Browse Topic: Fleets

Items (1,544)
The optimization and further development of automated driving functions offer significant potential for reducing the driver's workload and increasing road safety. Among these functions, vehicle lateral control plays a critical role, especially with regard to its acceptance by end customers. Significant development efforts are required to ensure the effectiveness and reliability of this aspect in real-world conditions. This work focuses on analyzing lateral vehicle control using extensive measurement data collected from a dedicated vehicle fleet at the Institute of Automotive Engineering at the Technical University of Braunschweig. Equipped with state-of-the-art measurement technology, the fleet has driven several hundred thousand kilometers, allowing for the collection of detailed information on vehicle trajectories under various driving conditions. A total of 93 participants, aged between 20 and 43 years, contributed to the dataset. These measurements have been classified into
Iatropoulos, JannesPanzer, AnnaArntz, MartinPrueggler, AdrianHenze, Roman
Autonomous driving technology enables new and innovative driverless vehicle concepts to emerge, like U-Shift. Designed from the ground up, the U-Shift II platform, called driveboard, exemplifies the advantages of separating a vehicle’s driving capability from the intended transportation task. It allows different so-called capsules, such as public transport or cargo, to be transported using the same U-shaped driving platform. The driveboard can change the capsules autonomously, thus providing high flexibility for fleet operators. This novel approach introduces new challenges to the task of autonomous driving. On one hand, changing sensor and vehicle configurations, e.g., when transporting a capsule with its own sensors to compensate for occlusions of the driveboard sensors by the capsule itself, requires an adaptive approach to environmental perception. On the other hand, different environments and driving tasks, as well as the augmented motion capabilities of the driveboard, require
Buchholz, MichaelWodtko, ThomasSchumann, OliverAuthaler, Dominik
April saw two major tradeshows take place, playing host to numerous advanced vehicle and technology reveals from global OEMs and suppliers - some of which are detailed in these pages. Bauma in Munich, Germany, a leading trade fair for the construction and mining vehicle industries, saw around 600,000 visitors from more than 200 countries and regions, as well as over 3,600 exhibitors from 57 nations. Billed as the largest advanced CV technology show, ACT Expo engaged more than 12,000 stakeholders from at least 54 countries, including over 2,700 fleet operators. But just as present as the technology itself at these shows was the ongoing uncertainty stemming from the Trump administration's volatile trade policy announced on April 2 involving steep tariffs that have been adjusted frequently in the ensuing weeks.
Gehm, Ryan
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. While the use of electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets, hybridized propulsion solutions will continue to play a vital role in the electrification strategy of vehicle manufacturers. Plug-in hybrid electric vehicles (PHEV) and range extender vehicles (REx) come with unique NVH challenges due to their different possible operation modes. First, the paper outlines different driveline and vehicle architectures for PHEV and REx. Given the multiple general architectures, as well as operation modes which typically accompany these vehicles, NVH characterizations and noise source-path analysis can be more complicated than conventional vehicles. In the following steps, typical NVH related challenges are highlighted and potential solutions for NVH optimization are
Wellmann, ThomasFord, AlexPruetz, Jeffrey
Eaton’s Aerospace Group is collaborating with original equipment manufacturers (OEMs) on the advancement of technologies to increase aircraft efficiency, enable aircraft electrification, and reduce carbon emissions. Leveraging our expertise as an intelligent power management company, Eaton’s products and research include hydraulic power packs, electromechanical actuation (EMA), thermal management systems, and sustainable aviation fuel (SAF) compatible systems. Eaton Blended Power TM systems improve efficiency through eliminating all centralized hydraulic circuits with distributed power that is provided by a combination of hydraulic power packs and EMA for a More Electric Aircraft (MEA). EMA systems, including electrical synchronization, reduce the usage of hydraulics and provide additional functionality that benefits the aircraft. With MEA comes higher energy and thermal densities, resulting in the need for advanced thermal management. Eaton’s scalable and modular thermal management
Skinner, JeffProul, MargaretDevan, StephenClendenin, LauraHutchinson, LewisMasson, AndrewMay, FrankMomotiuk, AndyZuzelski, Chris
