Browse Topic: Railway vehicles and equipment
This analysis applies to crane types as covered by ASME B30.5.
This analysis applies to crane types as covered by ASME B30.5.
Energy flow control and management in a vehicle is an essential aspect of the design process. These solutions are particularly important in the case of vehicles that do not have an external energy source, such as railway vehicles equipped with innovative energy storage technologies. The article presents analyzes of the theoretical energy consumption in a three-car passenger rail vehicle of Polish production, which was equipped with electric energy storage for the purposes of the simulation. An algorithm was developed in the Matlab program for research purposes, which was used to calculate the energy flow in a vehicle traveling along the test route between stations A and B, 73.5 km long, with 18 intermediate stations. During one simulation, the vehicle travels this route back and forth. The article presents the results of six theoretical test runs, which differed in the charging procedure of the vehicle energy storage systems during the travel along the test route. For the test drive
This document contains general criteria for the planning, design, and construction of military and commercial ground based aviation fueling facilities that receive, store, distribute, and dispense liquid aviation turbine fuels at airports to both fixed and rotary wing aircraft.
The railway network is the backbone of the transportation system in India, connecting remote villages and towns with metropolitan cities across the country. Recent government initiatives aim to revamp and modernize the entire network by 2030 and the past couple of years have brought many changes to the rail system.
The present article analyzes the influence of the track and rail vehicle vibrations on the biodynamic human subject. A mathematical model of 47 degrees of freedom (DoF) human body-vehicle-track vibratory system is formulated for the analysis of ride behavior of the vehicle and human body system. The human body, vehicle, and track system are assigned 7 DoF, 37 DoF, and 3 DoF, respectively, and the system is formulated using Newton’s method. Stationary random irregularities of the track are accounted for in the analysis, represented by the power spectral density (PSD) function, and are used as an input to the system. The ride comfort of the rail vehicle is examined based on the International Organization of Standardization (ISO) comfort specifications. The biodynamic human subject, vehicle, and track system are evaluated independently and integrated to examine the response of one system due to the excitation of another.
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage. The
Under the action of strong wind, the aerodynamic behavior of a locomotive at high velocity changes significantly, which declines the safe operation of the vehicle. Using the shape of a locomotive used in India, the aerodynamic characteristics of a locomotive are investigated with the help of the computational fluid dynamics (CFD) numerical simulation method, which is based on a variation of aerodynamics force and moment with wind speed, train speed, and nose shape. Moreover, determining a correlation between different design parameters and the aerodynamic drag requires complicated algorithms. In this paper, the objective is to optimize the locomotive drag and aerodynamics force using the multi-objective optimization method (MOOM). In this technique, the evolutionary algorithm, configuration parameterization method, and computer simulation are used The Pareto optimal results are determined by the calculation of 10th generation evolutionary with 512 individuals. The outcome of the
Petroleum products are used to power internal combustion engines (ICEs). Emissions and depletion of petroleum reserves are important questions that need to be answered to ensure existence of ICEs. Indian Railways (IR) operates diesel locomotives, which emit large volume of pollutants into the environment. IR is looking for an alternative to diesel for powering the Locomotives. Methanol has emerged as a replacement for petroleum fuels because it can be produced from renewable resources as well as from non-renewable resources in large quantities on a commercially viable scale. It has similar/superior physico-chemical properties, which reduce tailpipe emissions significantly. It is therefore necessary to understand the in-cylinder phenomenon in methanol fueled engines before its implementation on a large-scale. In this study, efforts have been made to understand the in-cylinder phenomenon in large-bore locomotive engines using CFD tools. 3-D model was prepared and validated using the
By my count, more than 40 new electric vehicles are due to enter the North American market in 2021-2022. They're just the tip of a pipeline loaded with many more EVs to come. How will consumers respond? The electrified onrush arrives in parallel with new U.S. president Joe Biden, whose agenda includes rejoining the Paris Climate Accord and proposed clean-energy and infrastructure initiatives worth $3.5 trillion. Included is his pledge to create 550,000 EV charging stations nationwide. Additionally, Biden's interconnected environmental and surface transportation plans (what we know of them so far) include zero-emissions public transit for every U.S. city of more than 100,000 residents and a tripling of funding for Amtrak's passenger-rail network. To be sure, the Democrat-led federal government will be “green” and regulatorily energized across the mobility fronts.
