Browse Topic: Fuel cell vehicles

Items (627)
Powertrain architecture is being reshaped by the electrification of heavy-duty military vehicles using hydrogen fuel cell technology, particularly in transmission systems. Unlike conventional internal combustion engines, hydrogen fuel cell electric vehicles (FCEVs) typically use single-speed or direct-drive configurations due to the high torque of electric motors. This paper examines the impact of hydrogen electrification on military vehicle transmissions, focusing on armored multi-role models such as the VBMT-LSR, Guarani, and Leopard 1A5 of the Brazilian Army. The study compares traditional gearboxes with alternative solutions optimized for fuel cells, analyzing the trade-offs in efficiency, durability, and operational adaptability. Additionally, it explores adaptations required for hydrogen internal combustion engines (H2-ICEs), considering their distinct characteristics and demands. The study employs a three-step validation methodology combining computational simulations, technical
Biêng, Ethan Lê QuangPontes, Guilherme AyrosoConrado, Guilherme Barreto RollembergLopes, Elias Dias RossiRodrigues, Gustavo Simão
With air resistance being one of the two major energy losses in on-road vehicles (the other one being tire losses) and therefore heavily contributing to the range of battery electric and fuel cell electric vehicles, it is necessary to account for realistic air resistance in a priori assessments like vehicle range estimations, component dimensioning, and system simulations. However, lack of input data tempts analysts to instead assume unrealistic “nominal conditions” throughout—a simplification which usually underestimates the amount of energy actually required to overcome air resistance and completely ignores the fact that varying environmental conditions will lead to significant variances in energy consumption and therefore vehicle range. Using “nominal conditions,” it is thus impossible to assess the robustness of these measures and, therefore, difficult to design robust systems and to perform meaningful trade-off studies. In this study, we show how publicly available data from
Filla, Reno
The reliability and durability of vehicles are crucial for the acceptance of new technologies by customers. Realistic test methods are necessary to validate or ensure the lifespan of vehicles and their components, particularly regarding specific conditions such as freeze start. This article provides an overview of the current state of research on the effects of freeze starts on the degradation of fuel cells. With this knowledge, relevant operating and boundary conditions for potential damage of the fuel cell are identified (e.g. start temperature, duration in subzero operation, dehydration). The field data from the BMW demonstrator fleet of iX5 Hydrogen Next were analyzed to gain insights into realistic freeze start related stress to the fuel cells. The dynamics of heating rates and the influence of the operating strategy are best represented on a Fuel Cell System (FCS). An experimental setup for a stack centered test on a FCS was developed including a climatic chamber and a subzero
Schwarz, MarkusAlbert, AlbertEichel, Rüdiger-A.
Letter from the Guest Editors
He, XinBelgiorno, GiacomoJoshi, Ameya
This paper focuses on the potential application of hydrogen fueled internal combustion engine (HICE) in the off-road market, examining HICE based on a diesel engine. In the transition to HICE, priority was given to compatibility with existing systems, minimizing changes from the base engine. By adopting a PFI (Port Fuel Injection) method for fuel injection, low-pressure hydrogen supply was achieved. To address the issue of backfire associated with PFI, optimization of injection pressure using a variable pressure control valve, along with adjustments to valve timing and injection timing, was implemented to suppress backflow of residual gases into the intake system and minimize hydrogen retention. Regarding pre-ignition, in addition to suppressing hotspots, the relationship between the homogenization of the air-fuel mixture and NOx emissions was examined, revealing a correlation. This engine was mounted on a generator, and efforts were made to improve the important characteristic of
Shiraishi, KentaroKishi, ShinjiKato, DaichiMitamura, KentaMurakami, KeiMikuni, Yusuke
