Browse Topic: Buses

Items (2,142)
The behavior of mechanical structures subjected to impacts is a topic of great relevance, with one of its applications being in the context of collisions on urban roads. According to data obtained from the electric bus monitoring platform E-Bus Radar, the fleet of vehicles with this means of propulsion has grown significantly in the last 6 years. Just from 2022 to 2023, the growth was 51%, jumping from 2669 to 4020 registered vehicles in Latin America. In this context, the present study investigated the behavior of the rear structure of an electric bus - EB in a rear-end collision scenario. The study of this region was motivated by the fact that it houses 4 out of the 12 battery packs and other electrical components. The main objective of this work is to evaluate the efficiency of the anti-intrusion and impact absorption mechanism to ensure the integrity of the batteries. Since damage in a collision can release different types of flammable electrolytes and even trigger a fire, posing a
Menino, Bruno G.Sordi, AlexsandroBraida, Claudio A. B.Biondo, FelipeSpengler, FelipeMagnabosco, Guilherme
The world’s commitment towards the mitigation of climate changes has driven many sectors into an effort to reduce their carbon footprint. The transit bus sector, which currently strongly relies on diesel fueled buses, is challenged to reduce its carbon footprint, as well as to reduce the emission of criteria pollutant and noise, which negatively affect the world cities’ population, especially those living nearby the large transit bus corridors. In this context, the Battery Electric Buses (BEB), has been set as the transit sector’s workhorse for reaching the global, regional and local environmental targets. However, despite the relative maturity level of both the electric powertrain and the energy storage devices (ESD) technologies, the bus electrification transition is a disruptive process, from both a technological, operational and managerial standpoint, which might take into account both the (electrical) infrastructure, as well as the operational customization requirements. Moreover
Barbosa, Fábio Coelho
The planning of mountain campus bus routes needs to take into account user demand, convenience, and other factors. This study adopts a comprehensive research method that combines quantitative and qualitative viewpoints. From the perspective of university students, this article studies the demand of campus public transportation and proposes the layout of campus bus routes in mountainous universities to meet the needs of users. The psychological needs questionnaire was used to investigate college students’ expectation of bus station service function. Taking three mountain universities as examples, the integration and selectivity of campus road networks are evaluated by using space syntax analysis, which provides valuable insights into the quality of bus stop areas. This article discusses the correlation between psychological needs assessment of college students and objective conditions of campus road network. The study concludes with the following findings: (1) The pedestrian environment
Duan, RanTang, RuiWang, ZhigangZhao, YixueWang, QidaYang, JiyiSu, Jiafu
This SAE Recommended Practice establishes for trucks, buses, and multipurpose passenger vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for the switch for activating electric or electro-pneumatic windshield washer systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield washing system performance is developed.
Truck and Bus Windshield Wipers and Climate Control Comm
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The vehicle holding or sliding on the grade, fully loaded or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and up grade directions.
Truck and Bus Brake Systems Committee
This SAE Recommended Practice establishes uniform cold weather test procedures and performance requirements for engine coolant type heating systems of bus that are all vehicles designed to transport 10 or more passengers. The intent is to provide a test that will ensure acceptable comfort for bus occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Required test equipment, facilities, and definitions are included. There are two options for producing hot coolant in this recommended practice. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the
Truck and Bus Windshield Wipers and Climate Control Comm
This SAE Recommended Practice establishes for trucks, buses, and multipurpose vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for the switch for electrically or electro-pneumatically powered windshield wiping systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this document are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Truck and Bus Windshield Wipers and Climate Control Comm
As the electrification of transportation continues to gain momentum, the thermal management of onboard batteries remains a critical aspect to ensure optimal performance, efficiency, and longevity. To address this challenge, a standalone cooling system with a cooling capacity has been developed, specifically tailored for electric buses. This paper presents a comprehensive analysis of the performance comparison between simulation and testing data for a standalone battery cooling system designed for electric bus applications. The study encompasses two primary components: numerical simulation using MATLAB Simulink and experimental testing. In the experimental phase, rigorous tests were conducted in a laboratory environment to evaluate the system's cooling performance under various operating conditions. Key metrics such as cooling capacity, temperature profile, and power consumption were measured and recorded to assess the system's effectiveness. A detailed numerical simulation model was
Suman, SaurabhKushwah, Yogendra SinghShukla, Ankit
Chinese battery manufacturer CATL (Contemporary Amperex Technology Co. Ltd.) completed the launch of its TECTRANS battery system for the commercial transport sector at IAA Transportation, which took place in September in Hanover, Germany. CATL added its heavy-duty truck and bus/coach battery ranges to the light-truck range that the company launched in China in July 2024. For heavy-duty trucks, CATL offers two alternatives: the TECTRANS - T Superfast Charging Edition and the TECTRANS - T Long Life Edition. As the name suggests, the Superfast Charging Edition is designed to offer rapid charging capability for operators needing to recharge during a duty cycle. CATL quotes a 4C peak charging rate, which would permit a charge to 70% in 15 minutes.
