform. This study examines the requirements of WPT by analyzing geo-location data from over 400 tactical vehicles at the National Training Center. The data was extracted, cleaned, and analyzed to identify periods when vehicles were close enough for effective WPT. The analysis quantifies the amount of time vehicles spend in proximity and their average distance apart, both while stationary and moving, to establish initial WPT requirements. These results were combined with energy consumption rates to estimate the power throughput of a WPT system. Vehicles were found to be stationary and close to other vehicles for most of the day, making WPT a practical solution in those situations. Although the analysis found that WPT is feasible during convoys
Mittal, VikramEl Ouadi, Ameir
This study addresses the challenges of electrifying heavy-duty vehicle fleets, particularly school buses, by focusing on the development of dedicated depot charging infrastructure and grid resilience. A key challenge is managing recharging limitations while considering grid resilience in the electrification of school bus fleets. Using real operational data, the study introduces a two-phase approach to optimize both charging infrastructure and scheduling. In the first phase, the optimal number of chargers is determined to ensure sustainable fleet operations. In the second phase, charging schedules are refined to reduce peak power demand and improve grid resilience. Experimental results demonstrate that approximately half the fleet size is required in chargers, with distributed charging and peak shaving strategies reducing peak power demand by 20% to nearly 45%. These findings offer practical insights for fleet managers, grid operators, and policymakers on enhancing grid resilience and
Moon, JoonHanif, AtharAhmed, Qadeer
An energy-use analysis is presented to examine the potential energy-savings and range-extension benefits of aerodynamic improvements to tractors and trailers used in commercial transportation. The impetus for the study was the observation of aerodynamically-redesigned/optimized tractor shapes of emerging zero-emission commercial vehicles that have the potential for significant drag reduction over conventional aerodynamic tractors. Using wind-tunnel test results, a series of aerodynamic performance models were developed representing a range of tractor and trailer combinations. From modern day-cab and sleeper-cab tractors to aerodynamically-optimized zero-emission cab concepts, paired with standard dry-van trailers or low-drag trailer concepts, the study examines the energy use, and potential savings thereof, from implementing various fleet configurations for different operational duty cycles. An energy-use analysis was implemented to estimate the energy-rate contributions associated
McAuliffe, BrianGhorbanishohrat, Faegheh
In 2022, the U.S. transportation sector was the largest source of greenhouse gas emissions in the country, with the combination of passenger and commercial vehicles contributing 80% of these emissions. As adoption of passenger electric vehicles continues to climb, sights are being set on the electrification of heavy-duty commercial vehicle (HDCV) fleets. The sustainability of these shifts relies in part on the addition of significant renewable energy generation resources to both bolster the grid in the face of increased demand, and to prevent a shift in the source of greenhouse gas (GHG) emissions to the grid, as opposed to a true net reduction. Additionally, it is necessary to quantify the variations in economic viability across the country for these technologies as it pertains to their productive capabilities. Doing so will encourage investment and ensure that the transition to electrified HDCV fleets is commercially viable, as well as sustainable. In an effort to meet these goals
Miller, BrandonSun, RuixiaoSujan, Vivek
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
Ratz, FlorianBäuml, ThomasKompara, TomažKospach, AlexanderSimic, DraganJan, PetraMöller, SebastianFuse, HiroyukiParades Barros, EstebanArmengaud, EricAmati, NicolaSorniotti, AldoLukesch, Walter
