Browse Topic: Fleets

Items (1,595)
In commercial vehicles, conventional engine-driven hydraulic steering systems result in continuous energy consumption, contributing to parasitic losses and reduced overall powertrain efficiency. This study introduces an Electric Powered Hydraulic Steering (EPHS) system that decouples steering actuation from the engine and operates only on demand, thereby optimizing energy usage. Field trials conducted under loaded conditions demonstrated a 3–6% improvement in fuel economy, confirming the system’s effectiveness in real-world applications. A MATLAB-based simulation model was developed to replicate dynamic steering loads and vehicle operating conditions, with results closely aligning with field data, thereby validating the model’s predictive accuracy. The reduction in fuel consumption directly translates to lower CO₂ emissions, supporting regulatory compliance and sustainability goals, particularly in the context of tightening emission norms for commercial fleets. These findings position
T, Aravind Muthu SuthanMani, KishoreAyyappan, RakshnaD, Senthil KumarS, Mathankumar
The BioMap system represents a groundbreaking approach to collaborative mapping for autonomous vehicles, drawing inspiration from ant colony behavior and swarm intelligence. It implements a fully decentralized protocol where vehicles use virtual pheromone trails to mark areas of uncertainty, change, or importance, enabling efficient map consensus without centralized coordination. Key innovations include novel pheromone-based compression algorithms and bio-inspired consensus mechanisms that allow real-time adaptation to dynamic environments. In a simulated urban scenario (Town10HD), three vehicles achieved balanced load distribution (±1.8% variance) and comprehensive coverage of a 253.2m × 217.9m × 22.4m area. The final fused map contained 311 chunks with 72,785 particles and required only 10.4 MB of storage. Approximately 49.2% of map particles exceeded the pheromone significance threshold, indicating active importance marking, while no high-uncertainty regions remained. These results
Bhargav, Anirudh SSubbarao, Chitrashree
A crash pulse is the signature of the deceleration experienced by a vehicle and its occupants during a crash. The deceleration-time plot or crash pulse provides key insights into occupant kinematics, occupant restraints, occupant loading and efficiency of the structure in crash energy dissipation. Analysing crash pulse characteristics like shape, slope, maximum deceleration, and duration helps in understanding the impact of the crash on occupant safety and vehicle crashworthiness. This paper represents the crash pulse characterization study done for the vehicles tested at ARAI as per the ODB64 test protocol. Firstly, the classification and characterization of the crash pulses is done on the basis of the unladen masses of the vehicles. The same are further analysed for suitability of mathematical waveform models such as Equivalent Square Wave (ESW), Equivalent Triangular Wave (ETW), Equivalent Sine Wave (ESW), Equivalent Haversine Wave (EHSW) as well as EDTW (Equivalent dual trapezia
Mishra, SatishKulkarni, DileepBorse, TanmayMahindrakar, Rahula AshokMahajan, RahulJaju, Divyan
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
Electric buses (e-buses) are essential to sustainable public transport, but their real-world efficiency and range are heavily affected by auxiliary systems, particularly the Heating, Ventilation, and Air Conditioning (HVAC) system. This study investigates how ambient temperature variations and HVAC loads influence energy consumption, range, and efficiency in e-buses operating under diverse climatic conditions. The methodology combines field data collection from urban e-buses across seasons—including extreme summer and winter—with controlled laboratory testing. Field measurements included ambient temperature, HVAC demand, vehicle speed, state of charge (SOC) variation, and energy consumption. These inputs were used to develop real-world duty cycles, replicating actual thermal loads, passenger profiles, idling periods, and driving patterns. In the laboratory, these cycles were simulated using a chassis dynamometer and environmental chamber, with HVAC systems tested at controlled ambient
Vishe, PrashantDalela, SaurabhSaraswat, ShubhamJoshi, Madhusudan
