Browse Topic: Railway vehicles and equipment
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons.
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically. First, the A* path searching algorithm is applied to generate an optimal
After decades of tantalizing breakthroughs in battery technology, the last decade witnessed the emergence of energy storage as a challenger to fossil fuels for powering vehicles. We are now in the midst of a once-in-a-lifetime opportunity to change the energy landscape and electrify all forms of transportation: light duty passenger cars, heavy duty commercial vehicles, as well as various forms of transportation such as trains, ships, and aircraft.
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
This analysis applies to crane types as covered by ASME B30.5.
This analysis applies to crane types as covered by ASME B30.5.
Energy flow control and management in a vehicle is an essential aspect of the design process. These solutions are particularly important in the case of vehicles that do not have an external energy source, such as railway vehicles equipped with innovative energy storage technologies. The article presents analyzes of the theoretical energy consumption in a three-car passenger rail vehicle of Polish production, which was equipped with electric energy storage for the purposes of the simulation. An algorithm was developed in the Matlab program for research purposes, which was used to calculate the energy flow in a vehicle traveling along the test route between stations A and B, 73.5 km long, with 18 intermediate stations. During one simulation, the vehicle travels this route back and forth. The article presents the results of six theoretical test runs, which differed in the charging procedure of the vehicle energy storage systems during the travel along the test route. For the test drive
This document contains general criteria for the planning, design, and construction of military and commercial ground based aviation fueling facilities that receive, store, distribute, and dispense liquid aviation turbine fuels at airports to both fixed and rotary wing aircraft.
The railway network is the backbone of the transportation system in India, connecting remote villages and towns with metropolitan cities across the country. Recent government initiatives aim to revamp and modernize the entire network by 2030 and the past couple of years have brought many changes to the rail system.
The present article analyzes the influence of the track and rail vehicle vibrations on the biodynamic human subject. A mathematical model of 47 degrees of freedom (DoF) human body-vehicle-track vibratory system is formulated for the analysis of ride behavior of the vehicle and human body system. The human body, vehicle, and track system are assigned 7 DoF, 37 DoF, and 3 DoF, respectively, and the system is formulated using Newton’s method. Stationary random irregularities of the track are accounted for in the analysis, represented by the power spectral density (PSD) function, and are used as an input to the system. The ride comfort of the rail vehicle is examined based on the International Organization of Standardization (ISO) comfort specifications. The biodynamic human subject, vehicle, and track system are evaluated independently and integrated to examine the response of one system due to the excitation of another.
This document establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
Under the action of strong wind, the aerodynamic behavior of a locomotive at high velocity changes significantly, which declines the safe operation of the vehicle. Using the shape of a locomotive used in India, the aerodynamic characteristics of a locomotive are investigated with the help of the computational fluid dynamics (CFD) numerical simulation method, which is based on a variation of aerodynamics force and moment with wind speed, train speed, and nose shape. Moreover, determining a correlation between different design parameters and the aerodynamic drag requires complicated algorithms. In this paper, the objective is to optimize the locomotive drag and aerodynamics force using the multi-objective optimization method (MOOM). In this technique, the evolutionary algorithm, configuration parameterization method, and computer simulation are used The Pareto optimal results are determined by the calculation of 10th generation evolutionary with 512 individuals. The outcome of the
Petroleum products are used to power internal combustion engines (ICEs). Emissions and depletion of petroleum reserves are important questions that need to be answered to ensure existence of ICEs. Indian Railways (IR) operates diesel locomotives, which emit large volume of pollutants into the environment. IR is looking for an alternative to diesel for powering the Locomotives. Methanol has emerged as a replacement for petroleum fuels because it can be produced from renewable resources as well as from non-renewable resources in large quantities on a commercially viable scale. It has similar/superior physico-chemical properties, which reduce tailpipe emissions significantly. It is therefore necessary to understand the in-cylinder phenomenon in methanol fueled engines before its implementation on a large-scale. In this study, efforts have been made to understand the in-cylinder phenomenon in large-bore locomotive engines using CFD tools. 3-D model was prepared and validated using the
By my count, more than 40 new electric vehicles are due to enter the North American market in 2021-2022. They're just the tip of a pipeline loaded with many more EVs to come. How will consumers respond? The electrified onrush arrives in parallel with new U.S. president Joe Biden, whose agenda includes rejoining the Paris Climate Accord and proposed clean-energy and infrastructure initiatives worth $3.5 trillion. Included is his pledge to create 550,000 EV charging stations nationwide. Additionally, Biden's interconnected environmental and surface transportation plans (what we know of them so far) include zero-emissions public transit for every U.S. city of more than 100,000 residents and a tripling of funding for Amtrak's passenger-rail network. To be sure, the Democrat-led federal government will be “green” and regulatorily energized across the mobility fronts.