Shared autonomous vehicles systems (SAVS) are regarded as a promising mode of carsharing service with the potential for realization in the near future. However, the uncertainty in user demand complicates the system optimization decisions for SAVS, potentially interfering with the achievement of desired performance or objectives, and may even render decisions derived from deterministic solutions infeasible. Therefore, considering the uncertainty in demand, this study proposes a two-stage robust optimization approach to jointly optimize the fleet sizing and relocation strategies in a one-way SAVS. We use the budget polyhedral uncertainty set to describe the volatility, uncertainty, and correlation characteristics of user demand, and construct a two-stage robust optimization model to identify a compromise between the level of robustness and the economic viability of the solution. In the first stage, tactical decisions are made to determine autonomous vehicle (AV) fleet sizing and the
Li, KangjiaoCao, YichiZhou, BojianWang, ShuaiqiYu, Yaofeng
Lowering carbon emissions from road-based transport is required to achieve climate targets. In addition to passenger cars, long-haul trucks contribute more than one-third of on-road generated carbon emissions. Therefore, this sector has great potential to reduce such emissions. Numerous options including electrified drivetrains are possible. Nevertheless, the existing fleet of trucks powered by conventional diesel engines also needs to be addressed. Additionally, a ramp-up of green electricity and charging infrastructure is required to ensure carbon-neutral and reliable transport. Heavy-duty diesel engines are typically suitable for use with first-generation biofuels. However, operational restrictions, such as shorter oil drain intervals are mandatory for users. In the case at hand, the oil change was mandatory after only 30,000 km when pure biodiesel (B100) was used instead of 120,000 km when operating on conventional, mineral oil-based diesel. These boundaries counter efforts to
Rohbogner, Christoph J.Heine, Carsten
The world’s commitment towards the mitigation of climate changes has driven many sectors into an effort to reduce their carbon footprint. The transit bus sector, which currently strongly relies on diesel fueled buses, is challenged to reduce its carbon footprint, as well as to reduce the emission of criteria pollutant and noise, which negatively affect the world cities’ population, especially those living nearby the large transit bus corridors. In this context, the Battery Electric Buses (BEB), has been set as the transit sector’s workhorse for reaching the global, regional and local environmental targets. However, despite the relative maturity level of both the electric powertrain and the energy storage devices (ESD) technologies, the bus electrification transition is a disruptive process, from both a technological, operational and managerial standpoint, which might take into account both the (electrical) infrastructure, as well as the operational customization requirements. Moreover
Barbosa, Fábio Coelho
On-Board-Diagnostics (OBD) are crucial for ensuring the proper functioning of Engine’s emission control system by continuously monitoring various sensors and components. When the failure is detected, the Check Engine Light is triggered on Vehicle’s dashboard, alerting the driver to seek professional service to address the issue. However, the task of developing the monitoring strategies and performing robust calibration is challenging and time consuming. Model in loop (MIL) Simulation and testing is a technique used to understand and estimate the behavior of a system or sub system. The diagnostics model can be tested and refined within the model-based environment allowing a complex system to be efficiently regulated. MIL framework could be explored at various stages of development from early in the design phase to later stages of series developments through vehicle fleet data. This framework allows early identification and correction of errors and bugs in a standalone dependent
Kumar, AmitHegde, KarthikChalla, KrishnaH, YASHWANTH
Innovation often comes a piece at a time, but what happens when you put all those pieces together at once? That is precisely the question Shell is attempting to answer with its Starship initiative. Now in its third iteration, Starship 3.0 Natural Gas continues pushing the boundaries of efficiency and emissions reduction by employing all currently available technologies and engineering advancements. The Shell Starship initiative was first launched in 2018 with the aim of setting new benchmarks for the commercial road transport sector. The Starship 2.0 managed 254 ton-miles per gallon for freight ton efficiency (FTE), which is 3.5 times the North American average. Additionally, Starship 2.0 recorded fuel consumption of 10.8 mpg on a cross-country run, which according to Shell is nearly double the current fleet average in North America.