The topics covered in the publication are consistent with the global trends that are aimed at reducing the negative environmental impact of human activities, which are implemented simultaneously in two areas: approval and operation. The article presents issues related to the impact of diesel multiple unit operation on the exhaust emission of harmful and toxic components and fuel consumption. Research trials concerned different driving styles and acceleration patterns of the tested vehicle, which can be considered a part of the eco-driving trend. These tests were carried out on a closed track designated for testing rail vehicles with the use of mobile measuring apparatus, intended for testing vehicles in real conditions of their operation. The vehicle selected for testing - the diesel multiple unit technically classed as a rail motor coach, belongs to one of the most numerous groups of rail vehicles used in regional transport, used on routes where passengers are transported over short
Hydrogen Fuel-Cell (HFC) technology is popular in Asia (mainly Japan), the US (chiefly California) and Europe. HFC is mostly used in passenger cars and urban buses. HFC technology is also being introduced to railway transport. Hydrogen-powered trains are an attractive alternative to diesel trains, in particular on nonelectrified railways - where roughly 70% of the world’s 200 000 locomotives operate today - and in the markets of Europe and the US (together about 55 000 diesel locomotives today). Besides avoiding carbon emissions, hydrogen trains reduce noise and eliminate local emissions of NOX and particulates. Since they use significant amounts of hydrogen, the required infrastructure is limited and can be immediately utilised. Hydrogen-powered trains are already being introduced for light-rail vehicles and regional railways - such as the trams produced by the China South Rail Corporation. Other models, including regional trains by Alstom, are expected to be deployed in the coming
The article is an investigation into the exhaust emission impact of operating a shunting locomotive SM42 and a track diagnostics machine UPS-80-001. The comparison of the two vehicles makes it possible to estimate the overall environmental costs of two different types of rail vehicles operating at their typical work parameters. This was done using selected exhaust emission indicators. It is used to indicate the need for further improvement in vehicle ecology such as hybrid or electric systems. Other solutions are investigated as forms of mitigating the ecological impact of operating such vehicles in or near human population centers.
Numerical RANS modeling has been carried out to assess the aerodynamics of different metro train geometries through a straight tunnel. A steady-state approach was first used to choose the best geometry out of seven alternatives in terms of drag reduction when compared with a typical blunt face train design representative of European metro networks. The proposed models have different edge-rounding characteristics at the front and rear faces. Afterward, the baseline and optimized geometries are compared at different train velocities, and the flow structure surrounding the models is discussed using unsteady RANS results. The study focuses on skin and pressure drag coefficients for trains traveling at 40 km h−1 in a straight tunnel with a blockage ratio of 0.69. All the considered alternatives show a drag reduction between 5% and 20% relative to the baseline case.
This analysis applies to crane types as covered by ASME B30.5.
An advanced exhaust aftertreatment system (ATS) for Tier 4 compliant locomotive applications was successfully designed and developed for use on Cummins QSK95 engines. The engine and ATS were introduced in late 2016. This system provided nitrogen oxides (NOx) reduction capability in excess of 95%. Vanadia-based selective catalytic reduction (V-SCR) extruded catalyst technology was chosen over other readily available component technologies such as diesel oxidation catalyst (DOC) or a combination of DOC and SCR systems to address the stringent Tier 4 standards. In addition to NOx reduction, substantial oxidation of gaseous hydrocarbons (HCs) from unburnt fuel and lubricating oil soluble organic fraction (SOF) was also achieved. This dual functionality (oxidation and reduction capability) was one of the key factors in adopting this technology as the prime path and rendering it suitable for the harsh locomotive application environment. The properties and performance of the chosen Johnson
In this article, the crashworthiness of a locomotive is assessed through finite element analysis (FEA). The present investigation is focused on the analysis of a locomotive with driving cab to improve the modeling approach and exploring the intrinsic structural weaknesses to improve its crashworthiness. The analyses are conducted according to the EN 15227 standard, which provide crashworthiness requirements for locomotive structure. The finite element model is validated in terms of acceleration and energy balance by the experimental results. The validated model is further used to assess the crashworthiness behavior at a higher impact speed, that is, 100, 160, and 225 km/hr. It has been noticed that local buckling occurs at different points, which reduces the desired progressive damage behavior in the locomotive. The results indicate that at higher speed, large plastic deformation occurs in the frontal part of the locomotive. The maximum deformation is 8.22 m which occurs at the speed
This document outlines the functional and design requirements for baggage/cargo tow tractors used for airline services.
Items per page:
50
1 – 50 of 348