Hydrogen Fuel-Cell (HFC) technology is popular in Asia (mainly Japan), the US (chiefly California) and Europe. HFC is mostly used in passenger cars and urban buses. HFC technology is also being introduced to railway transport. Hydrogen-powered trains are an attractive alternative to diesel trains, in particular on nonelectrified railways - where roughly 70% of the world’s 200 000 locomotives operate today - and in the markets of Europe and the US (together about 55 000 diesel locomotives today). Besides avoiding carbon emissions, hydrogen trains reduce noise and eliminate local emissions of NOX and particulates. Since they use significant amounts of hydrogen, the required infrastructure is limited and can be immediately utilised. Hydrogen-powered trains are already being introduced for light-rail vehicles and regional railways - such as the trams produced by the China South Rail Corporation. Other models, including regional trains by Alstom, are expected to be deployed in the coming
The article is an investigation into the exhaust emission impact of operating a shunting locomotive SM42 and a track diagnostics machine UPS-80-001. The comparison of the two vehicles makes it possible to estimate the overall environmental costs of two different types of rail vehicles operating at their typical work parameters. This was done using selected exhaust emission indicators. It is used to indicate the need for further improvement in vehicle ecology such as hybrid or electric systems. Other solutions are investigated as forms of mitigating the ecological impact of operating such vehicles in or near human population centers.
The topics covered in the publication are consistent with the global trends that are aimed at reducing the negative environmental impact of human activities, which are implemented simultaneously in two areas: approval and operation. The article presents issues related to the impact of diesel multiple unit operation on the exhaust emission of harmful and toxic components and fuel consumption. Research trials concerned different driving styles and acceleration patterns of the tested vehicle, which can be considered a part of the eco-driving trend. These tests were carried out on a closed track designated for testing rail vehicles with the use of mobile measuring apparatus, intended for testing vehicles in real conditions of their operation. The vehicle selected for testing - the diesel multiple unit technically classed as a rail motor coach, belongs to one of the most numerous groups of rail vehicles used in regional transport, used on routes where passengers are transported over short
This analysis applies to crane types as covered by ASME B30.5.
Technological and commercial development of vehicles specifically conceived for urban use would certainly be a crucial aspect in making mobility sustainable in urban contexts thanks to their limited in size and low fuel consumption and emissions. Hybrid drive trains are particularly suited to this purpose: if properly designed, very small-sized thermal engines can give all the energy and power required for the application, also making pure electric driving possible when required. The authors are involved since a decade in proposing new low-cost solutions to address this market sector. Market itself explored these possibilities and nowadays offers some BEV solutions in this market share, but it is still lacking in proposing solutions for a parallel full hybrid drive. The main reason must be searched in the complexity of normally applied parallel-hybrid propulsion systems which is not compatible with the limited costs of the application. Taking the lead from these considerations, the
The intensive development of tractor-building industry in the world has led to the widespread use of wheeled tractors and tractor trains in transportations on public highways. This requires an increase of engine capacity and speed of tractor trains, as well as strict demands for their braking systems. The formation of the necessary braking properties of wheeled tractors and tractor trains on their basis should be carried out at the design phase, taking into account a wide range of aggregated machines and tools. Blocking the wheels of the trailer with different sequence of their blocking and blocking the wheels of the tractor has significant impact on the total braking force, deceleration and stability of the tractor train. It is advisable to take this into account when modeling the braking process of a tractor train. The article deals with the braking dynamics of the tractor train and the impact of the dynamic distribution of normal reactions between the axles on the brake properties
Cabin acoustic comfort is a major contributor to the potential sales success of new aircraft, cars, trucks, and trains. Recent design challenges have included the increased use of composites, and the switch to electrically powered vehicles, each of which change the interior noise spectral content and level. The role of acoustic absorption in cabins is key to the optimisation of cabin acoustic comfort for modern vehicles, with acoustic impedance data needed in order to assess and optimise the impact of each component of a given lay-up. Measurements of absorbing interior trim are traditionally performed using either sample holder tests in a static impedance tube (impedance and absorption), or through tests in reverberation rooms (absorption only). Both of these procedures present challenges. In-tube absorption and impedance measurements are destructive, requiring highly accurate sample cutting and sealing. Reverberation room absorption measurements are subject to the effects of varying
Items per page:
50
1 – 50 of 1005