Zero emission vehicles are essential for achieving sustainable and clean transportation. Hybrid vehicles such as Fuel Cell Electric Vehicles (FCEVs) use multiple energy sources like batteries and fuel cell stacks to offer extended driving range without emitting greenhouse gases. Optimal performance and extended life of the important components like the high voltage battery and fuel-cell stack go a long way in achieving cost benefits as well as environmental safety. For this, energy management in FCEVs, particularly thermal management, is crucial for maintaining the temperature of these components within their specified range. The fuel cell stack generates a significant amount of waste heat, which needs to be dissipated to maintain optimal performance and prevent degradation, whereas the battery system needs to be operated within an optimal temperature range for its better performance and longevity. Overheating of batteries can lead to reduced efficiency and potential safety hazards
BHOWMICK, SAIKATChuri, Chetana
One of the major goals of the automotive industry is to improve vehicular fuel efficiency and performance with much lesser percentages of harmful tailpipe emissions. One of the major technologies includes fuel cell electric vehicles (FCEV). Various advantages of fuel cells including reliability, simplicity, quietness of operation, and low pollution have made them an attractive potential candidate for providing automotive power. Even with numerous benefits, fuel cell still have more potential to become more efficient during its operation as, when put inside a vehicle, many auxiliary components act as a parasitic load on the fuel cell system. Thermal management system is one of such system which is critical for working of the fuel cell yet takes large amount of electrical power to operate. At high power operation entire thermal management system can draw up to fifteen percent of total power generated by the fuel cell. This paper discusses on a real time optimizer which controls the
Choubey, AyushGehring, OttmarBunz, ChristofSöhner, Luisa
The transition towards sustainable transportation necessitates the development of advanced thermal management systems (TMS) for electric vehicles (EVs), hybrid electric vehicles (HEVs), hydrogen fuel cell vehicles (FCVs), and hydrogen internal combustion engine vehicles (HICEVs). Effective thermal control is crucial for passenger comfort and the performance, longevity, and safety of critical vehicle components. This paper presents a rigorous and comparative analysis of TMS strategies across these diverse powertrain technologies. It systematically examines the unique thermal challenges associated with each subsystem, including cabin HVAC, battery packs, fuel cell stacks, traction motors, and power electronics. For cabin HVAC, the paper explores methods for minimizing energy consumption while maintaining thermal comfort, considering factors such as ambient temperature, humidity, and occupant load. The critical importance of battery thermal management is emphasized, with a focus on
K, NeelimaK, AnishaCh, KavyaC, SomasundarSatyam, SatyamP, Geetha
Fuel cell hybrid electric vehicles (FCHEVs) are a promising solution for decarbonizing heavy-duty transport by combining hydrogen fuel cells with battery storage to deliver long range, fast refuelling, and high payload capacity. However, many existing simulation models rely on outdated fuel cell parameters, limiting their ability to reflect recent technological improvements and accurately predict system-level performance. This study addresses this gap by integrating a state-of-the-art, physics-based model of a polymer electrolyte membrane fuel cell (PEMFC) into an open-source heavy-duty vehicle simulation framework. The updated model incorporates recent advancements in catalyst design and membrane conductivity, enabling improved representation of electrochemical behavior and real-time compressor control. Model performance was evaluated over a realistic 120 km long-haul drive cycle. Compared to the traditional fuel cell model, the updated system demonstrated up to 20% lower hydrogen
Dursun, BeyzaJohansson, MaxTunestal, Peraronsson, UlfEriksson, LarsAndersson, Oivind