Fleet owners often encounter significant logistical and financial problems when dealing with battery packs of different ages and conditions. The standard industry practice is to replace old batteries with identical new ones. This process is inefficient because it costs a lot, creates too much inventory, and eliminates battery packs that are still useful too soon. The problem worsens when manufacturers stop making older battery models, which can force a vehicle to retire early. This paper puts forward a framework for mixing different types of battery packs to deliver the performance needed for a vehicle’s mission. We show how this works in three everyday service situations: 1) Repair, when a single damaged pack needs replacing; 2) Life Extension, where aged packs are combined with newer ones to meet mission range; and 3) Performance Restoration, which uses next-gen packs when the original parts are obsolete. The study shows that a vehicle can complete its required missions by
Nair, Sandeep R.Ravichandran, Balu PrashanthHallberg, Linus
Electric mobility is no longer a distant vision, it is a global imperative in the journey of fight against the climate change and the urban pollution. Yet, despite of explosive growth in the electric vehicle adoptions, a major bottleneck remains which is efficient and convenient charging. The current reliance on physical plug in charging station creates inconvenient, time consuming experience and also faces significant technical and economic challenges those threaten to stall the smooth clean transportation revolution. Without innovation in how we recharge our vehicle the promise of electric mobility appears under threat which is undermined by less efficient, less compatible, and infrastructure hurdles. Wireless charging technology stand out as the game changing breakthrough poised to tackle these all critical problems head on. By enabling the effortless, cable-free charging system across the wide spectrum of electric vehicles, from the personal cars to the public transport fleets and
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
This paper presents a comprehensive testing framework and safety evaluation for Vehicle-to-Vehicle (V2V) charging systems, incorporating advanced theoretical modeling and experimental validation of a modern, integrated 3-in-1 combo unit (PDU, DCDC, OBC). The proliferation of electric vehicles has necessitated the development of resilient and flexible charging solutions, with V2V technology emerging as a critical decentralized infrastructure component. This study establishes a rigorous mathematical framework for power flow analysis, develops novel safety protocols based on IEC 61508 and ISO 26262 functional safety standards, and presents comprehensive experimental validation across 47 test scenarios. The framework encompasses five primary test categories: functional performance validation, power conversion efficiency optimization, electromagnetic compatibility (EMC) assessment, thermal management evaluation, and comprehensive fault-injection testing including Byzantine fault scenarios
Uthaman, SreekumarMulay, Abhijit BNikam, Sandip B.
The modern vehicle is no longer a mechanical appliance—it has transformed into a software-defined cyber-physical system, integrating OTA updates, cloud-connected diagnostics, V2X services, and telematics-driven personalization. While this evolution promises unprecedented value in consumer experience and fleet operations, it also surfaces a dramatically expanded and evolving attack perimeter, especially across safety-critical ECUs and communication buses. Cyber vulnerabilities have shifted from isolated IT threats to real-time, embedded exploits. Controller area network (CAN), the backbone of vehicle bus systems, remains intrinsically insecure due to its lack of authentication and encryption, making it highly susceptible to message injection and denial-of-service by low-cost tools. Similarly, OEM implementations of BLE-based passive entry systems have proven vulnerable to replay and spoofing attacks with minimal hardware. In the Indian context, the transition to connected mobility is
Shah, RavindraAwasthi, Vibhu VaibhavKarle, Ujjwala
State Transport Units (STUs) are increasingly using electric buses (EVs) as a result of India's quick shift to sustainable mobility. Although there are many operational and environmental benefits to this development, like lower fuel prices, fewer greenhouse gas emissions, and quieter urban transportation, there are also serious cybersecurity dangers. The attack surface for potential cyber threats is expanded by the integration of connected technologies, such as cloud-based fleet management, real-time monitoring, and vehicle telematics. Although these systems make fleet operations smarter and more efficient, they are intrinsically susceptible to remote manipulation, data breaches, and unwanted access. This study looks on cybersecurity flaws unique to connected passenger electric vehicles (EVs) that run on India's public transit system. Electric vehicle supply equipment (EVSE), telematics control units (TCUs), over-the-air (OTA) update systems, and in-car networks (such as the Controller