Kendall, JohnGehm, Ryan
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways.
Truck and Bus Brake Systems Committee
With all the environmental concern of diesel fuelled vehicle, it is a challenge to phase out them completely specifically from Heavy duty application. Most pragmatic solution lies in solutions which improves the fuel economy and reduce the carbon emission of existing diesel fuelled vehicle fleet and retain the economic feasibility offered by present diesel fuelled vehicle fleets. With implementation of Bharat Stage IV (BS VI) emission norms across country from April 2020, supply of BS VI complaint diesel fuel started and BS VI complaint vehicles with upgraded engine technologies and after treatment devices started to come which made present vehicle fleets heterogeneous with substantive number of BS IV vehicle. Beside improvement of engine technologies, existing BS IV vehicle fleet performance can be enhanced through improved fuel and lubricants solutions. The present research work is a step towards improving the fuel economy of existing BS IV diesel vehicles through the intervention of
Mishra, Sumit KumarSingh, Punit KumarChakradhar, MayaSeth, SaritaSingh, SauhardArora, AjayHarinarain, Ajay KumarMaheshwari, Mukul
Transit agencies around the world have been investing in more battery electric buses (BEB) in an effort to combat the growing negative externalities stemming from the use of petrochemicals in combustion transit vehicles. These buses use new propulsion systems based primarily on lithium-ion batteries to cut carbon pollution and promote cleaner, faster, and safer rides. As new electrification technologies continue to penetrate the bus transit market, there is a continuous need to evaluate the safety and performance of these battery electric systems. To meet the safety and performance needs of technologies in transit buses, regulations and standards have been established to define best testing and industry practices. This paper details the current state of battery standards and regulations in automotive and transit vehicles, with consideration of battery failure modes and effects. Various governments and standard organizations have established numerous different regulations and standards
Jankord, GregoryGravante, EmanueleD'Arpino, Matilde
Vehicle electrification has gained prominence in various industries and offers sustainability opportunities, especially in the context of heavy-duty vehicles such as school buses. Despite the prevalence of conventional diesel school buses (CDSB), the adoption of electric school bus (ESB) and other eco-friendly alternatives is increasing. In the United States alone, there has been a notable increase in the adoption of ESBs, indicating substantial growth. The electrification of school buses not only promises energy savings, but also offers health benefits to children, reduced greenhouse gas emissions, and environmentally friendly transportation practices, aligned with broader eco-friendly initiatives. This paper investigates the potential for energy savings and reduction in environmental footprint through electrification of school buses in the Columbus, OH area. Analyzing current bus routes and road terrain data allows one to estimate energy demand and environmental impact, accounting
Moon, JoonHanif, AtharAhmed, Qadeer
The advancements towards autonomous driving have propelled the need for reference/ground truth data for development and validation of various functionalities. Traditional data labelling methods are time consuming, skills intensive and have many drawbacks. These challenges are addressed through ALiVA (automatic lidar, image & video annotator), a semi-automated framework assisting for event detection and generation of reference data through annotation/labelling of video & point-cloud data. ALiVA is capable of processing large volumes of camera & lidar sensor data. Main pillars of framework are object detection-classification models, object tracking algorithms, cognitive algorithms and annotation results review functionality. Automatic object detection functionality creates a precise bounding box around the area of interest and assigns class labels to annotated objects. Object tracking algorithms tracks detected objects in video frames, provides a unique object id for each object and
Mardhekar, AmoghPawar, RushikeshMohod, RuchaShirudkar, RohitHivarkar, Umesh N.