Medium- and heavy-duty fuel cell electric vehicles (FCEV) have gained attention over the battery electric vehicles, offering long vehicle range, fast refueling times, and high payload capacity. However, FCEVs face challenges of high upfront system cost and fuel cell system durability. To address the cost sensitivity of the fuel cell powertrain, it is imperative to maximize the operating efficiency of the energy and thermal management system while meeting the fuel cell durability requirements. This article presents an advanced adaptive control strategy for each of the energy and thermal management systems of a FCEV to maximize operating efficiency as well as vehicle performance. The proposed adaptive energy management strategy builds upon a real-time equivalent consumption minimization strategy (ECMS), which is updated based on a horizon prediction algorithm using GPS and navigation data of the route. The algorithm predicts the battery state of charge (SOC) for a defined horizon, which
Batool, SadafBaburaj, AdithyaSadekar, GauravJoshi, SatyumFranke, Michael
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. Life Cycle Assessment (LCA), which among other aspects identifies climate change effects, is an important tool to assess the environmental characteristic of sustainable technologies or products to fulfill this ambitious target. In this context, research is presented that examines the ecological sustainability impacts of a metallic vs a composite bipolar plate made of innovative graphite-compound based foils for fuel cell applications. A bipolar plate is a central component of the fuel cell stack to ensure efficiency and durability. For this purpose, a LCA is performed for both bipolar plate materials. This assessment follows the methodology of DIN EN ISO 14040/44 and the EU Product Environmental Footprint framework. Focusing on cradle-to-gate system boundary conditions, the research emphasizes the
van Sloun, AndreasSchroeder, BenediktKexel, JannikSchmitz, MaximilianBalazs, AndreasWalters, MariusKoßler, SilasPischinger, StefanJoemann, Michael
The primary approach to meet the objectives of the EU Heavy Duty CO2 Regulation involves decarbonizing the road transport sector by battery electric vehicles (BEV) or hydrogen-fueled vehicles. Even though the well-to-wheel efficiency of hydrogen-fueled powertrains like fuel cell electric vehicles (FCEV) and H2-internal combustion engines (H2-ICE) is much lower in comparison to BEV, they are better suited for on-road heavy-duty trucks, long haul transport missions and regions with scarce charging infrastructure. Hence, this paper focuses on heavy-duty FCEVs and their overall energetic efficiency enhancement by intelligently managing energy transfer across coolant circuit boundaries through waste heat recovery, while ensuring that all relevant components remain within required temperature boundaries under both cold and hot ambient conditions. Results were obtained using a 1D-model that comprises all thermal fluid circuits (refrigerant, coolant, air) created through GT-Suite software
Uhde, SophiaLanghorst, ThorstenWuest, MarcelNaber, Dirk
The automotive sector in India is undergoing a transformation, driven by government policies and regulations aimed at achieving net-zero carbon emissions. In alignment with global climate goals, the Indian government has set ambitious targets to reduce greenhouse gas emissions, with a focus on promoting Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (FCVs). Initiatives like the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) Scheme, along with tax incentives, subsidies, and charging infrastructure development, are designed to accelerate the adoption of cleaner vehicles. The introduction of stricter emission standards and the National Electric Mobility Mission Plan (NEMMP) further underscores the push toward sustainable mobility. In response, Indian automotive companies are shifting strategies to align with these government directives. Major players are significantly increasing investments in EV technology, focusing on enhancing battery performance
Patil, Nikhil NivruttiSaurabh, SaurabhBhardwaj, RohitGawhade, RavikantGadve, DhananjayAmancharla, Naga Chaithanya
Tarek Abdel-Baset, Forvia's chief engineer for hydrogen storage systems, has two decades of experience in alt-fuel transporation development, with all the ups and downs that entails. So he was a good person for SAE Media to ask about the industry vibe at the 2025 Advanced Clean Transportation Expo in Anaheim.
