Browse Topic: Aircraft
Civil vehicles, commonly seen as complex products, involve many high-tech aspects, several fields working together, many investments spent on projects, and challenging management. Through the entire life-cycle of aircraft development, the application of requirement-driven systems engineering methodologies helps to manage the aircraft development process while addressing the needs of the market and of stakeholders. The operational needs of an aircraft are design inputs for aircraft development, and the precision, authenticity, and comprehensiveness of these needs influence the efficiency of the development processes and the quality of the products. When the design and research-and-development activities are based on accurate and complete needs, the development interval for such projects can be shortened significantly, and the costs of R&D lowered. Especially because it is one of the fundamental phases of establishing whether aircraft meet the design requirements, design verification is
Tire is the only part of the aircraft that contacts the ground, which not only bears the vertical load and lateral load of the whole aircraft, but also provides adequate ground friction to decelerate the aircraft when braking, so the tires are important parts for aircraft take-off and landing. Besides safety concerns, tire physical properties such as vertical, lateral stiffness as static performance and rolling relaxation length, yawed rolling cornering force as dynamic performance are often required by aircraft manufacturers for analyzing aircraft maneuverability. Besides analysis or similarity by experience from other aircraft projects, tires are often qualified by a number of tests, both static and dynamic, to ensure the safety of tires and acquire tire physical performance data.
This paper presents an in-depth study on configuration management for civil aircraft electromechanical systems, grounded in process methodologies and practical experience of configuration management. Beginning with the definition and significance of configuration management, the study analyzes existing configuration management practices in domestic and international aviation enterprises. It systematically examines the requirements and frameworks for configuration management in civil aircraft electromechanical systems, refining critical elements through two primary dimensions: the establishment, refinement and implementation of configuration management processes. Critical refined elements are highlighted to offer actionable insights for civil aviation enterprises in advancing their configuration management practices.
This study examines the issue of frequent traffic accidents leading to congestion and subsequent accidents. Timely investigation and management of these incidents is essential for effectively addressing this problem. This study aims to utilize Unmanned Aerial Vehicle (UAV) technology to improve the efficiency of assessing and investigating traffic accidents. We propose a bi-objective spatial optimization model based on identifying high-risk accident locations. This model combines coverage and median objectives within a service area, taking into account coverage requirements and optimizing site distribution. We also propose a constraint-based process to generate a Pareto frontier to help identify various alternative UAV station location scenarios. The model was validated using real traffic accident data from Nanning City, resulting in a UAV station configuration solution that reduces accident response time and improves assessment efficiency by considering multi-objective trade-offs
With the continuous development of avionics systems towards greater integration and modularization, traditional aircraft buses such as ARINC 429 and MIL-STD-1553B are increasingly facing challenges in meeting the demanding requirements of next-generation avionics systems. These traditional buses struggle to provide sufficient bandwidth efficiency, real-time performance, and scalability for modern avionics applications. In response to these limitations, AFDX (Avionics Full-Duplex Switched Ethernet), a deterministic network architecture based on the ARINC 664 standard, has emerged as a critical solution for enabling high-speed data communication in avionics systems. The AFDX architecture offers several advantages, including a dual-redundant network topology, a Virtual Link (VL) isolation mechanism, and well-defined bandwidth allocation strategies, all of which contribute to its robustness and reliability. However, with the increasing complexity of onboard networks and multi-tasking
Raytheon East Hartford, CT corporatepr@rtx.com
Researchers at Embry Riddle Aeronautical University and Brazil’s Instituto Tecnológico de Aeronáutica (ITA) will combine forces on one of the main challenges of electric aircraft — controlling the heat spikes they generate at takeoff.
Dangling from a weather balloon 80,000 feet above New Mexico, a pair of antennas sticks out from a Styrofoam cooler. From that height, the blackness of space presses against Earth’s blue skies. But the antennas are not captivated by the breathtaking view. Instead, they listen for signals that could make air travel safer.