Autonomous vehicle technologies have become increasingly popular over the last few years. One of their most important application is autonomous shuttle buses that could radically change public transport systems. In order to enhance the availability of shuttle service, this article outlines a series of interconnected challenges and innovative solutions to optimize the operation of autonomous shuttles based on the experience within the Shuttle Modellregion Oberfranken (SMO) project. The shuttle shall be able to work in every weather condition, including the robustness of the perception algorithm. Besides, the shuttle shall react to environmental changes, interact with other traffic participants, and ensure comfortable travel for passengers and awareness of VRUs. These challenging situations shall be solved alone or with a teleoperator’s help. Our analysis considers the basic sense–plan–act architecture for autonomous driving. Critical components like object detection, pedestrian tracking
Dehghani, AliSalaar, HamzaSrinivasan, Shanmuga PriyaZhou, LixianArbeiter, GeorgLindner, AlisaPatino-Studencki, Lucila
Outsized costs for charging infrastructure could slow implementation of battery-electric CVs. The high cost of batteries to electrify on-road commercial vehicles is one thing. But some connected with or studying electrification for the CV sector now are concerned that the cost of installing high-capacity recharging infrastructure for EV versions of trucks, buses and other on-road commercial vehicles is the latest factor with potential to derail the growth of CV electrification. One prominent study from earlier this year pegged the cost to the freight industry and utilities at a resounding near-$1 trillion to fully electrify all commercial vehicles over the course of roughly 20 years. And that cost is for infrastructure only, exclusive of the vehicles themselves, “which can be two to three times as expensive as their diesel-powered equivalents,” the report asserted.
Visnic, Bill
Passenger vehicles like buses tend to soak up heat when they are parked under an open sky. The temperatures inside the vehicle can get very high during daytime due to heating, which reduces the thermal comfort levels. All three modes of heat transfer, i.e., conduction, convection and radiation contribute to the heating process. Cool-down tests are performed to replicate this thermal behaviour and evaluate the time required for cooling the internal bus volume to comfortable temperatures. The phenomenon can also be analysed using CFD, and accounts of numerous such studies are available however, the effects of all three modes of heat transfer for practical application are rarely studied. In view of this, an effort has been made to develop a fast and reasonably accurate transient numerical method to predict the thermal behaviour of the cool-down process for a school bus cabin. The effects of all three modes of heating (conduction, convection, and solar radiation) have been evaluated, and
Sharma, ShantanuSingh, RamanandZucker, JamesMoore, Chris
A challenge of public transportation GPS data is the frequent utilization of monitoring systems with low sampling rates, primarily driven by the high costs associated with cellular data transmission of large datasets. Altitude data is often imprecise or not recorded at all in regions without large elevation changes. The low data quality limits the use of the data for further detailed investigations like a realistic energy consumption forecast for assessing the electrical grid load resulting from charging the vehicle fleet. Modern research often reconstructs speed data only, or uses additional GPS loggers, which is associated with increased costs in the vehicle fleet. The importance of precise and high-quality altitude data and specialized expertise in mountainous regions are frequently overlooked. This paper introduces an efficient new route matching method to reconstruct speed and respective road slope data of a GPS signal sampled at low frequency for a public transportation electric
Hitz, ArneKonzept, AnjaReick, BenediktRheinberger, Klaus
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
Hsu, Tsung-Ming
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, and seal. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W.