Wolfe, Matt
Vehicle electrification has gained prominence in various industries and offers sustainability opportunities, especially in the context of heavy-duty vehicles such as school buses. Despite the prevalence of conventional diesel school buses (CDSB), the adoption of electric school bus (ESB) and other eco-friendly alternatives is increasing. In the United States alone, there has been a notable increase in the adoption of ESBs, indicating substantial growth. The electrification of school buses not only promises energy savings, but also offers health benefits to children, reduced greenhouse gas emissions, and environmentally friendly transportation practices, aligned with broader eco-friendly initiatives. This paper investigates the potential for energy savings and reduction in environmental footprint through electrification of school buses in the Columbus, OH area. Analyzing current bus routes and road terrain data allows one to estimate energy demand and environmental impact, accounting
Moon, JoonHanif, AtharAhmed, Qadeer
With all the environmental concern of diesel fuelled vehicle, it is a challenge to phase out them completely specifically from Heavy duty application. Most pragmatic solution lies in solutions which improves the fuel economy and reduce the carbon emission of existing diesel fuelled vehicle fleet and retain the economic feasibility offered by present diesel fuelled vehicle fleets. With implementation of Bharat Stage IV (BS VI) emission norms across country from April 2020, supply of BS VI complaint diesel fuel started and BS VI complaint vehicles with upgraded engine technologies and after treatment devices started to come which made present vehicle fleets heterogeneous with substantive number of BS IV vehicle. Beside improvement of engine technologies, existing BS IV vehicle fleet performance can be enhanced through improved fuel and lubricants solutions. The present research work is a step towards improving the fuel economy of existing BS IV diesel vehicles through the intervention of
Mishra, Sumit KumarSingh, Punit KumarChakradhar, MayaSeth, SaritaSingh, SauhardArora, AjayHarinarain, Ajay KumarMaheshwari, Mukul
Details of combustion — the chemical reactions that take place when, for example, a flame is lit — are fleeting and therefore, difficult to study. But scientists would like to better understand the complex processes that occur in those billionths of seconds, not only to make engines more efficient but also to shed light on how candle flames, cars, and airplanes produce gases and particles that are harmful to humans and the environment.
RADAR antennae come in varying sizes and shapes. They are often employed in heterogeneous systems (i.e., systems that use multiple detection methods) that are employed to detect and visualize objects. Object identification in the context of automated vehicle behavior design could require extensive data sets to train algorithms that have the potential to make dynamic driving decisions. A widely available platform would increase the ability of researchers learn about automated systems and to gather data, which may be necessary for training automated vehicle systems. This work describes the application of a 77 GHz, portable antenna to the description of standard fleet vehicles as well as a suite of soft targets contextualized within polar plots. This work shows that object detection and identification is possible in off-the-shelf portable systems that combine readily available materials and software in a reproducible manner. The described system and algorithm create a visual correlate
Chen, AaronHartman, EthanLin, VincentManahan, TaylorSidhu, AnmolEichaker, Lauren
Autonomous vehicle technologies have become increasingly popular over the last few years. One of their most important application is autonomous shuttle buses that could radically change public transport systems. In order to enhance the availability of shuttle service, this article outlines a series of interconnected challenges and innovative solutions to optimize the operation of autonomous shuttles based on the experience within the Shuttle Modellregion Oberfranken (SMO) project. The shuttle shall be able to work in every weather condition, including the robustness of the perception algorithm. Besides, the shuttle shall react to environmental changes, interact with other traffic participants, and ensure comfortable travel for passengers and awareness of VRUs. These challenging situations shall be solved alone or with a teleoperator’s help. Our analysis considers the basic sense–plan–act architecture for autonomous driving. Critical components like object detection, pedestrian tracking
Dehghani, AliSalaar, HamzaSrinivasan, Shanmuga PriyaZhou, LixianArbeiter, GeorgLindner, AlisaPatino-Studencki, Lucila
HD Hyundai recently announced several new additions to its portfolio of off-highway machines. The expansion includes the HD100 dozer, the HX355A excavator, and a quartet of new models for its HX-A series of compact excavators. The HD100 is Hyundai's first new crawler dozer model. “The new HD100 dozer will be a great addition to the equipment fleets of earthmoving contractors, forestry, waste handlers and other customers who already enjoy the benefits of using Hyundai wheel loaders and excavators,” said Mike Ross, senior VP, HD Hyundai Construction Equipment North America.