Clonts, Chris
The growing demand for air transport requires efficient and sustainable power systems to meet the pressing need for decarbonizing the sector. A hybrid unit, consisting of a proton exchange membrane fuel cell system and a lithium-ion battery, is a suitable option due to the advantages of reduced gravimetric and volumetric impacts, along with the flexibility of energy management strategies. This work addresses, using a model-based approach, the issue of integrating these electrochemical devices into the aircraft’s electrical architecture considering both design and energy management aspects. A literature derived DC-DC converter bi-dimensional power map is exploited to investigate scenarios differentiated by the fuel cell system power rating and number of stacks working in parallel such that the DC bus line voltage requirements can be respected. These maps relate the converter’s maximum deliverable power to the input and desired output voltage. The combined design and energy management
Aliberti, PaoloSorrentino, MarcoCuomo, FabrizioNapolitano, Ciro
Lin, RuiAdas, Camilo Abduch
While hydrogen is a clean and renewable energy source for fuel cell vehicles, its production involves various costly methods, with steam reforming being the current popular yet environmentally detrimental technique. An alternative approach involves the use of electrochemical devices such as proton exchange membrane water electrolyzers (PEMWE), capable of producing pure hydrogen through renewable energies. Nevertheless, these devices face challenges in improving their performance, with the most challenging aspect found in PEMWE being the anode, where the oxygen evolution reaction (OER) occurs. This poses a bottleneck issue because the generated oxygen does not exist solely in dissolved form but also as a gas. The released oxygen gas tends to combine with water vapor, forming bubbles that obstruct the reaction sites. Therefore, this study aims to enhance PEMWE performance by developing an advanced two-dimensional porous electrode model considering heat and mass transport as well as
Orncompa, PeerapatPassakornjaras, PhonlakritCharoen-amornkitt, PatcharawatAlizadeh, MehrzadSuzuki, TakahiroTsushima, Shohji
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
Fuel cell vehicles (FCVs) offer a promising solution for achieving environmentally friendly transportation and improving fuel economy. The energy management strategy (EMS), as a critical technology for FCVs, faces significant challenges of achieving a balanced coordination among the fuel economy, power battery life, and durability of fuel cell across diverse environments. To address these challenges, a learning-based EMS for fuel cell city buses considering power source degradation is proposed. First, a fuel cell degradation model and a power battery aging model from the literature are presented. Then, based on the deep Q-network (DQN), four factors are incorporated into the reward function, including comprehensive hydrogen consumption, fuel cell performance degradation, power battery life degradation, and battery state of charge deviation. The simulation results show that compared to the dynamic programming–based EMS (DP-EMS), the proposed EMS improves the fuel cell durability while
Song, DafengYan, JinxingZeng, XiaohuaZhang, Yunhe
The deployment of PEM fuel cell systems is becoming an increasingly pivotal aspect of the electrification of the transport sector, particularly in the context of heavy-duty vehicles. One of the principal constraints to market penetration is durability of the fuel cell which hardly meets the expected targets set by the vehicle manufacturers and regulatory bodies. Over the years, researchers and companies have faced the challenge of developing reliable diagnostic and condition monitoring tools to prevent early degradation and efficiency losses of fuel cell stack. The diagnostic tools for fuel cell rely usually on model-based, data driven and hybrid approaches. Most of these are mainly developed for stationary and offline applications, with a lack of suitable methods for real-time and vehicle applications. The work presented is divided into two parts: the first part explores the main degradation conditions for a PEMFC and characteristics, advantages, and application limits of the main
Di Napoli, LucaMazzeo, Francesco
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) recently received a relevant interest as an electric power generation technology in Fuel Cells Electric Vehicles (FCEVs) to decarbonize hard-to-abate sectors as a complement to Battery Electric Vehicles (BEVs). However, the massive requirements of power and durability indicate the urgent need to develop higher-than-ever power density designs with minimum internal gradients to mitigate degradation, discarding sub-optimal designs since the early design stage. Starting from the outcomes of a first study, confirming that for industry-relevant PEMFCs the parallel channel flow field was the only archetype able to minimize jointly pressure losses and limiting super-saturation at high current density, still several degrees of freedom exist for the cell designer. In this study, the research of the optimal PEMFC design is fine-tuned using a CAE-guided design process. Candidate solutions are explored using an optimization software and solving for