Truck and Bus Wheel Committee
Improving the overall thermal management strategy in electric vehicles can directly or indirectly improve battery efficiency and vehicle range. The aim of this study is to simulate and improve the performance of motor cooling lines developed for an electric bus using 1D computational fluid dynamics models. In the study, simulation studies were carried out for the 12-m EV Citivolt vehicle of Anadolu Isuzu. Design parameters such as placement of flow lines and component selection were decided thanks to 1D models developed. The design obtained at the end of the study was supported by tests and experimental studies. As a result, it was seen that the components in the line correctly detected the flow rate and pressure losses with a maximum error rate of 8% and an average error rate of 4.8%. Additionally, the components on the line were added to the model via their own characteristic dp-Q curves. In this way, it has been seen that these components, which contain complex flow lines, can be
Turan, AzimYaki, EmrahBirgül, Çağrı EmreKaya, Hakan
While cooling comfort is important in city buses compared to other vehicles, it is also difficult to keep the cooling performance at a high level. Roof AC units used in commercial vehicles may vary in performance depending on many factors. Therefore, while the design works are in progress, there are some points to be considered while the units are in the packaging phase. These points are that the air used for condenser cooling in the air conditioner suction zone is at low temperature with high flow rate. In this study, it is aimed that the air conditioner and battery cooling unit placed on the roof of a bus developed by ANADOLU ISUZU are not adversely affected by each other. For this reason, in the related study, design and analysis studies were carried out to reduce the negative effects of the hot air coming out of the battery thermal management system (BTMS) in the cooling circuit when the air conditioner is activated. The aim of the study is to ensure that the air-conditioning unit
Küçükbayram, Hamdi
This SAE Recommended Practice establishes a method of evaluating the structural integrity of the parking brake system of all new trucks, buses, and combination vehicles designed for roadway use in the following classifications: TRACTOR, TRAILER, TRUCK, AND BUS: over 4500 kg (10 000 lb) GVWR.
Truck and Bus Foundation Brake Committee
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each normal force and slip angle increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this recommended practice may modify the recommended protocols to satisfy the needs of specific use-cases, e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes. However, due care is necessary when
Truck and Bus Tire Committee
In 1983, a seat belt use rate survey was published in which 9% shoulder belt use was observed for front-outboard passengers. Nearly forty years later the national estimate of seat belt use has achieved a record high of 91.6% belt use by adult front-seat passengers in 2022. In contrast, there have been very few studies conducted in order to determine seat belt use within large buses and motorcoaches. In 2013, the NHTSA published a final rule amending FMVSS 208 to require seat belts for each seating position in all new over-the-road buses. Beginning in 2016, newly manufactured buses were required to be equipped with lap and shoulder belts for each driver and passenger seat. Recent studies have reported that seat belt use on motorcoaches with relatively long routes was only 2.6%. Similarly, seat belt use in airport shuttle buses was reported to be only 1%. The present observational study was conducted to determine an updated seat belt usage rate of passengers on airport shuttle buses. The
Gregg, Richard H.
For the design optimization of the electric bus body frame orienting frontal crash, considering the uncertainties that may affect the crashworthiness performance, a robust optimization scheme considering tolerance design is proposed, which maps the acceptable variations in objectives and feasibility into the parameter space, allowing for the analysis of robustness. Two contribution analysis methods, namely the entropy weight and TOPSIS method, along with the grey correlation calculations method, are adopted to screen all the design variables. Fifteen shape design variables with a relatively high impact are chosen for design optimization. A symmetric tolerance and interval model is used to depict the uncertainty associated with the 15 shape design variables of key components in the bus body frame to form an uncertainty optimization problem in the form of an interval, and a triple-objective robust optimization model is developed to optimize the shape design variables and tolerances
Yang, XiujianLiu, Beizhen
The study emphasizes transitioning school buses from diesel to electric to mitigate their environmental impact, addressing challenges like limited driving range through predictive models. This research introduces a comprehensive control-oriented model for estimating auxiliary loads in electric school buses. It begins by developing a transient thermal model capturing cabin behavior, divided into passenger and driver zones. Integrated with a control-oriented HVAC model, it estimates heating and cooling loads for desired cabin temperatures under various conditions. Real-world operational data from school bus specifications enhance the model’s practicality. The models are calibrated using experimental cabin-HVAC data, resulting in a remarkable overall Root Mean Square Error (RMSE) of 2.35°C and 1.88°C between experimental and simulated cabin temperatures. A lateral powertrain model has been developed that encompasses vehicle dynamics, electric machinery, transmission, and electrical loads