Wolfe, Matt
A challenge of public transportation GPS data is the frequent utilization of monitoring systems with low sampling rates, primarily driven by the high costs associated with cellular data transmission of large datasets. Altitude data is often imprecise or not recorded at all in regions without large elevation changes. The low data quality limits the use of the data for further detailed investigations like a realistic energy consumption forecast for assessing the electrical grid load resulting from charging the vehicle fleet. Modern research often reconstructs speed data only, or uses additional GPS loggers, which is associated with increased costs in the vehicle fleet. The importance of precise and high-quality altitude data and specialized expertise in mountainous regions are frequently overlooked. This paper introduces an efficient new route matching method to reconstruct speed and respective road slope data of a GPS signal sampled at low frequency for a public transportation electric
Hitz, ArneKonzept, AnjaReick, BenediktRheinberger, Klaus
FirstElement's station at the Port of Oakland can put 100 kg of hydrogen in up to 200 trucks a day in less than 10 minutes each. It may be missing the food and hospitality trappings of what most would consider a proper “truck stop,” but the nation's first high-volume, rapid-fill hydrogen truck refueling station is a giant leap toward a future in which H2 is the natural and sustainable fuel for the nation's heavy-haul overland transportation needs. FirstElement Fuel recently opened the location under its True Zero brand at the Port of Oakland, where a dedicated fleet of 30 Class 8 Hyundai XCIENT hydrogen-powered trucks will stay fueled as they operate virtually 24/7 moving containers and cargo around Alameda County. The station, which stores liquid H2 on site, has two HD truck fueling positions and four medium- or light-duty positions. Among the station's previously unheard-of numbers: 18,000 kg (39,700 lb) per day of pumping capacity. Can simultaneously support back-to-back fast fills
Clonts, Chris
Volvo made several key announcements at the 2024 Advanced Clean Transportation (ACT) Expo in Las Vegas. The company also reaffirmed its goal of reaching net-zero carbon emissions with a 100% fossil-free fleet of trucks and off-highway machines by 2040. “The sustainable future is not only about electric trucks, though they do play a very important role,” said Peter Voorhoeve, president of Volvo Trucks North America. “It's about all the things that we transport. For a sustainable future, there is not one silver bullet. We will have different technologies that all enable zero-emissions trucks. This will include electric drivelines, hydrogen fuel cells, and internal combustion engines.”
Wolfe, Matt
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering. The basis for this is the route generation as a result of the evaluation of curve radii from several hundred thousand kilometers of real measurement
Iatropoulos, JannesPanzer, AnnaHenze, Roman
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target. In the dynamic landscape of last-mile delivery, LogiSmile, an EU project, introduced a solution to urban delivery challenges through an innovative cooperation between an Autonomous Hub Vehicle (AHV) and an Autonomous
Aslam, IqraAniculaesei, AdinaBuragohain, AbhishekZhang, MengBamal, DanielRausch, Andreas
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold, the maximum regenerative power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low. Without active conditioning of the battery, potential of regenerating energy is partially lost because the friction brake needs to absorb kinetic energy whenever the cold battery’s
Rehm, DominikKrost, JonathanMeywerk, MartinCzarnetzki, Walter
Publicly available autonomous vehicles have been operating in Abu Dhabi since 2021, providing over 16,000 rides covering more than 300,000 km (186,400 miles). If the organizers and supporters of the inaugural DriftX conference have their way, these numbers will soon be dwarfed by autonomous vehicles of all types moving people and goods across the UAE and the wider MENA region. So far, all of these autonomous trips have been provided by the eight free, app-hailable AVs that are currently roaming around Yas and Saadiyat Islands. Motorsport fans will recognize Yas Island as the location of the Yas Marina Circuit used by Formula 1 and other racing events. The weekend after DriftX, for example, the Abu Dhabi Autonomous Racing League held its inaugural event there. It's all part of an intense governmental push to turn the Emirates into a global leader in AVs.
Blanco, Sebastian
Modine exec says EV thermal management systems have evolved significantly from the technology used by ICE vehicles just five years ago. A rarity only a few years ago, electric vehicles (EVs) are becoming part of the daily lives of constantly increasing numbers of drivers. In the first quarter of 2024 alone, passenger EV sales soared by about 25% compared to the same period in 2023, according to the IEA's annual Global EV Outlook. While the passenger EV market charges ahead toward widespread adoption, the off-highway vehicle segment lags in electrification. The burly and rugged workhorses that do the heavy lifting in construction and agriculture have been slower in embracing electrification due to their heavier workloads and duty cycles. In addition to larger batteries, traction motors and countless other components, the electrification of this class of vehicles also requires a steep learning curve, all of which impact stakeholders up and down the value chain. For example, navigating
Bonini, Gina Maria
Kia is positioning itself to make waves in the commercial vehicle sector. At CES 2024 in Las Vegas, the company pulled back the curtains on its electrified commercial van lineup. Though the designs are still at the concept stage, Kia has made it clear that it intends to enter the global commercial van space in short order. SAE Media interviewed Tim Walker, director of fleet and remarketing, at NTEA's Work Truck Week 2024 in Indianapolis to discuss some design details of the PV vans, Kia's overall strategy for entering the commercial vehicle sector, and the challenges of bringing the vans to market.