Rossi, EdoardoCroci, FedericoMartoccia, LorenzoCicalese, GiuseppeD'Adamo, Alessandro
This paper aims to model and simulate a design specification for a fuel cell electric powertrain tailored for Extreme H motorsport applications. A comprehensive numerical model of the powertrain was constructed using GT-SUITE v2024, integrating the 2025 Extreme H regulations, which include specifications for the fuel cell stack, electric motors, hydrogen storage, and battery systems. A detailed drive cycle representing the real-world driving patterns of Extreme E vehicles was developed, utilizing kinematic parameters derived from literature and real-world data. The performance of the Extreme H powertrain was benchmarked against the Toyota Mirai fuel cell vehicle to validate the simulation accuracy under the same racing conditions. The proposed design delivers a maximum power output of 400 kW, with 75 kW supplied by the fuel cell and 325 kW by the battery, ensuring optimal performance within the constraints set by the Extreme H 2025 regulations. Additionally, the design maintains an
Moreno Medina, JavierSamuel, Stephen
This study evaluates the performance of alternative powertrains for Class 8 heavy-duty trucks under various real-world driving conditions, cargo loads, and operating ranges. Energy consumption, greenhouse gas emissions, and the Levelized Cost of Driving (LCOD) were assessed for different powertrain technologies in 2024, 2035, and 2050, considering anticipated technological advancements. The analysis employed simulation models that accurately reflect vehicle dynamics, powertrain components, and energy storage systems, leveraging real-world driving data. An integrated simulation workflow was implemented using Argonne National Laboratory's POLARIS, SVTrip, Autonomie, and TechScape software. Additionally, a sensitivity analysis was performed to assess how fluctuations in energy and fuel costs impact the cost-effectiveness of various powertrain options. By 2035, battery electric trucks (BEVs) demonstrate strong cost competitiveness in the 0-250 mile and 250-500 mile ranges, especially when
Mansour, CharbelBou Gebrael, JulienKancharla, AmarendraFreyermuth, VincentIslam, Ehsan SabriVijayagopal, RamSahin, OlcayZuniga, NataliaNieto Prada, DanielaAlhajjar, MichelRousseau, AymericBorhan, HoseinaliEl Ganaoui-Mourlan, Ouafae
Diverse solutions will likely be needed to decarbonize the commercial truck sector in the United States. Battery-powered vehicles play a predominant role but in some cases, fuel cell trucks are more advantageous for the consumer. This study examines several medium- and heavy-duty applications designed for different driving range requirements to identify the design space where battery and fuel cell trucks are attractive. Also considered are the impacts of purchase price, fuel cost, and vehicle usage. We examine the top 10 truck classes as well as bus applications based on vehicle population, fuel usage, and driving distances. We assume a 2030 scenario where both batteries and FC systems become less costly and more efficient, as targeted by the U.S. Department of Energy. Even for smaller-class vehicles, where battery electric vehicles are expected to be the most economical among clean vehicle solutions, the results are not straightforward. Based on vehicle design, usage, and external
Vijayagopal, RamBirky, Alicia
The accurate extraction of internal operating parameters associated with multi-physicochemical processes forms the basis for precise modelling of solid oxide fuel cells (SOFCs), which serves as the foundation for predicting performance degradation and estimating the lifespan of SOFCs. In this work, a novel integration of the teaching-learning based optimization (TLBO) and collective intelligence (CI), referred as the teaching-learning based collective intelligence algorithm (TLBCI), is introduced. This algorithm utilizes diverse characteristic patterns, including current-voltage (I-V) curves and sequential output data, to enhance the overall identification of degradation process. Experimental data was gathered from a 3-cell SOFC short stack during a 640-hour durability test. The proposed parameter identification algorithm employs a collective intelligence framework, wherein sub-optimizers are based on genetic algorithm (GA) and individually tasked with processing specific formats of
Wang, ZheyuShen, YitaoSun, AoTongHan, BeibeiMa, XiaoShuai, Shijin
Due to advantages such as high efficiency, low emissions, and fuel flexibility, solid oxide fuel cells (SOFCs) have garnered significant attention as promising power sources for automotive applications. Nickel/yttria-stabilized zirconia (Ni/YSZ) is one of the most widely used anode materials in SOFCs, as it can catalyze both chemical and electrochemical reactions of carbon-containing fuels. However, the direct use of carbon-containing fuels can lead to carbon deposition on the Ni/YSZ anode, negatively impacting the performance and reliability of automotive SOFC systems. The diffusion of carbon atoms within nickel plays a crucial role in the carbon deposition process and requires further investigation. The oxygen atoms that spillover from YSZ also participate in main reactions such as carbon deposition and electrochemical reactions in Ni. Molecular dynamics (MD) is one of the main methods for studying atomic diffusion in crystalline structures. In this study, reactive force field
