Browse Topic: Railway vehicles and equipment

Items (394)
Cross-line operation is a key direction for the integrated development of multi-level rail transit systems in urban agglomerations. Optimizing train operation under cross-line conditions is essential for improving the overall efficiency and service quality of rail networks. This paper addresses the joint problem of suburban railway cross-line operation and express–local train coordination. This paper develops a train scheduling optimization framework that jointly selects service patterns and departure schedules, with the objective of reducing overall costs, including passenger travel time and operating expenses. To solve the model efficiently, an extended Adaptive Large Neighborhood Search (ALNS) algorithm is developed. The proposed approach provides a practical framework for timetable planning in complex cross-line rail systems and contributes to enhancing integrated transit operations.
Zhu, JingyiGuo, XinPan, Jianju
In the context of the accelerating urbanization process, the problem of urban traffic congestion has become more severe. Rail transit, with its advantages of high efficiency, convenience, and environmental friendliness, has become a key force in alleviating urban traffic pressure. An in - depth exploration of passengers’ willingness to travel by rail transit is of great significance for optimizing urban traffic planning, improving the service quality of rail transit, and promoting the sustainable development of cities. This article starts from two dimensions: objective factors and passengers’ subjective perceptions, and comprehensively uses a variety of research methods to conduct an in - depth study on passengers’ willingness to travel by rail transit. In terms of objective factors, this article analyzes the differences in subjective perceptions among different passenger groups from the perspectives of gender, age, education level, and occupation. In terms of subjective perceptions
Wang, GangHuang, LeiYang, Yihao
Objective:Methods:Conclusion:
Dai, HongzhouLi, JianZhao, DiLiu, Haoran
At present, the rail transit network in China is well-developed and has become an important means of daily travel for residents. Rail transit stations usually achieve seamless connections with other transportation modes such as buses, taxis, and shared bicycles. It will evolve into an integrated transportation hub, effectively alleviating the pressure on urban surface transportation and playing a pivotal role in dispersing a large number of commuters. Meanwhile, with the vigorous development of rail transit, its energy consumption is increasing. It results in considerable carbon emissions, which poses a huge challenge to China’s goal of achieving carbon neutrality by 2030. In this paper, the building energy consumption simulation tool DesignBuilder is used to model the Tongyuan Road South Station of Suzhou Rail Transit. The energy consumption generated during its operation stage is simulated, and the carbon emissions produced by Tongyuan Road South Station at this stage are calculated
Zhu, Ning
To delay the formation and development of local periodic fluctuations on the surface of rail structures and improve the durability of rail facilities, the dynamic response and wheel-rail interaction of rail structures were studied in depth based on frequency-modulated rail dampers (TRDs). A fully-coupled 3-D FE framework of the wheel–rail assembly, integrating frequency-modulated rail dampers (TRDs), was developed to quantify vibration energy dissipation. Simulated decay curves revealed a marked rise (> 50 %) in lateral damping efficiency within 600–1 000 Hz, confirming TRD’s targeted suppression of rail transverse motion. Then, the suppression effect of rail corrugation after TRD installation was tested, and the data collection was carried out in the test section to calculate the frequency of rail corrugation. It was found that the possibility of corrugation deterioration of the rail structure was greatly reduced after the installation of the rail damper, and the suppression effect of
Li, ChengshunLei, Zhenyu
Building a green and ecological railway transportation system that incorporates the “Dual-Carbon” Strategy is a central focus and challenge in current industry research. In the western mountainous regions with complex engineering geological conditions and fragile ecosystems, it is particularly important to explore the optimal railway route under the framework of the “Dual-Carbon” strategy. By analyzing the characteristics of the geographic environment of the western mountainous areas and the trend of low-carbon railroad construction, and referring to the relevant principles of railroad line selection, the method of quantifying the carbon emissions during the construction phase of the railroad and the carbon sequestration capacity of the land lost as a result of the railroad project’s land occupation is proposed by selecting 23 indicators from the five aspects of engineering adaptability, low-carbon adaptability, economic adaptability, environmental adaptability, and social adaptability
Wang, Yibo