Heavy heavy-duty diesel truck (HHDDT) drive cycles for long-haul transport trucks were developed over 20 years ago and have a renewed relevance for performance assessment and technical forecasting for transport electrification. In this study, a model was constructed from sparse data recorded from the real-life on-road activity of a small fleet of class 8 trucks by fitting them into separate driving-type segments constituting the complete HHDDT drive cycle. Detailed 1-s resolution truck fleet raw data were also available for assessing the drive cycle model. Numerical simulations were conducted to assess the model for trucks powered by both 1.0 MW charging and 300 kW-level e-Highway, accounting for elevation and seasonally varying climate conditions along the Windsor–Quebec City corridor in Canada. The modeling approach was able to estimate highway cruising speeds, energy efficiencies, and battery pack lifetimes normally within 2% of values determined using the detailed high-resolution
Darcovich, KenRibberink, HajoSoufflet, EmilieLauras, Gaspard
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
Ratz, FlorianBäuml, ThomasKompara, TomažKospach, AlexanderSimic, DraganJan, PetraMöller, SebastianFuse, HiroyukiParedes Barros, EstebanArmengaud, EricAmati, NicolaSorniotti, AldoLukesch, Walter
In commercial vehicles, particularly in developing countries where they are heavily used for transporting goods, overloading poses serious risks, including vehicle imbalance, accidents, and financial losses. Overloading is prevalent in these regions, leading to frequent structural damage and endangering road users. To address these issues, efficient load monitoring systems are essential for maintaining vehicle stability, ensuring proper load distribution, and preventing accidents related to overloading. Traditional methods of load monitoring, which rely on manual checks or complex sensors, offer limited feedback and are often reactive rather than proactive. This paper introduces a novel system that detects the linear deflection of leaf springs to monitor cargo loads in commercial vehicles. By measuring axle deflection under different load conditions, the system establishes a threshold load value within the vehicle's controller. When this threshold is exceeded, alerts are promptly
Katta, EvaMaji, KundanSaha, SatyaTiwari, Sanjay
This study presents a detailed techno-economic assessment of battery-electric trucks, incorporating battery aging effects within a total cost of ownership (TCO) model. With increasingly stringent emissions regulations, battery-electric trucks are becoming a viable solution in Europe. However, due to uncertainty regarding their long-term cost-effectiveness and fleet operators’ profit-oriented priorities, there is an urgent need for accurate TCO assessment. Existing studies often overlook or oversimplify the impact of battery aging on overall costs. This work addresses this gap by introducing battery aging-related costs through an empirical battery degradation model, evaluated over the vehicle’s lifetime. Key aging costs include a refined estimation of battery residual value, influenced by degradation and remaining battery life, and potential battery replacement expenses. A case study on a VECTO group 9 truck used for regional delivery missions examines different payloads and battery
Costantino, TrentalessandroAcquarone, MatteoMiretti, FedericoSpessa, Ezio
This paper presents findings on the use of data from next-generation Tire Pressure Monitoring Systems (TPMS), for estimating key tire states such as leak rates, load, and location, which are crucial for tire-predictive maintenance applications. Next-generation TPMS sensors provide a cost-effective and energy-efficient solution suitable for large-scale deployments. Unlike traditional TPMS, which primarily monitor tire pressure, the next-generation TPMS used in this study includes an additional capability to measure the tire's centerline footprint length (FPL). This feature offers significant added value by providing comprehensive insights into tire wear, load, and auto-location. These enhanced functionalities enable more effective tire management and predictive maintenance. This study collected vehicle and tire data from a passenger car hatchback equipped with next-generation TPMS sensors mounted on the inner liner of the tire. The data was analyzed to propose vehicle-tire physics
Sharma, SparshSon, Roman
Camera-based mirror systems (CBMS) are being adopted by commercial fleets based on the potential improvements to operational efficiency through improved aerodynamics, resulting in better fuel economy, improved maneuverability, and the potential improvement for overall safety. Until CBMS are widely adopted it will be expected that drivers will be required to adapt to both conventional glass mirrors and CBMS which could have potential impact on the safety and performance of the driver when moving between vehicles with and without CBMS. To understand the potential impact to driver perception and safety, along with other human factors related to CBMS, laboratory testing was performed to understand the impact of CBMS and conventional glass mirrors. Drivers were subjected to various, nominal driving scenarios using a truck equipped with conventional glass mirrors, CBMS, and both glass mirrors and CBMS, to observe the differences in metrics such as head and eye movement, reaction time, and
Siekmann, AdamPrikhodko, VitalySujan, Vivek