Mokhare, Devendra Ashok
Transportation sector in India accounts for 12% of total energy consumption. Demand of energy consumption is being met by the imported crude oil, which makes transportation sector more vulnerable to fluctuating international crude oil prices. India is mindful of its commitment in 2016 Paris climate agreement to reduce GHG emissions intensity of its GDP by 40% by 2030 as compared to 2005 levels. To fast track the decarbonization of transportation sector, commercial vehicle manufacturers have been exploring other viable options such as battery electric vehicles (BEVs) as a part of their fleet. As on today, BEV has its own challenges such as range anxiety & high total cost of ownership. Range anxiety can be certainly addressed by optimum sizing of electric powertrain, reduction in specific energy consumption (SEC) & use of effective regeneration strategies. Higher SEC can be more effectively addressed by doing vehicle energy audit thereby estimating the energy losses occurring at each
Gijare, SumantKarthick, K.Juttu, SimhachalamThipse, Sukrut S.A, JothikumarJ, Frederick RoystonSR, SubasreeG, HariniM, Senthil Kumar
Computer vision has evolved from a supportive driver-assistance tool into a core technology for intelligent, non-intrusive occupant health monitoring in modern vehicles. Leveraging deep learning, edge optimization, and adaptive image processing, this work presents a dual-module Driver Health and Wellness Monitoring System that simultaneously performs fatigue detection and emotional wellbeing assessment using existing in-cabin RGB cameras without requiring additional sensors or intrusive wearables. The fatigue module employs MediaPipe-based facial and skeletal landmark analysis to track Eye Aspect Ratio (EAR), Mouth Aspect Ratio (MAR), head posture, and gaze dynamics, detecting early drowsiness and postural deviations. Adaptive, driver-specific thresholds combined with CAN-bus data fusion minimize false positives, achieving over 92% detection accuracy even under variable lighting and demographics. The emotional wellbeing module analyzes micro-expressions and facial action units to
Iqbal, ShoaibImteyaz, Shahma
Public transport electrification is going to play a massive role in India’s COP26 pledge to achieve net zero emissions by 2070. India plans to electrify 800,000 buses in a push towards 30% EV penetration by 2030. Further encouraged by government incentives under National Electric Bus Program (NEBP), e-Bus market is expected to grow at a CAGR of ~86% annually over the next 5 years. With most OEMs going for fleet electrification for reducing CO2 emissions and to cater to growing demand in Indian cities for cleaner public transport, improving powertrain efficiency and performance of state-of-the-art e-Buses is a natural progression of e-mobility sector development in India. The first step in designing powertrain for an electric city bus is to determine the motor(s) size and transmission specifications (number of gears, gear ratios etc.). Complications arise due to a wider and non-linear operation range of eBus. This study focuses on powertrain optimization for a medium duty electric city
Sandhu, RoubleChen, BichengEmran, AshrafXia, FeihongLin, XiaoBerry, Sushil
Rising environmental concerns and stringent emissions norms are pushing automakers to adopt more sustainable technologies. There is no single perfect solution for any market and there are solutions ranging from biofuels, green hydrogen to electric vehicles. For Indian market, especially in the passenger car segment, hybrid vehicles are favoured when it comes to manufacturers as well as with consumer because of multiple reasons such as reliability, performance, fuel efficiency and lower long-term cost of ownership. For automakers planning to upgrade their fleets in the context of upcoming CAFE III (91.7 g CO2 / km) & CAFE IV (70 g CO2/km) norms, hybridization emerges as the next natural step for passenger cars. Lately, various state governments have also promoted hybrid vehicle sales by offering certain targeted tax breaks which were previously reserved for EVs exclusively. Current study focuses on various parallel hybrid topologies for an Indian compact SUV, which is the highest
Warkhede, PawanKeizer, RubenSandhu, RoubleEmran, Ashraf