The demand for lightweight and cost-effective materials in rail transportation is increasing. Low nickel nitrogen austenitic stainless steel is considered a promising alternative for stainless steel car body structures because of its excellent mechanical properties and corrosion resistance. Due to the complexity and large scale of such structures, the structural reliability of car bodies made from this material is regarded as a critical concern. This issue is also addressed in the present study. Finite element analysis (FEA) is employed using ABAQUS to evaluate the structural performance of a low nickel stainless steel car body under various operational conditions. Based on the material specifications outlined in GB/T 7928-2003 “Stainless Steel for Urban Rail Transit Vehicles,” the structural design requirements of EN 12663-2010 “Railway Applications - Structural Requirements of Railway Vehicle Bodies,” and the experimental requirements of TB/T 3502-2018 “Modal Test Method and
Jiang, LongXie, KunAn, ZiliangZuo, Yiwen
The rotational resistance coefficient of the bogie is a critical parameter for assessing the operational safety of vehicles, significantly influencing the stability of the vehicle’s snaking motion and the safety of curve negotiation. This paper conducts measurements of the rotational resistance coefficient using a 6- degree-of-freedom bogie test rig, evaluating the variation patterns of the indicator under different vehicle load conditions and air spring inflation states. By establishing a SIMPACK dynamic model of the 6-DOF platform, it is possible to obtain actuator displacement control curves that comply with the EN 14363 standard. Taking a specific subway trailer bogie as an example, the rotational resistance coefficient under various operating conditions was measured. The test results indicate that under the condition of air spring deflation, the rotational resistance coefficient is significantly higher than that under air spring inflation. Moreover, under the condition of air
Li, LiHu, Jie
In the development of virtual prototyping for rail vehicles, industrial design plays a bridging role between art and engineering. In the present industrial design process, on account of problems such as too many types of software were used and difficulties in model conversion, the research proposes a collaborative design method for industrial design based on the 3DE platform, aiming to establish a unified “3D data mainline” to achieve continuous development of industrial design and engineering design. Taking a certain urban rail vehicle as an example, the industrial design procedure is analyzed, including demand input, rapid modeling, real-time rendering, curve modeling, etc. It is hoped that this method can reduce development costs, shorten the time cycle, and improve work efficiency in the development process of virtual prototyping for rail vehicles.
Ji, XiranHuang, ShuoWang, ChuweiSun, Bowen
Trains traditionally transmit braking and mitigation commands through the air tube filling and exhausting method, which is easy to cause local large longitudinal impact. In order to meet the high-precision requirements of synchronous transmission of commands for heavy-duty trains with large groupings, this paper proposes a laser+industrial Ethernet network control system, which can meet the requirements of flexible train grouping and virtual connecting under the premise of ensuring synchronous transmission of commands for trains with large groupings. The system consists of central control unit, locomotive laser communication module, locomotive switch, mobile wireless communication terminal, security gateway, vehicle control unit, vehicle laser communication module, vehicle switch, etc. It is designed according to the three-layer architecture of vehicle-level network, train-level network and line-level network, which can realise the issuance of internal control commands and status
Meng, XiangzhenLi, ChuanhuZhu, Youlong
The height valve adjusting rod is an important part of the suspension system, used to adjust the height of the train to adapt to the train through the curve, slope or uneven track when the height valve adjusting rod fracture failure, the train’s suspension system can not be adjusted normally, may lead to the height of the train is too high or too low, affecting the stability of the train and the driving safety. In this paper, an underground vehicle height valve adjusting rod fracture failure of the problem was studied and analysed, the specific conclusions are as follows: height valve adjusting rod there are two main vibration frequency, 60Hz and 340Hz, 60Hz main frequency has always existed, and 340Hz vibration frequency are present in part of the interval, but also caused by the vehicle vibration of the main reason for the local larger; height valve adjusting rod stress there is also a significant vibration The main frequency of 340Hz, similar to the vibration characteristics of the
Wang, ChaoYang, ChenPan, Minkai