Du, HaoyuZhang, KaiqiXiao, MaZhang, XiaoqingShuai, Shijin
With the growing energy crisis, people urgently need green energy sources to replace fossil ones. As a zero-emission clean energy source, the proton-exchange membrane fuel cell (PEMFC) has received growing attention from researchers due to its broad practical application. However, the large-scale application of PEMFC is currently impeded by their unsatisfying power output and high cost. PEMFC is composed of multiple components, among which the catalyst layer significantly affects the output power and cost of PEMFC. Drastically reducing the amount of platinum in the catalyst layer can bring great benefits to PEMFC, yet causing the large voltage loss associated with enlarged local oxygen molecule transport. Cutting down the platinum content in the catalyst layer can yield substantial cost savings for PEMFC. Developing an efficient catalyst possessing enhanced oxygen reduction reaction (ORR) catalytic performance is conducive to the commercialization of low-Pt proton exchange membrane
Liu, YuchenLiu, XinCai, XinDu, AiminLin, Rui
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
Fuel cell electric vehicles (FCEVs) are gaining increasing interest due to contributions to zero emissions and carbon neutrality. Thermal management of FCEVs is essential for fuel cell lifespan and vehicle driving performance, but there is a lack of specialized thermal balance test standards for FCEVs. Considering differences in heat generating mechanism between FCEVs and internal combustion engine vehicles (ICEVs), current thermal balance method for ICEVs should be amended to suit for FCHVs. This study discussed thermal balance performance of ICEV and FCHVs under various regulated test conditions based on thermal balance tests in wind tunnel of two FCEVs and an ICEV. FCEVs reported overheat risk during low-speed climbing test due to continuous large power output from fuel cell (FC). Frequent power source switches between FC and battery were observed under dual constrains of fuel cell temperature and battery state of charge (SOC). Significant temperature exceedance of ICEV occurred
Fang, YanhuaMin, YihangMing, ChenLi, HongtaoLi, DongshengHe, ChongMao, Zhifei
The depletion of fossil fuels and the emergence of global warming propel public sectors to explore alternative energy such as renewable electricity and hydrogen to reduce greenhouse gas (GHG) emissions. Numerous studies have demonstrated substantial environmental benefits of electric light-duty vehicles. However, research focusing on heavy-duty vehicles is still relatively scarce, and the transition to zero emissions heavy-duty trucks is facing enormous technical and economic challenges. This work investigated GHG emissions during the manufacturing and assembly phase of heavy-duty vehicles (HDVs), including battery electric trucks (BETs) and gaseous hydrogen fuel cell electric trucks (FCETs) using SimaPro software package with wildly accepted Ecoinvent database based on UK grid mix scenarios. A comparative analysis of greenhouse gas (GHG) emissions during the production phase of 700 bar- and 350 bar-H2 FCETs and their battery electric counterparts (eqBETs) was conducted under two UK
Zhao, JianboLi, HuBabaie, MeisamLi, Kang
The transportation sector is responsible for a significant portion of greenhouse gas emissions. Within the sector, truck freight is responsible for a third of the associated emissions. Alternative powertrains are seen as a viable approach to significantly reduce these emissions. Prior to making a large-scale transition, it is important to consider the following questions: will the power grid support a transition to alternative powertrains?; will the transition truly reduce carbon emissions?; and will the transition impose an unnecessary economic burden on companies within the industry? The answer to these questions, however, can vary by geography, maturity/capacity of the energy distribution network or predicted vehicle load. We focus on the latter two questions, investigating the variation in estimated total cost of ownership and carbon emissions across the United States at the zip code level for both heavy-duty battery electric vehicles and heavy-duty fuel cell electric vehicles. As
Goulet, NathanSun, RuixiaoFan, JunchuanSujan, VivekMiller, Brandon
Nikola announced on February 19 that it had filed for Chapter 11 bankruptcy and had begun pursuing “value-maximizing sale transactions” for its operations. Also a maker of battery-electric heavy-duty trucks, the company began back in 2015 with an emphasis on hydrogen fuel cell technology for long-haul transport and began serial production of the Tre FCEV in 2023. The company also aspired to establish an extensive hydrogen fueling network through its HYLA brand. In its filing, Nikola stated that it intended to continue certain service and support operations for trucks currently in the field, including certain HYLA fueling operations, through the end of March 2025. The company would need one or more partners to support such activities beyond that point.