In the United States (US), the off-road sector (i.e., agriculture, construction, etc.) contributes to approximately 10% of the country’s transportation greenhouse gas (GHG) emissions, similar to the aviation sector. The off-road sector is extremely diverse; as the EPA MOVES model classifies it into 11 sub-sectors, which include 85 different types of equipment. These equipment types have horsepower ranging from 1 to greater than 3000 and have very different utilization, which makes decarbonization a complex endeavor. To address this, Argonne’s on-road vehicle fleet model, VISION, has been expanded to the off-road sector. The GHG emission factors for several energy carriers (biofuels, electricity, and hydrogen) have been incorporated from Argonne’s GREET model for a sector-wide well-to-wheel (WTW) GHG emissions analysis of the present and future fleet. Several technology adoption and energy decarbonization scenarios were modeled to better understand the appropriate actions required to
Tripathi, ShashwatKolodziej, ChristopherGohlke, DavidBurnham, AndrewZhou, YanLongman, Douglas
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
An energy-use analysis is presented to examine the potential energy-savings and range-extension benefits of aerodynamic improvements to tractors and trailers used in commercial transportation. The impetus for the study was the observation of aerodynamically-redesigned/optimized tractor shapes of emerging zero-emission commercial vehicles that have the potential for significant drag reduction over conventional aerodynamic tractors. Using wind-tunnel test results, a series of aerodynamic performance models were developed representing a range of tractor and trailer combinations. From modern day-cab and sleeper-cab tractors to aerodynamically-optimized zero-emission cab concepts, paired with standard dry-van trailers or low-drag trailer concepts, the study examines the energy use, and potential savings thereof, from implementing various fleet configurations for different operational duty cycles. An energy-use analysis was implemented to estimate the energy-rate contributions associated
McAuliffe, BrianGhorbanishohrat, Faegheh
This study addresses the challenges of electrifying heavy-duty vehicle fleets, particularly school buses, by focusing on the development of dedicated depot charging infrastructure and grid resilience. A key challenge is managing recharging limitations while considering grid resilience in the electrification of school bus fleets. Using real operational data, the study introduces a two-phase approach to optimize both charging infrastructure and scheduling. In the first phase, the optimal number of chargers is determined to ensure sustainable fleet operations. In the second phase, charging schedules are refined to reduce peak power demand and improve grid resilience. Experimental results demonstrate that approximately half the fleet size is required in chargers, with distributed charging and peak shaving strategies reducing peak power demand by 20% to nearly 45%. These findings offer practical insights for fleet managers, grid operators, and policymakers on enhancing grid resilience and
Moon, JoonHanif, AtharAhmed, Qadeer
In 2022, the U.S. transportation sector was the largest source of greenhouse gas emissions in the country, with the combination of passenger and commercial vehicles contributing 80% of these emissions. As adoption of passenger electric vehicles continues to climb, sights are being set on the electrification of heavy-duty commercial vehicle (HDCV) fleets. The sustainability of these shifts relies in part on the addition of significant renewable energy generation resources to both bolster the grid in the face of increased demand, and to prevent a shift in the source of greenhouse gas (GHG) emissions to the grid, as opposed to a true net reduction. Additionally, it is necessary to quantify the variations in economic viability across the country for these technologies as it pertains to their productive capabilities. Doing so will encourage investment and ensure that the transition to electrified HDCV fleets is commercially viable, as well as sustainable. In an effort to meet these goals
Miller, BrandonSun, RuixiaoSujan, Vivek
As the United States Army explores electrified tactical vehicles, wireless power transfer (WPT) has emerged as a promising recharging method. WPT allows multiple vehicles to recharge while in proximity of a charging station based on a mobile platform. This study examines the requirements of WPT by analyzing geo-location data from over 400 tactical vehicles at the National Training Center. The data was extracted, cleaned, and analyzed to identify periods when vehicles were close enough for effective WPT. The analysis quantifies the amount of time vehicles spend in proximity and their average distance apart, both while stationary and moving, to establish initial WPT requirements. These results were combined with energy consumption rates to estimate the power throughput of a WPT system. Vehicles were found to be stationary and close to other vehicles for most of the day, making WPT a practical solution in those situations. Although the analysis found that WPT is feasible during convoys
Mittal, VikramEl Ouadi, Ameir
At NTEA's 2024 Work Truck Week, REE Automotive showcased its P7 EV chassis and REEcorners modular suspension system. At the time, the P7 was being offered to North American fleets for demos. One year later at the 2025 edition of Work Truck Week, REE offered SAE Media the opportunity to jump into the cab of the P7 and experience the truck's capabilities firsthand. SAE Media wheeled the P7 around downtown Indianapolis with Peter Dow, VP of engineering for REE Automotive, riding shotgun to discuss some of the details of the P7's driving experience and the engineering behind it.