This article analyses the fundamental curving mechanics in the context of conditions of perfect steering off-flanging and on-flanging. Then conventional, radial, and asymmetric suspension bogie frame models are presented, and expressions of overall bending stiffness kb and overall shear stiffness ks of each model are derived to formulate the uniform equations of motion on a tangent and circular track. A 4 degree of freedom steady-state curving model is formulated, and performance indices such as stability, curving, and several parameters including angle of attack, tread wear index, and off-flanging performance are investigated for different bogie frame configurations. The compatibility between stability and curving is analyzed concerning those configurations and compared. The critical parameters influencing hunting stability and curving ability are evaluated, and a trade-off between them is analyzed. For the verification, the damped natural frequencies and mean square acceleration
Sharma, Rakesh ChandmalSharma, Sunil KumarPalli, SrihariRallabandi, Sivasankara RajuSharma, Neeraj
Marine ports are an important source of emissions in many urban areas, and many ports are implementing plans to reduce emissions and greenhouse gases using zero-emission cargo handling equipment. This paper evaluates the performance and activity profiles for various zero-emission (ZE) cargo transport equipment being demonstrated at different ports in California. This included 23 battery-electric (BE) 8,000 lb. (8K) and 36,000 lb. (36K) forklifts, a BE railcar mover, and an electrified rubber-tired gantry crane (eRTG). The study focused on evaluating the performance of the ZE equipment in terms of activity patterns and the potential emissions reductions. Data loggers were used to collect activity data, including hours of use, energy consumption, and charging information over periods from 6 to 21 months. The results showed that the BE forklifts, BE railcar mover, and the eRTG averaged 2-3 hours, 5 hours, and 14 hours of use per day of operation, respectively. The average energy use for
Frederickson, ChasVu, AlexanderMakki, MaedehJohnson, KentDurbin, ThomasBurnette, AndrewHuang, EddyAlvarado, EricaRao, Leela
Accurate prediction of the demand for shared bicycles is not only conducive to the operation of relevant enterprises, but also conducive to improving the image of the city, facilitating people’s travel, and solving the balance between supply and demand of bicycles in the region. To precisely predict the demand of shared bicycles, a model combining temporal convolution network (TCN) and bidirectional gating recurrent unit (BiGRU) model is proposed, and the Chernobyl disaster optimizer (CDO) is used to optimize its hyperparameters. It has the ability of TCN to extract sequence features and gated recurrent unit (GRU) to mine time series data and combine the characteristics of CDO with fast convergence and high global search ability, so as to reduce the influence of model hyperparameters. This article selects the shared bicycles travel data in Washington, analyzes its multi-characteristics, and trains it as the input characteristics of the model. In the experiments, we performed comparison
Ma, ChangxiHuang, XiaoyuZhao, YongpengWang, TaoDu, Bo
Considered one of the greenest forms of transport, the rail industry is at an exciting point pursuing several key initiatives to decarbonise its operations, assets, and supply chains. Therefore, having a brake shoe with a lower carbon footprint is essential for achieving the goals related to decarbonizing the operation, as it is a wear item. For this purpose, a carbon footprint measurement methodology was applied to the development of a friction material for railway brake shoes in order to reduce the carbon footprint generated in the production of the material, combining a sustainable material with greater durability in operation, thus reducing the total cost of ownership. In order to assess the advantages of the new product, a comparative analysis was carried out of the carbon footprint of the conventional shoe and the new railway shoe proposal, both used in the same application, considering the performance and environmental impact of each raw material and stage of the production
Casagrande, R.B.De Souza, A.R.A.Finimundi, A.V.Pereira, C.H.SMasotti, D.Rombaldi, R.J.Gotardo, T.
The heavy-duty off-road industry continues to expand efforts to reduce fuel consumption and CO2e (carbon dioxide equivalent) emissions. Many manufacturers are pursuing electrification to decrease fuel consumption and emissions. Future policies will likely require electrification for CO2e savings, as seen in light-duty on-road vehicles. Electrified architectures vary widely in the heavy-duty off-road space, with parallel hybrids in some applications and series hybrids in others. The diverse applications for different types of equipment mean different electrified configurations are required. Companies must also determine the value in pursuing electrified architectures; this work analyzes a range of electrified architectures, from micro hybrids to parallel hybrids to series hybrids to a BEV, looking at the total cost, total CO2e, and cost per CO2e (cost of carbon abatement, or cost of carbon reduction) using data for the year 2021. This study is focused on a heavy-duty off-road material
Goodenough, BryantCzarnecki, AlexanderRobinette, DarrellWorm, JeremyBurroughs, BrianLatendresse, PhilWestman, John
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive.
Ali, Shaimaa A.Metered, HassanBassiuny, A. M.Abdel-Ghany, A.M.