In recent times, the governments are pushing for stringent emission regulations. These regulations call for reduction of pollutants as well as monitoring of engine components which are critical for emission control. Monitoring these emission critical engine components are to be done in real world driving conditions. The In-Use Performance Ratio Monitoring (IUPRm) framework quantifies how often onboard diagnostic systems check these components within defined boundaries for each vehicle. IUPRm is divided into several monitoring groups like catalyst monitoring, oxygen sensor monitoring, exhaust gas recirculation (EGR) monitoring, gasoline particulate filter monitoring and others. These groups are differentiated based on fuel type, engine technologies and exhaust treatment system configurations. For an Automotive manufacturer analyzing these parameters across large vehicle fleets is a complex and data intensive task. To address this, a user-friendly application was developed in-house
Ghadge, Ganesh NarayanJadhav, MarishaHosur, Viswanatha
Tire wear progression is a nonlinear and multi-factor degradation phenomenon that directly influences vehicle safety, handling stability, braking performance, rolling resistance, and fleet operational cost. Global accident investigations indicate that accelerated or undetected tread depletion contributes to nearly 30% of highway tire blowouts, highlighting the limitations of conventional wear indicators such as physical tread wear bars, mileage-based service intervals, and periodic manual inspections. These manual and threshold-based approaches fail to capture dynamic driving loads, compound ageing, pressure imbalance effects, or platform-specific wear behaviours, thereby preventing timely intervention in real-world conditions. This work presents an Indirect Tire Wear Health Monitoring System that employs an advanced Machine Learning + Transfer learning architecture to infer tread wear level and Remaining Useful Life (RUL) without relying on any tire-mounted sensors. The system ingests
Imteyaz, ShahmaIqbal, Shoaib
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Mohan, VigneshDarzi, Mahdi
This study addresses one of the challenges in the energy transition of heavy-duty vehicles by converting a diesel Refuse Collection Vehicle (RCV) into a hydrogen-powered prototype. The research is part of the VeH2Dem project funded by NextGenerationEU and focuses on dimensioning the complete hydrogen propulsion system for a RCV, including the energy storage capacity, without compromising payload or operational functionality. The development of the propulsion system is based on a comprehensive analysis of operational data extracted from fleet management systems, complemented by detailed instrumental monitoring of various collection routes. This methodology ensured that the prototype inherits performance equivalent to the original internal combustion engine vehicle across all evaluated scenarios. The vehicle performance objectives were established following a comparative analysis with solutions currently available in the RCV market, incorporating statistical analyses to ensure continuous
Cano, PabloBarrio, RobertoRoche, Marinade-Lima, DanielaBatista, SaraBertolí, Xavier
The rapid evolution of intelligent transportation systems has made drivers’ attentiveness and adherence to safety protocols more critical than ever. Traditional monitoring solutions often lack the adaptability to detect subtle behavioral changes in real time. This paper presents an advanced AI-powered Driver Monitoring System designed to continuously assess driver behavior, fatigue, distractions, and emotional state across various driving conditions. By providing real-time alerts and insights to vehicle owners, fleet operators, and safety personnel, the system significantly enhances road safety. The system integrates lightweight AI/ML algorithms, image processing techniques, perception models, and rule-based engines to deliver a comprehensive monitoring solution for multiple transportation modes, including automotive, rail, aerospace, and off-highway vehicles. Optimized for edge devices, the models ensure real-time processing with minimal computational overhead. Alerts are communicated
Chikhale, ShraddhaSing, SandipHivarkar, UmeshMardhekar, Amogh
This comprehensive research presents an in-depth analysis of communication protocols essential for implementing fast charging systems in India's rapidly expanding electric two-wheeler and three-wheeler market. As India witnesses unprecedented growth in electric mobility, with two-wheelers representing over 95% of current EV sales, the establishment of standardized, secure, and efficient charging protocols becomes paramount for widespread adoption. This study examines the current landscape of AC charging methodologies, evaluates the technical and economic feasibility of DC fast charging implementation, and provides detailed comparative analysis of existing international standards including IS 17017-25, IS 17017-31, ChaoJi, and CCS 2.0. The research concludes with strategic recommendations for developing cyber-secure, cost-effective charging infrastructure specifically tailored to meet India's unique market requirements and operational constraints.