Wolfe, Matt
Komatsu works with Pronto to upfit a growing fleet of haul trucks operating at Komatsu's Arizona Proving Grounds and customer sites. At Komatsu's Quarry Days 2025 event at its Arizona Proving Grounds (AZPG) outside of Tucson, dealers, customers and media got the opportunity to operate Komatsu mining and construction equipment, learn about its latest technology innovations and talk to product experts. A highlight of the event was the first public demonstration of Komatsu's HD605-10 haul truck outfitted with Pronto's Autonomous Haulage System (AHS), spotlighting the equipment maker's partnership with the AI tech startup to pilot autonomous quarry haulage operations. Several HD605-10 trucks have been equipped with AHS as part of this program currently being tested by quarry operators in Texas. The AZPG site currently has just the one automated truck.
Gehm, Ryan
While some developers of autonomous technology for commercial trucks have stalled out, there's renewed energy to deliver augmented ADAS and automated driving systems to mass production. After a tumultuous 2023 that saw several autonomous trucking startups pivot out of or exit the arena entirely, there has been a recent resurgence of investment and efforts to bring the vision of driverless freight fleets to reality. In the wake of firms like Embark, TuSimple and Waymo scaling back or rolling up operations, Aurora, Continental and Knorr-Bremse have all announced continued development of SAE Level 4 systems with the intention to deploy trucks using these systems at scale. OEMs such as Volvo Trucks have also announced updates to existing technologies that will augment current advanced driver-assistance systems (ADAS) to help human drivers become safer behind the wheel.
Wolfe, Matt
Electric vehicle (EV) growth may be stagnant in certain market sectors amid pushback on EV mandates along with lingering infrastructure and TCO concerns, but in terminal tractor operations electrification is growing in demand. As part of its initial Run on Less - Electric demonstration, the North American Council for Freight Efficiency (NACFE) concluded that terminal tractors are “one of the best, if not the best, paths for heavy-duty tractor fleets to learn about and implement a BEV in a fleet operation.” Fleets operating in ports, intermodal yards and other logistics hubs have a new option from which to choose now that Kalmar officially began sales of its Ottawa T2 EV electric terminal tractor. The order book opened at the Technology & Maintenance Council's (TMC) 2025 Transportation Technology Exhibition in Nashville, Tennessee, in March. Kalmar states that select customers have already placed preorders. Initial deliveries will begin in Q2 2025.
Gehm, Ryan
Shared autonomous vehicles systems (SAVS) are regarded as a promising mode of carsharing service with the potential for realization in the near future. However, the uncertainty in user demand complicates the system optimization decisions for SAVS, potentially interfering with the achievement of desired performance or objectives, and may even render decisions derived from deterministic solutions infeasible. Therefore, considering the uncertainty in demand, this study proposes a two-stage robust optimization approach to jointly optimize the fleet sizing and relocation strategies in a one-way SAVS. We use the budget polyhedral uncertainty set to describe the volatility, uncertainty, and correlation characteristics of user demand, and construct a two-stage robust optimization model to identify a compromise between the level of robustness and the economic viability of the solution. In the first stage, tactical decisions are made to determine autonomous vehicle (AV) fleet sizing and the
Li, KangjiaoCao, YichiZhou, BojianWang, ShuaiqiYu, Yaofeng
Lowering carbon emissions from road-based transport is required to achieve climate targets. In addition to passenger cars, long-haul trucks contribute more than one-third of on-road generated carbon emissions. Therefore, this sector has great potential to reduce such emissions. Numerous options including electrified drivetrains are possible. Nevertheless, the existing fleet of trucks powered by conventional diesel engines also needs to be addressed. Additionally, a ramp-up of green electricity and charging infrastructure is required to ensure carbon-neutral and reliable transport. Heavy-duty diesel engines are typically suitable for use with first-generation biofuels. However, operational restrictions, such as shorter oil drain intervals are mandatory for users. In the case at hand, the oil change was mandatory after only 30,000 km when pure biodiesel (B100) was used instead of 120,000 km when operating on conventional, mineral oil-based diesel. These boundaries counter efforts to
Rohbogner, Christoph J.Heine, Carsten
At $829 billion in revenues, 2023 was a banner year for the aerospace industry led by civil aviation companies. Despite its strength, operations were hampered by production constraints, the lingering effects of supply chain and workforce disruptions, and higher materials costs. Even as those issues abate, the commercial sector is chasing accelerated demand. A flood of new aircraft orders pushing backlogs at an accelerated pace is causing the industry to struggle as it seeks to ramp up production. If the dynamic persists, many airlines will be forced to revise or postpone existing plans for enlarging, refreshing, or greening their fleets.