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms. This work studies the implications of mixing port-injected hydrogen fuel in a large-bore
O'Donnell, PatrickKazmouz, SamuelWu, SicongAmeen, MuhsinKlingbeil, AdamLavertu, ThomasJayakar, VijayaselvanSheth, PushkarWijeyakulasuriya, Sameera
The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs. The work presented in this article evaluates and compares the weld fatigue damage of track maintenance
Patil, DipakPetersen, Michael
Indian cities are among the most polluted in the world. The transportation sector is one of the major sources of gaseous pollutants. In recent years, also the effects of climate change and global warming have been felt across the globe. India has therefore committed at the CoP26 summit in 2021 to reduce its CO2 emissions by 45% till the year 2030. The Indian automotive sector is already addressing the problem with implementation of the Stage 2 BS VI norms, CAFÉ & Stage V standards and pursuing rapid electrification with application of zero emission vehicles. India also has the largest rail network of Asia, and a significant proportion of greenhouse gases is emitted by this sector. Deployment of zero emission fuel cell trains would be one of the solutions to meet India’s emission reduction targets. Indian Railways has already started its journey towards zero emissions and has set a target to launch hydrogen fuel cell trains on some routes soon as part of the “Hydrogen for Heritage
Emran, AshrafGarg, ShivamMertes, SimonGautam, AnirudhSchmidt, MarvinWick, MaximilianWalters, MariusWagh, SachinSharma, Vijay
Non-Road Mobile Machinery (NRMM) incorporates a wide variety of machines not intended for the transport of passengers or goods on the road. This includes small gardening equipment, construction, mining, agricultural, and forestry machinery up to locomotives and inland waterway vessels, mostly using an internal combustion engine. NRMM was often overlooked and neglected in the past when considering pollutant and greenhouse gas emissions. Due to their high diversity, they are hard to categorize, resulting in a lack of available data. As emissions from road transport are being tackled by regulations, the emissions of NRMM become an increasing part of total transport emissions. An alternative to fossil fuels will be required for the energy supply of NRMM to fully commit to the CO2 reduction goals, and to fulfil the future requirements of legislators and public opinion. This study provides a report on the energy needs of different applications, mainly focusing on the larger machinery, as
Dejaegere, QuintenVerhelst, Sebastian
With the sustainable development of the social economy and the continuous maturity of science and technology, urban rail transit has developed rapidly. It solved the problems of urban road load and people’s travel and brought about the problem of rail transit passenger congestion. The image detection algorithm for rail transit congestion is established based on the convolutional neural networks (CNN) structure to realize intelligent video image monitoring. The CNN structure is optimized through the backpropagation (BP) algorithm so that the model can detect and analyze the riding environment through the monitoring camera and extract the relevant motion characteristics of passengers from the image. Furthermore, the crowding situation of the riding environment is analyzed to warn the rail transit operators. In practical application, the detection accuracy of the algorithm reached 91.73%, and the image processing speed met the second-level processing. In the performance test, the proposed
Lin, XinWu, Shuang
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Hybrid - EV Committee
This analysis applies to crane types as covered by ASME B30.5.
Cranes and Lifting Devices Committee
According to the International Energy Agency, of world energy consumption, fuel oil and natural coal, as primary sources of energy for some process, correspond to about 60% of the total. This consumption has been increasing for decades, mainly in the transport sector, including railways. In Brazil, in 2019, the transport sector represented 32.7% of energy consumption. At VLI Logística, a company that operates 7,000 km of railways in Brazil, consumption in 2020 was 203 million litres of diesel, which generated a cost of US$ 86 million. In this context, it is necessary to increase energy efficiency in the sector and, for this, the feasibility of recovering waste heat from the internal combustion engine (ICE) of a locomotive must be verified. The present study was carried out considering a GE 7FDL engine, 16 cylinders, turbocharged, with water cooling and 4,020 HP (2,998.92 kW) of power. The simulations of ORC cycles, using the cooling water system and the exhaust gases of the ICE
dos Santos Juvencio, RondinelliMartins Cunha, Carla CesarConceição Soares Santos, José Joaquim
The riding-comfort of high-speed trains affects the travel experience of passengers, and the lightweight design technology of the carbody increases the flexible vibration and reduces passenger comfort. To this end, a vertical dynamics model of railway vehicles is established to demonstrate the potential of using passive inerter-based suspensions to reduce the flexible vibration of the carbody and improve riding-comfort. According to the characteristics of the inerter component, an appropriate inerter-based suspension is applied to the railway vehicle to reduce low-frequency resonance. The sum of the comfort indexes of the three reference points of the carbody is optimized as the objective function to improve the passenger comfort of the whole vehicle. The results reveal that the inerter-based suspension applied to the primary or secondary suspension has different effects on vehicle vibration. Compared with the traditional suspension, the riding-comfort using the inerter in both the
He, X.L.Chen, J.Tang, D. Y.Peng, S.Tang, B.B.