Nawaz, MuneebullahAlsharif, KhaledHanif, AtharAhmed, Qadeer
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption. Subsequently, the relationship between the energy consumption of the traction motor and the climate control system was investigated concerning environmental parameters
Belloni, MattiaTarsitano, DavideSabbioni, Edoardo
The recommended practice describes a design standard that defines the maximum recommended voltage drop of the starting motor main circuits, as well as control system circuits, for 12/24-V starter systems. The battery technologies used in developing this document include the flooded lead acid, gel cell, and AGM. Starting systems supported by NiCd, Lithium Ion, NiZn, etc., or Ultracaps are not included in this document. This document is not intended to be updated or modified to include starter motors rated at voltages above the nominal 24-V electrical system. The starter is basically an electrical-to-mechanical power converter. If you double the available battery power in, you double the peak mechanical power out and double the heat losses. This means that we have to pay special attention to how battery power changes when we change the battery voltage and the effects it may have in overpowering the cranking system. A new stand-alone document would need to be developed to address
null, null
The basic needs of people are met by the building, fabric, and farming sectors. In addition, the automobile industry significantly contributes to human mobility and is essential to India’s economic expansion. There are numerous research strategies available to improve the bus body building industries. Several investigative approaches for enhancing bus body building industries are available. However, several of these studies merely look at it from the perspective of shop floor activity. Accordingly, when it comes to the execution of process design approaches, there is little practical evidence for accepting Gemba kaizen’s attitude. Hence, the purpose of this article is to present a continuous improvement redesign framework tailored to a specific bus body building industrial sector. The proposed model is structured after a critical examination of Gemba and Kaizen. The results showed that by implementing the improvement initiatives, the number of process activities decreased from 44 to 25
Balakrishnan, S.Senthilkumar, K.Rajkumar, V.Jerold John Britto , J.
Battery electric transit buses sold in Canada generally include a fuel-fired diesel auxiliary heater for cabin heating in cold weather. This report details a test project, performed in collaboration with OC Transpo, to capture and quantify the emissions from such a fuel-fired heater (FFH) installed on a New Flyer XE40 battery electric transit bus from OC Transpo’s fleet in Ottawa, Canada. The FFH was tested while the bus was both stationary and being driven on-road in cold conditions. The results include the emissions rates of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons and methane, and soot. Additionally, total particulate matter results were obtained during stationary testing. The results of stationary testing were compared to the California Air Resources Board and European Union standards for FFH emissions, even though these standards do not apply directly to buses operated outside of these jurisdictions. During stationary testing, average emissions of carbon
Humphries, KieranRashid, HusseinAraji, Fadi
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused.
Dhadiwal, Nishant SurendraPathak, RahulBijwe, VilasGore, Pandurang
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Tangade, Atul BanduBabar, SunilBankar, Milind AchyutraoMehendale, RavindraDhumal, KailasBhusari, Deepak
The safety of students during transportation on school buses is a paramount concern for both parents and schools. Although GPS (Global Positioning System) tracking systems are commonly used, they are limited in their ability to identify which students are on board. To ensure the safety and security of the students, this paper proposes a student authentication system based on facial recognition, people counter along with GPS vehicle tracking. This is intended to explore the advantages of these three technologies combined together for student authentication, the implementation process, and how it can improve the safety of school bus transportation.
Deshmukh, Kaustubh
Prime concern for electric vehicle where the application of the vehicle is public transport, is the charging of vehicle and operation of its infrastructure. Such an example of operating the EV buses is under the GCC (gross cost contract) model, with high operation time and comparatively lesser time for charging. It is challenging to meet these requirements. To counter this situation in fleet operated busses it is proposed to adapt an automated charging method which involves minimum man power intervention and automated mechanism to connect & disconnect the charging connectors. This paper proposes an automated pantograph mechanism based method of charging EV buses, meeting requirements as per SAE J3105 & ISO 15118 standards, which would be an ideal way to resolve the current situation. In the above mentioned pantograph type charging, the charging station or depot will have an infrastructure including charger whose input will be from grid, and the charging dispenser will be pantographs