The world’s commitment towards the mitigation of climate changes has driven many sectors into an effort to reduce their carbon footprint. The transit bus sector, which currently strongly relies on diesel fueled buses, is challenged to reduce its carbon footprint, as well as to reduce the emission of criteria pollutant and noise, which negatively affect the world cities’ population, especially those living nearby the large transit bus corridors. In this context, the Battery Electric Buses (BEB), has been set as the transit sector’s workhorse for reaching the global, regional and local environmental targets. However, despite the relative maturity level of both the electric powertrain and the energy storage devices (ESD) technologies, the bus electrification transition is a disruptive process, from both a technological, operational and managerial standpoint, which might take into account both the (electrical) infrastructure, as well as the operational customization requirements. Moreover
Barbosa, Fábio Coelho
On-Board-Diagnostics (OBD) are crucial for ensuring the proper functioning of Engine’s emission control system by continuously monitoring various sensors and components. When the failure is detected, the Check Engine Light is triggered on Vehicle’s dashboard, alerting the driver to seek professional service to address the issue. However, the task of developing the monitoring strategies and performing robust calibration is challenging and time consuming. Model in loop (MIL) Simulation and testing is a technique used to understand and estimate the behavior of a system or sub system. The diagnostics model can be tested and refined within the model-based environment allowing a complex system to be efficiently regulated. MIL framework could be explored at various stages of development from early in the design phase to later stages of series developments through vehicle fleet data. This framework allows early identification and correction of errors and bugs in a standalone dependent
Kumar, AmitHegde, KarthikChalla, KrishnaH, YASHWANTH
Innovation often comes a piece at a time, but what happens when you put all those pieces together at once? That is precisely the question Shell is attempting to answer with its Starship initiative. Now in its third iteration, Starship 3.0 Natural Gas continues pushing the boundaries of efficiency and emissions reduction by employing all currently available technologies and engineering advancements. The Shell Starship initiative was first launched in 2018 with the aim of setting new benchmarks for the commercial road transport sector. The Starship 2.0 managed 254 ton-miles per gallon for freight ton efficiency (FTE), which is 3.5 times the North American average. Additionally, Starship 2.0 recorded fuel consumption of 10.8 mpg on a cross-country run, which according to Shell is nearly double the current fleet average in North America.
Wolfe, Matt
Vehicle electrification has gained prominence in various industries and offers sustainability opportunities, especially in the context of heavy-duty vehicles such as school buses. Despite the prevalence of conventional diesel school buses (CDSB), the adoption of electric school bus (ESB) and other eco-friendly alternatives is increasing. In the United States alone, there has been a notable increase in the adoption of ESBs, indicating substantial growth. The electrification of school buses not only promises energy savings, but also offers health benefits to children, reduced greenhouse gas emissions, and environmentally friendly transportation practices, aligned with broader eco-friendly initiatives. This paper investigates the potential for energy savings and reduction in environmental footprint through electrification of school buses in the Columbus, OH area. Analyzing current bus routes and road terrain data allows one to estimate energy demand and environmental impact, accounting
Moon, JoonHanif, AtharAhmed, Qadeer
With all the environmental concern of diesel fuelled vehicle, it is a challenge to phase out them completely specifically from Heavy duty application. Most pragmatic solution lies in solutions which improves the fuel economy and reduce the carbon emission of existing diesel fuelled vehicle fleet and retain the economic feasibility offered by present diesel fuelled vehicle fleets. With implementation of Bharat Stage IV (BS VI) emission norms across country from April 2020, supply of BS VI complaint diesel fuel started and BS VI complaint vehicles with upgraded engine technologies and after treatment devices started to come which made present vehicle fleets heterogeneous with substantive number of BS IV vehicle. Beside improvement of engine technologies, existing BS IV vehicle fleet performance can be enhanced through improved fuel and lubricants solutions. The present research work is a step towards improving the fuel economy of existing BS IV diesel vehicles through the intervention of
Mishra, Sumit KumarSingh, Punit KumarChakradhar, MayaSeth, SaritaSingh, SauhardArora, AjayHarinarain, Ajay KumarMaheshwari, Mukul
Details of combustion — the chemical reactions that take place when, for example, a flame is lit — are fleeting and therefore, difficult to study. But scientists would like to better understand the complex processes that occur in those billionths of seconds, not only to make engines more efficient but also to shed light on how candle flames, cars, and airplanes produce gases and particles that are harmful to humans and the environment.