This article investigates the lateral dynamic behavior of a two-wheel axle bogie frame of an Indian railway vehicle. The influence of the different parameters of the vehicle on stability is investigated. The model is formulated by assigning 10 degrees of freedom (DoF) to the system with yaw and lateral DoF assigned to the bogie frame and vertical, lateral, roll, and yaw DoF assigned to each wheel axle. Linear creep force and moments suggested by Kalker’s linear theory of creep have been accounted for in the analysis. The stability analysis is carried out by transforming the second-order differential equations into first-order differential equations using state-space representation. The present model is validated by comparing the eigenvalues of the analytical model with the same obtained from the finite element (FE) model. The results obtained from the analytical and FE model are in good agreement. The present model is also validated by correlating the lateral acceleration in the bogie
Sharma, Rakesh ChandmalGopala Rao, L.V.V.Sharma, Sunil KumarPalli, SrihariSatyanarayana, V.S.V.
This analysis applies to crane types as covered by ASME B30.5.
Cranes and Lifting Devices Committee
While it will likely be many years before fully automated busses and trains are readily available for transportation across all use cases, technological advancements are moving faster than legacy routing, policy, and infrastructure decisions can be planned. The increased deployment of automated vehicles (AVs) for transit presents a variety of health, economic, and accessibility benefits, including the potential to save lives by preventing accidents caused by driver error. Infrastructure Enablers and Automated Vehicles: Transit focuses on the unresolved issues in transit-specific AV technology. As higher levels of automation are reached, public infrastructure needs to be in place to unlock the full intended benefits. To effectively function at a high level of automation, transit AVs require the integration of sensor data with complex decision-making algorithms and the ability to quickly respond to changing roadway conditions. Both physical and digital infrastructure are necessary to
Coyner, KelleyBittner, Jason
Energy flow control and management in a vehicle is an essential aspect of the design process. These solutions are particularly important in the case of vehicles that do not have an external energy source, such as railway vehicles equipped with innovative energy storage technologies. The article presents analyzes of the theoretical energy consumption in a three-car passenger rail vehicle of Polish production, which was equipped with electric energy storage for the purposes of the simulation. An algorithm was developed in the Matlab program for research purposes, which was used to calculate the energy flow in a vehicle traveling along the test route between stations A and B, 73.5 km long, with 18 intermediate stations. During one simulation, the vehicle travels this route back and forth. The article presents the results of six theoretical test runs, which differed in the charging procedure of the vehicle energy storage systems during the travel along the test route. For the test drive
Bryk, KarolUrbański, PatrykGallas, DawidTarnawski, PiotrMichalak, PiotrStobnicki, Paweł
This document contains general criteria for the planning, design, and construction of military and commercial ground based aviation fueling facilities that receive, store, distribute, and dispense liquid aviation turbine fuels at airports to both fixed and rotary wing aircraft.
AE-5C Aviation Ground Fueling Systems Committee
The railway network is the backbone of the transportation system in India, connecting remote villages and towns with metropolitan cities across the country. Recent government initiatives aim to revamp and modernize the entire network by 2030 and the past couple of years have brought many changes to the rail system.
The present article analyzes the influence of the track and rail vehicle vibrations on the biodynamic human subject. A mathematical model of 47 degrees of freedom (DoF) human body-vehicle-track vibratory system is formulated for the analysis of ride behavior of the vehicle and human body system. The human body, vehicle, and track system are assigned 7 DoF, 37 DoF, and 3 DoF, respectively, and the system is formulated using Newton’s method. Stationary random irregularities of the track are accounted for in the analysis, represented by the power spectral density (PSD) function, and are used as an input to the system. The ride comfort of the rail vehicle is examined based on the International Organization of Standardization (ISO) comfort specifications. The biodynamic human subject, vehicle, and track system are evaluated independently and integrated to examine the response of one system due to the excitation of another.