Gehm, Ryan
Since the 1860 Hippomobile, hydrogen has been a part of powered mobility. Today, most hydrogen storage applications use cylindrical tanks, but other solutions are available. At a recent Bosch-sponsored event, SAE Media noted Linamar's Flexform conformable storage, which the company says uses the same or less material for a given storage volume while delivering anywhere from 5-25% more volumetric efficiency than conventional cylindrical tanks within that volume. “We see space as a regular bounding box where all you're losing is this area around the corners, closer to five to 10% [loss]. Where Flexform really shines and where the value proposition really is, is irregular spaces, such as between frame rails,” said representatives from the Linamar engineering team.
Cannell, Thom
Considered as one of the most promising technology pathways for the transport sector to realize the target of “carbon neutral,” fuel cell vehicles have been seriously discussed in terms of its potential for alleviating environmental burden. Focused on cradle-to-gate (CtG) stage, this article evaluates the environmental impacts of fuel cell heavy-duty vehicles of three size classes and three driving ranges to find the critical components and manufacturing processes in the energy context of China. The findings show that the greenhouse gas (GHG) emissions of the investigated fuel cell heavy-duty vehicle range from 47 ton CO2-eq to 162 ton CO2-eq, with the fuel cell system and hydrogen storage system collectively contributing to 37%–56% of the total. Notably, as the driving range increases, the proportion of GHG emissions stemming from fuel cell-related components also rises. Within the fuel cell system, the catalyst layer and bipolar plate are identified as the components with the most
Mu, ZhexuanDeng, YunFengBai, FanlongZhao, FuquanLiu, ZongweiHao, HanLiu, Ming
The advancement of clean energy technology has resulted in the emergence of fuel cells as an efficient and environmentally friendly energy conversion device with a diverse range of potential applications, including those in the fields of transportation and power generation. Among the challenges facing fuel cell technology, thermal management represents a significant technical hurdle. The advancement of innovative thermal management methods and system design is imperative to address issues such as high waste heat. In light of the above, this paper presents a methodology for the application of fuel cell thermal management predictive control algorithms in engineering, with a particular focus on fuel cell engine systems that have been implemented in fuel cell cars. This paper proposes a thermal management control method based on a model predictive control algorithm for proton exchange membrane fuel cell systems. The objective of the methodology is to predict and adjust the thermal
Yu, ZhiyangDing, TianweiHuang, XingWang, YupengChen, Guodong
This study introduces the Total Cost of Ownership per Unit Operating Time (TCOP) as a novel indicator to assess the economic impact of vehicle durability. A comprehensive analysis is conducted for fuel cell vehicles (FCVs), battery electric vehicles (BEVs), and internal combustion engine vehicles (ICEVs) in light- and heavy-duty scenarios. The results show that in HDVs, the advantages of low prices for hydrogen and electricity are fully demonstrated due to their high durability. In contrast, for LDVs, the purchase cost plays a much larger role, accounting for 68% of the total cost, indicating a significant difference between vehicles. Improving durability can significantly enhance the competitiveness of FCVs. For FCVs, increasing the durability from the current levels of 150,000 km for LDVs and 600,000 km for HDVs to 20,8500 km and 1,122,000 km, respectively, would align their TCOP with that of current ICEVs. A sensitivity analysis shows that for HDVs. The focus should be placed on
Qin, ZhikunYin, YanZhang, FanYao, JunqiGuo, TingWang, Bowen