Uthaman, SreekumarMulay, Abhijit B
Electric Vehicles (EV) are increasingly becoming more and more popular in the markets, especially in the commercial vehicle segments. Amidst this, the need to find new elegant methods to perform charging of EV battery becomes extremely crucial. In areas with high demand and limited power capacity, performing charging for multiple vehicles necessitates efficient usage of charging infrastructure, which can’t be guaranteed by the traditional charging methods. Sequential charging is a new state of art technique for managing the charging of multiple EV’s simultaneously connected to a single charging station. Rather than dividing the available power equally among all connected vehicles or charging them one at a time, this technique dynamically allocates power based on various factors such as charging priority, vehicle needs and available infrastructure capacity. Currently, sequential charging can only be implemented by a particular set of chargers that are interconnected via backend and
De, AbirBhattacharya, UllashParihar, Aakash
As China’s socio-economic progress accelerates, residents’ mobility preferences are growing more varied. Owing to their eco-friendliness, high capacity, fixed routes and low prices, pure-electric buses have become a key component of urban transit. Yet day-to-day service is hindered by low fleet availability, limited daily kilometres and poor service quality, all of which erode operation efficiency. Taking Wuhu’s public transport network as a case study, this paper builds a performance-assessment framework for electric bus routes. Using stop-level topology, vehicle specifications and spatiotemporal passenger-flow data from eight representative routes, the study applies the Analytic Hierarchy Process (AHP). A three-tier hierarchy—goal, criteria and alternatives—is constructed; index weights and pairwise comparison matrices are then computed to rank overall route effectiveness. The findings accurately pinpoint operational bottlenecks and furnish quantitative guidance for adaptive network
Hu, TingtingLiang, ZijunLi, XiaoyanZhang, XinyiWang, MengruHu, YufengJiang, Kang
The aviation sector currently accounts for 2-3% of global Greenhouse Gas (GHG) emissions, while the projected increased air travel demand (average 3.4% per year), might surge the aviation fuel use. This increase in jet fuel demand, associated with the current decarbonization pathway of other sectors might increase the aviation’s absolute emissions, as well as its relative global GHG share. This scenario has driven the aviation stakeholders into a decarbonization strategy, focused on an immediate and gradual GHG reduction effort associated with a net-zero commitment by 2050. Meanwhile, the aviation sector is known as one that set most difficulties to use alternative fuels and/or powertrains, such as battery electric or sustainable hydrogen fueled propulsion systems, already used on some road and rail applications, but still restricted to the aviation, due to the inherent weight and volume tight requirements. In this context, the sustainable aviation fuels (SAF) are set as the most
Barbosa, Fábio Coelho
The growing concern regarding global warming pushes the contribution of all emitting sources to mitigate greenhouse gases. The significant light passenger vehicle fleet deserves continued attention, both in the implementation of more efficient new technologies and in the optimization of conventional technologies, which are still widely used. The vehicle’s energy efficiency is directly influenced by the coupling of the internal combustion engine to the transmission system. Engines have a restricted operation region of maximum efficiency that must be adequately explored by the transmission system in the different conditions of vehicle use. Thus, this paper analyzes and quantifies the sensitivity of the vehicle’s energy efficiency of two distinct engine technologies, naturally aspirated and turbocharged, coupled to an automatic transmission system with six discrete or continuously variable gears. Experimental data on the overall efficiency of the engines and the transmission concepts
Rovai, Fernando FuscoMenezes Lourenço, Maria Augusta deRohrig, Marcelo
In order to reduce conflicts between vehicles at intersections and improve safety, an optimization model of traffic sequence allocation is studied and established for the heterogeneous traffic scenario of connected autonomous vehicles and manual vehicles. With the minimum safe traffic time as constraint, the right of way is allocated to vehicles according to the microscopic traffic characteristics of heterogeneous traffic flow fleet movement and the phase of signal lights, and the optimal trajectory planning control of each vehicle and evaluation indicators are established. A jointly simulation running environment is built using VISSIM and MATLAB. The simulation results indicate that at the micro level, collaborative control slows down the waiting time for manually driven vehicles and improves the utilization of green light travel time. At the macro level, as the penetration rate of connected autonomous vehicles increases, the sum of squares of vehicle acceleration gradually decreases
Yuan, ShoutongLi, ZhiqiangLiu, TianyuYu, Zhengyang
Stoneridge displayed its vision for the future of commercial vehicle technology on the SAE COMVEC 2025 exhibit floor. The Innovation Truck showcases the Tier 1 supplier's next-generation vision and driver-assistance technologies designed to enhance driver safety and fleet optimization. Mario Gafencu, product design and evaluation specialist at Stoneridge, gave Truck & Off-Highway Engineering a tech truck walkaround at the event. The first technology Gafencu detailed was the second-generation MirrorEye camera monitor system that's designed to replace the glass mirrors on the sides of a truck.