Wolfe, Matt
The knowledge of representative load collectives and duty cycles is crucial for designing and dimensioning vehicles and their components. For human driven vehicles, various methods are known for deriving these load spectra directly or indirectly from fleet measurement data of the customer vehicle operation. Due to the lack of market penetration of highly automated and autonomous vehicles, there is no sufficient fleet data available to utilize these methods. As a result of increased demand for ride comfort compared to human driven vehicles, autonomous vehicle operation promises reduced driving speeds as well as reduced lateral and longitudinal accelerations. This can consequently lead to decreasing operation loads, thus enabling potentially more light-weight, cost-effective, resource-saving and energy-efficient vehicle components. In order to unlock this potential of dedicatedly dimensioned components for autonomous vehicles, a methodology for quantifying the loads in customer operation
Brandes, GerritRebesberger, RonSander, MarcelErxleben, LarsHenze, RomanKüçükay, Ferit
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs. Thus, the object is to show how much present, typical in-service life-mileage differs from the
Watson, Harry C.
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure. The EPA hot and cold ambient tests also compare well but the correlation is sensitive to long and short trip
Dutta, NilabzaEvans, Davidsapte, Atharva
In the emerging economies, there is a growing adoption of electric vehicles into fleet vehicles. With the steady increase in this business area, there is a demand for the innovation in the battery charging methodologies. The swappable charging method is one such charging method that is gaining prominence. Battery swapping involves replacing an EV’s depleted battery with a fully charged one. This approach can significantly reduce wait times for drivers, as swapping batteries typically takes only few minutes, similar to the time it takes to refuel an ICE vehicle. With battery swapping, EV owners can avoid concerns related to battery degradation, since they receive a fully charged, well-maintained battery during each swap. Research is being done either to reduce the cost of operation of Battery Swapping station (BSS), or to reduce the waiting time for the users by charging fast. But focusing on the cost reduction, BSS may not be able to meet the demand of the users and by focusing only on
Gera, ChiranjeeviHolavanahalli, Shashank
The operation management of electric Taxi fleets requires cooperative optimization of Charging and Dispatching. The challenge is to make real-time decisions about which is the optimal charging station or passenger for each vehicle in the fleet. With the rapid advancement of Vehicle Internet of Things (VIOT) technologies, the aforementioned challenge can be readily addressed by leveraging big data analytics and machine learning algorithms, thereby contributing to smarter transportation systems. This study focuses on optimizing real-time decision-making for charging and dispatching in large-scale electric taxi fleets to improve their long-term benefits. To achieve this goal, a spatiotemporal decision framework using Bi-level optimization is proposed. Initially, a deep reinforcement learning-based model is built to estimate the value of charging and order dispatching under uncertainty. The model considers the long-term costs and benefits of different tasks and guides whether electric
Lyu, YelinWang, NingTian, Hangqi
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance. Recently, EPA has updated the ALPHA model with key changes including the addition
Moskalik, AndrewKargul, JohnButters, KarlaBhagdikar, Piyush
Robust communications are crucial for autonomous military fleets. Ground vehicles function as mobile local area networks utilizing Controller Area Network (CAN) backbones. Fleet coordination between autonomous platforms relies on the Robot Operating System (ROS) publish/subscribe robotic middleware for effective operation. To bridge communications between the CAN and ROS network segments, the CAN2ROS bridge software supports bidirectional data flow with message mapping and node translation. Fuzzing, a software testing technique, involves injecting randomized data inputs into the target system. This method plays a pivotal role in identifying vulnerabilities. It has proven effective in discovering vulnerabilities in online systems, such as the integrated CAN/ROS system. In our study, we consider ROS implementing zero-trust access control policies, running on a Gazebo test-bed connected to a CAN bus. Our objective is to evaluate system security using fuzzers in three scenarios: (i
Aideyan, Iwinosa WinifredBrooks, RichardPese, Mert D.
Items per page:
1 – 50 of 1532