In order to give full play to the economic and environmental advantages of liquid organic hydrogen carrier(LOHC) technology in hydrogen storage and transportation as well as its technological advantages as a hydrogen source for hydrogen refueling station(HRS) supply, it promotes the change of hydrogen supply method in HRSs and facilitates its technological landing in the terminal of HRSs. In this paper, combining the current commercialization status of organic liquid technology and the current construction status of HRS in China, we establish a traditional long-tube trailer HRS model through Matlab Simulink, carry out modification on the existing process, maximize the use of the original equipment, and introduce the hydrogen production end of the station with organic liquid as an auxiliary hydrogen source. Research and design of the two hydrogen sources of gas extraction strategy and the station control strategy and the formation of Stateflow language model, to realize the verification
Huo, TianqingFeng, TianyuYang, FushengHuang, YeZheng, HuaanWang, BinFang, TaoWu, ZhenZhang, ZaoXiao
Currently, the application scope of fuel cell vehicles is gradually expanding. There is currently no durability testing method for the entire vehicle level in its research and development design process. In this article, a certain fuel cell passenger car is taken as the research object. The load spectrum data of its key components is collected. A ‘user goal test field’ multi-channel multi-dimensional load correlation optimization model is established. The goal is to minimize the difference in pseudo damage of special components such as the fuel cell vehicle stack structure under the user’s full life cycle target load and the test field test load. The characteristics of the multi-dimensional load of the fuel cell components corresponding to the optimized solution in the rainflow distribution and frequency domain distribution are calculated. And a durability reliability acceleration testing specification for fuel cell vehicle test fields for special components such as the stack structure
Wu, ShiyuGuo, TingWang, YupengWu, ZhenWang, Guozhuo
The thermal management system of fuel cells poses considerable challenges, particularly due to large time delays and nonlinear behaviors that complicate effective temperature control of the stack. In response to these challenges, this study introduces a novel fuel cell inlet temperature feedback control method based on the internal model principle, designed to enhance control accuracy. Simulations were conducted using MATLAB/Simulink® to evaluate the performance of both Proportional-Integral (PI) and internal model controllers through various tests, including step response and random condition assessments. The results demonstrated that the proposed internal model controller significantly outperformed traditional PID control in both static and dynamic scenarios. Specifically, during step response testing, the maximum temperature overshoot was minimized to just 1.5°C, with a steady-state error of less than 0.5°C. In dynamic performance testing, the inlet temperature exhibited a rapid
Liu, Shiguang
Hydrogen fuel cell vehicles are seen as an ideal solution to the issues of energy security and environmental pollution. There is a great need for a comprehensive understanding of the ecological impacts associated with fuel cells throughout their entire life cycle, from fuel extraction through manufacturing, operation, and ultimately to the disposal stage. This paper reviews the progress of research on measuring the emissions of hydrogen fuel cells and focuses on the carbon footprint throughout the fuel cell’s life cycle. The study defines the boundary conditions of the fuel cell system using the PLAC (Process-based life cycle assessment) method, analyzes the proportion of each material in the system, and divides its life cycle into six stages: raw material preparation, manufacturing and assembly, transportation and logistics, utilization, maintenance and repair, and scrap and recycling. This study uses the GREET analysis software to introduce a carbon footprint analysis model for a
Zhang, RuojingZhu, HaominZhou, XiangyangPan, Xiangmin
Items per page:
1 – 50 of 627