Gehm, Ryan
Heavy-duty mining is a highly demanding sector within the trucking industry. Mining companies are allocated coal mine sites, and fleet operators are responsible for efficiently extracting ore within the given timeframe. To achieve this, companies deploy dumper trucks that operate in three shifts daily to transport payloads out of the site. Consequently, uptime is crucial, necessitating trucks with exceptionally robust powertrains. The profitability of mining operations hinges on the efficient utilization of these dumper trucks. Fuel consumption in these mines constitutes a significant portion of total expenses. Utilizing LNG as a fuel can help reduce operational fuel costs, thereby enhancing customer profitability. Additionally, employing LNG offers the potential to lower the CO2 footprint of mining operations. This paper outlines the creation of a data-driven duty cycle for mining vehicles and the simulation methodology used to accurately size LNG powertrain components, with a focus
John, Ann VeenaPendharkar, Koustubh
Off-highway vehicles (OHVs) are essential in heavy-duty industries like mining, agriculture, and construction, as equipment availability and efficiency directly affect productivity. In these harsh settings, conventional maintenance plans relying on set intervals frequently result in either early component replacements or unexpected breakdowns. This document presents a Connected Aftermarket Services Platform (CASP) that utilizes real-time data analysis, predictive maintenance techniques, and unified e-commerce functionalities to evolve OHV fleet management into a proactive and smart operation. The suggested system integrates IoT-enabled telematics, cloud-based oversight, and AI-powered diagnostics to gather and assess machine health indicators such as engine load, vibration, oil pressure, and usage trends. Models for predictive maintenance utilize both historical and real-time data to produce advance notifications for component failures and maintenance requirements. Fleet managers get
Vashisht, Shruti
Charging management has a profound impact on the reliability and safety of electric bus (EB) services. However, the actual charging operation of EB fleets is a critical challenge due to uncertain energy consumption, limited charging resources and other factors. At present there are no operational and maintenance guidelines present for operation of EB charging stations since the running and operation of these facilities are at the initial stages of development. There is a need to develop these strategies that provides smooth operation of these newly developed facilities. In the present work maintenance strategies of electrical systems of Electric bus charging station were designed. The complete maintenance is divided into quarterly and annual maintenance based on the requirements and nature of work for smooth operation. Quarterly Maintenance is devised on detecting early signs of wear through visual inspections of key components, including transformers and ventilation systems while
Soam, KumareshVashist, Devendra
This study extends the bottleneck model to analyze dynamic user equilibrium (UE) in carpooling during the morning peak commute. It is assumed that the carpooling platform offers both traditional human-driven vehicles and novel shared autonomous vehicles. First, we analyze the traffic distribution on a two-lane road. We find that traffic distribution is influenced by the additional cost of carpooling behavior. A corresponding functional relationship is established and visualized. Second, we derive the critical fare threshold for carpooling. Carpooling occurs only when the fare is below this threshold. Third, we obtain the user equilibrium (UE) solution under a specified case, including flow distribution, equilibrium cost, and total number of vehicle. Furthermore, a system-optimal dynamic tolling scheme is proposed to minimize total system cost while maintaining commuter UE. By equating the system marginal cost to the equilibrium cost, we derive the analytical expression for the lane
Zheng, XiaoLongZhong, RenXin
Charging infrastructure has become the primary bottleneck to fleet electrification. Despite growing demand for electric trucks and increasing pressure to decarbonize logistics operations, many fleet operators face long delays for grid upgrades, transformer installations, and permitting, at times waiting more than a year to power vehicles that have already arrived.
Items per page:
1 – 50 of 1595