Sharma, Rakesh ChandmalSharma, NeerajSingh, GurpreetPalli, Srihari
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage. The
Lott, J. SamYoung, StanleyZhu, Lei
Under the action of strong wind, the aerodynamic behavior of a locomotive at high velocity changes significantly, which declines the safe operation of the vehicle. Using the shape of a locomotive used in India, the aerodynamic characteristics of a locomotive are investigated with the help of the computational fluid dynamics (CFD) numerical simulation method, which is based on a variation of aerodynamics force and moment with wind speed, train speed, and nose shape. Moreover, determining a correlation between different design parameters and the aerodynamic drag requires complicated algorithms. In this paper, the objective is to optimize the locomotive drag and aerodynamics force using the multi-objective optimization method (MOOM). In this technique, the evolutionary algorithm, configuration parameterization method, and computer simulation are used The Pareto optimal results are determined by the calculation of 10th generation evolutionary with 512 individuals. The outcome of the
Sharma, Sunil KumarSharma, Rakesh Chandmal
Petroleum products are used to power internal combustion engines (ICEs). Emissions and depletion of petroleum reserves are important questions that need to be answered to ensure existence of ICEs. Indian Railways (IR) operates diesel locomotives, which emit large volume of pollutants into the environment. IR is looking for an alternative to diesel for powering the Locomotives. Methanol has emerged as a replacement for petroleum fuels because it can be produced from renewable resources as well as from non-renewable resources in large quantities on a commercially viable scale. It has similar/superior physico-chemical properties, which reduce tailpipe emissions significantly. It is therefore necessary to understand the in-cylinder phenomenon in methanol fueled engines before its implementation on a large-scale. In this study, efforts have been made to understand the in-cylinder phenomenon in large-bore locomotive engines using CFD tools. 3-D model was prepared and validated using the
Kumar, DhananjayValera, HardikkAgarwal, Avinash Kumar
By my count, more than 40 new electric vehicles are due to enter the North American market in 2021-2022. They're just the tip of a pipeline loaded with many more EVs to come. How will consumers respond? The electrified onrush arrives in parallel with new U.S. president Joe Biden, whose agenda includes rejoining the Paris Climate Accord and proposed clean-energy and infrastructure initiatives worth $3.5 trillion. Included is his pledge to create 550,000 EV charging stations nationwide. Additionally, Biden's interconnected environmental and surface transportation plans (what we know of them so far) include zero-emissions public transit for every U.S. city of more than 100,000 residents and a tripling of funding for Amtrak's passenger-rail network. To be sure, the Democrat-led federal government will be “green” and regulatorily energized across the mobility fronts.
Brooke, Lindsay
Hydrogen Fuel-Cell (HFC) technology is popular in Asia (mainly Japan), the US (chiefly California) and Europe. HFC is mostly used in passenger cars and urban buses. HFC technology is also being introduced to railway transport. Hydrogen-powered trains are an attractive alternative to diesel trains, in particular on nonelectrified railways - where roughly 70% of the world’s 200 000 locomotives operate today - and in the markets of Europe and the US (together about 55 000 diesel locomotives today). Besides avoiding carbon emissions, hydrogen trains reduce noise and eliminate local emissions of NOX and particulates. Since they use significant amounts of hydrogen, the required infrastructure is limited and can be immediately utilised. Hydrogen-powered trains are already being introduced for light-rail vehicles and regional railways - such as the trams produced by the China South Rail Corporation. Other models, including regional trains by Alstom, are expected to be deployed in the coming
Orczyk, MałgorzataGis, WojciechTomaszewski, Franciszek
The article is an investigation into the exhaust emission impact of operating a shunting locomotive SM42 and a track diagnostics machine UPS-80-001. The comparison of the two vehicles makes it possible to estimate the overall environmental costs of two different types of rail vehicles operating at their typical work parameters. This was done using selected exhaust emission indicators. It is used to indicate the need for further improvement in vehicle ecology such as hybrid or electric systems. Other solutions are investigated as forms of mitigating the ecological impact of operating such vehicles in or near human population centers.
Gallas, DawidMerkisz, JerzyDaszkiewicz, Pawel
Items per page:
1 – 50 of 394