Helsing Munich, Germany communications@helsing.ai
The wing-in-ground effect (WIG) vehicle represents a significant advancement in aerodynamics and vehicle design, leveraging the ground effect phenomenon to enhance lift and reduce drag when flying close to the surface. This unique capability allows WIG vehicles to achieve higher payloads, longer range, and greater fuel efficiency compared to traditional aircraft, making them an attractive option for modern military and global disaster response applications. Wing-in-Ground Effect Vehicles: From Modern Military and Commercial Development to Global Disaster Response discusses future disaster response, logistics, and military applications for WIG vehicles, including the ongoing development of aerospace and transportation technology. Relavant advancements in materials and propulsion systems holds promise for further enhancing WIG performance and operational range. Additionally, cost-effective and powerful flight computers with various types of mission-enabling sensor suites from the
There is a significant shift toward the electrification of military systems as defense chiefs worldwide look to secure operational advantage across land, sea, and air. From ground vehicles to naval vessels, fighter jets to autonomous drones, senior officials, and planners are eager to accelerate the adoption of batteries, hybrid electric systems, and other sustainable technologies — thereby improving the performance of major platforms.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
The Korea Institute of Energy Research (KIER) has successfully developed ultra-lightweight flexible perovskite/ CIGS (copper indium gallium selenide) tandem solar cells and achieved a power conversion efficiency of 23.64 percent, which is the world’s highest efficiency for flexible perovskite/CIGS tandem solar cells reported to date. The solar cells developed by the research team are extremely lightweight and can be attached to curved surfaces, making it a promising candidate for future applications in buildings, vehicles, aircraft, and more.
In aerospace applications, high-temperature shape memory alloys (HTSMAs) — materials capable of remembering and returning to their original shapes after heating — are often constrained by high costs since they rely on expensive elements to function at elevated temperatures.
Forest fire prevention and control agencies in São Carlos, in the interior of the state of São Paulo, Brazil, will soon have help from the sky to detect fires more quickly and combat them before they grow out of control and cannot be extinguished.
New research studying shape memory alloys with AI may allow fighter jets to transform into the future with the help of new materials. Texas A&M University, College Station, TX In aerospace applications, high-temperature shape memory alloys (HTSMAs) - materials capable of remembering and returning to their original shapes after heating - are often constrained by high costs since they rely on expensive elements to function at elevated temperatures. Fighter jets like the F/A-18 need to fold their wings to fit on crowded aircraft carriers. The system that folds the wings relies on heavy mechanical parts. But with new lighter, smarter alloys, those movements could be done with less weight and more efficiency. That means more jets can be ready to fly, faster and with less energy wasted.
Reliable antenna performance is crucial for aircraft communication, navigation, and radar detection systems. However, an aircraft's structure can detune the antenna input impedance and obstruct radiation, creating a range of potential problems from a low-quality experience for passengers who increasingly expect connectivity while in the air, to violating legal requirements around strict compliance standards. Determining appropriate antenna placement during the design phase can reduce risk of costly problems arising during physical testing stages. Engineers traditionally use a variety of CAD and electromagnetic simulation tools to design and analyze antennas. The use of multiple software tools, combined with globally distributed aircraft development teams, can result in challenges related to sharing models, transferring data, and maintaining the associativity of design and simulation results. To address these challenges, aircraft OEMs and suppliers are implementing unified modeling and
A Modular Open Systems Approach (MOSA) for command and control (C2) of autonomous vehicles equipped with sensor and defeat mechanisms enhances force protection against unmanned aerial systems (UAS), swarm, and ground-based robotic threats with current technology while providing an adaptable framework able to accommodate technological advances. This approach emphasizes modularity, which allows for independent upgrades and maintenance; interoperability, which ensures seamless integration with other systems; and scalability, which enables the system to grow and adapt to increasing threats and new technologies – all of which are essential for managing complex, dynamic, and evolving operational threats from UAS, swarm, and ground-based robots. The proposed systems approach is designed around component-based modules with standardized interfaces, ensuring ease of integration, maintenance, and upgrades. The integration of diverse sensors through plug-and-play capabilities and multi-sensor
Manufacturers of fans/propellers using hydraulically-actuated pitch control claim energy efficiency gains up to 75% over fixed-pitch solutions. Unfortunately, the added cost, weight, reliability and maintenance considerations of hydraulic solutions has limited the introduction of pitch control for small-to-medium fans and propellers leaving a large market unserved by the efficiency gains associated with changing the pitch of a blade when the blade shaft’s speed changes. Pilot Systems International and Cool Mechatronics are developing an electromagnetically controlled pitch (EMCP) fan/propeller that will produce a new pareto optimal in size, weight, power, cost and cooling (SWaP-C2). The technology will substantially improve the efficiency of military ground vehicle cooling fans which is typically the third greatest power draw (~20kW)1 in the entire vehicle and provide critical performance improvements during silent watch. It will be a key enabler for the electrification of aircraft.
Items per page:
50
1 – 50 of 10835