RADAR antennae come in varying sizes and shapes. They are often employed in heterogeneous systems (i.e., systems that use multiple detection methods) that are employed to detect and visualize objects. Object identification in the context of automated vehicle behavior design could require extensive data sets to train algorithms that have the potential to make dynamic driving decisions. A widely available platform would increase the ability of researchers learn about automated systems and to gather data, which may be necessary for training automated vehicle systems. This work describes the application of a 77 GHz, portable antenna to the description of standard fleet vehicles as well as a suite of soft targets contextualized within polar plots. This work shows that object detection and identification is possible in off-the-shelf portable systems that combine readily available materials and software in a reproducible manner. The described system and algorithm create a visual correlate
Chen, AaronHartman, EthanLin, VincentManahan, TaylorSidhu, AnmolEichaker, Lauren
Autonomous vehicle technologies have become increasingly popular over the last few years. One of their most important application is autonomous shuttle buses that could radically change public transport systems. In order to enhance the availability of shuttle service, this article outlines a series of interconnected challenges and innovative solutions to optimize the operation of autonomous shuttles based on the experience within the Shuttle Modellregion Oberfranken (SMO) project. The shuttle shall be able to work in every weather condition, including the robustness of the perception algorithm. Besides, the shuttle shall react to environmental changes, interact with other traffic participants, and ensure comfortable travel for passengers and awareness of VRUs. These challenging situations shall be solved alone or with a teleoperator’s help. Our analysis considers the basic sense–plan–act architecture for autonomous driving. Critical components like object detection, pedestrian tracking
Dehghani, AliSalaar, HamzaSrinivasan, Shanmuga PriyaZhou, LixianArbeiter, GeorgLindner, AlisaPatino-Studencki, Lucila
HD Hyundai recently announced several new additions to its portfolio of off-highway machines. The expansion includes the HD100 dozer, the HX355A excavator, and a quartet of new models for its HX-A series of compact excavators. The HD100 is Hyundai's first new crawler dozer model. “The new HD100 dozer will be a great addition to the equipment fleets of earthmoving contractors, forestry, waste handlers and other customers who already enjoy the benefits of using Hyundai wheel loaders and excavators,” said Mike Ross, senior VP, HD Hyundai Construction Equipment North America.
Wolfe, Matt
A challenge of public transportation GPS data is the frequent utilization of monitoring systems with low sampling rates, primarily driven by the high costs associated with cellular data transmission of large datasets. Altitude data is often imprecise or not recorded at all in regions without large elevation changes. The low data quality limits the use of the data for further detailed investigations like a realistic energy consumption forecast for assessing the electrical grid load resulting from charging the vehicle fleet. Modern research often reconstructs speed data only, or uses additional GPS loggers, which is associated with increased costs in the vehicle fleet. The importance of precise and high-quality altitude data and specialized expertise in mountainous regions are frequently overlooked. This paper introduces an efficient new route matching method to reconstruct speed and respective road slope data of a GPS signal sampled at low frequency for a public transportation electric
Hitz, ArneKonzept, AnjaReick, BenediktRheinberger, Klaus
Volvo made several key announcements at the 2024 Advanced Clean Transportation (ACT) Expo in Las Vegas. The company also reaffirmed its goal of reaching net-zero carbon emissions with a 100% fossil-free fleet of trucks and off-highway machines by 2040. “The sustainable future is not only about electric trucks, though they do play a very important role,” said Peter Voorhoeve, president of Volvo Trucks North America. “It's about all the things that we transport. For a sustainable future, there is not one silver bullet. We will have different technologies that all enable zero-emissions trucks. This will include electric drivelines, hydrogen fuel cells, and internal combustion engines.”
Wolfe, Matt
Items per page:
1 – 50 of 1544