Gullyal, AvinashAhmed, YasirAmancharla, Naga ChaithanyaKinjalkar, Milind
Bus transport is an important element in a sustainable transport strategy. The objective of this study is to understand crashes and injuries involving buses, suggest potential passive-safety interventions, estimate their effectiveness, and compare their effectiveness between Germany and India. Descriptive analysis of crash data from the German In-depth Accident Study (GIDAS) and the Road Accident Sampling System India (RASSI) database was performed in two parts: First, bus passengers and their injuries were analyzed and second, pedestrian injuries in bus-to-pedestrian crashes were analyzed. Lastly, interventions were suggested, and their effectiveness was estimated. Analysis of bus passengers showed that most moderate-to-critical injuries in the GIDAS data were to the head caused by interior bus components. In the RASSI data, head injuries were also frequent, often due to bus interior contact, but also due to ejection and impact to the ground or bus exterior. As many as 31% of all
Ranmal, AartiJeppsson, HannaStrandroth, JohanLubbe, Nils
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety. Protection
Jain, GauravPathak, RahulGore, Pandurang
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Bhardwaj, RohitSaurabh, SaurabhGadve, DhananjayAmancharla, Naga Chaithanya
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers. In order to provide
Bijwe, Vilas B.Mahajan, RahulVaidya, RohitPatel, KaustubhHiwale, DiwakarWalke, Abhijit Ashok
The battery electric buses (BEB) are set as key tools to enable cities to meet their challenging transport environmental targets, i.e. the reduction of Greenhouse gas (GHG) emissions, improvement of local air quality, as well as to provide a quieter system for both passengers and the urban community. The recent evolutions of the traction battery technology, with increasing battery energy and power densities, battery durability and dynamic performance, driven by both the light and heavy duty vehicles segment, has opened the way for a series of transit bus electrification initiatives, focused on the evaluation of the feasibility of the BEB technology for the zero local emission bus fleet targets, already set by transit authorities in some important cities worldwide. In this context, as important as the onboard electric traction technology itself, currently already mature for BEB test trials, is the required electric charging infrastructure and its inherent operational effects, which
Barbosa, Fábio C.
Light fidelity (LiFi) technology holds immense potential to revolutionize wireless communication networks by utilizing light bulbs for reliable and cost-effective interconnections. Integration of LiFi technology with advanced solutions is proposed to significantly enhance the passenger experience in autonomous buses. The reliability and performance limitations inherent in traditional radio frequency (RF) technologies are addressed, resulting in a consistent and reliable wireless connection for self-driving cars. The proposed solution incorporates key features such as a LiFi-powered real-time tracking and notification system, on-board assistance for seat location, and precise bus seat occupancy information gathering. Additionally, the paper aims to improve punctuality through a LiFi-powered passenger boarding system, facilitating the widespread adoption of autonomous vehicles as a trusted and efficient mode of transportation. A thorough technical examination and a successful
Dawoud, Diana WasfiMukhtar, HusameldinCopiaco, AbigailMansoor, WathiqAtalla, Shadi
This SAE Recommended Practice is intended to describe a procedure for rating the size of single-stage reciprocating air compressors. It describes the conditions that can be used for testing and it defines a standardized rating expressed in SLPM (SCFM).
Truck and Bus Brake Supply and Control Components Committee
This SAE Recommended Practice presents requirements for the structural integrity of the brake system of all new trucks, buses, and combinations of vehicles designed for roadway use and falling into the following classifications: a Truck and Bus—Over 4500 kg (10 000 lb) GVWR b Combination Vehicles—Towing vehicle over 4500 kg (10 000 lb) GVWR The requirements are based on data obtained from SAE J294.
Truck and Bus Foundation Brake Committee
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated
Chaudhary, Alok SubhashGhodake, Preetam
Research on the energy consumption and emission of heavy-duty hybrid electric buses was carried out based on the chassis dynamometer. The effects of different working conditions on the driving range, electric power, energy consumption and emissions were analyzed. The testing process included three phases, the pure electric driving range phase, energy adjustment phase and electrical energy balance phase. The testing cycle includes CHTC-B (China Heavy-duty commercial vehicle Test Cycle for Bus) and CCBC (Chinese typical City Bus Cycle). The energy consumption and emissions were measured simultaneously during the test. The results show that the driving range of CHTC-B method is less than that of constant velocity method and the power consumption of CHTC-B method is higher than that of constant velocity method. The energy consumption of CHTC-B is 20% higher than that of CCBC. Comparing the emissions after the engine is warmed up, it can be concluded that the CCBC pollutant has a higher
Gao, DongzhiFeng, ZhonghuiZhao, JianfuXu, DandanLi, Tengteng
Items per page:
1 – 50 of 2142