Browse Topic: Commercial vehicles

Items (6,134)
It is widely common for commercial vehicles to use Hotchkiss suspension with leaf springs attached to the solid axles. This configuration is cost effective and robust enough for the required application. The leaf springs evolved in the past decades in terms of new materials and construction, and the validation methods also changes. Since the application can be aggressive in some markets, physical tests are done to validate their durability and performance. Looking for a way to reduce development time and costs, high confidence level virtual validations are targeted by the whole industry. Using FEA fed by road load data as inputs for the loads applied to the leaf springs is an evolving methodology that can be considered as a high confidence level validation method, achieving very representative results, allowing engineering team to dismiss physical tests and release the item for production. The stages of spring development will be described in this paper, focusing on the virtual
Belli, Milton Monteverdeda Costa, Mateus Cesário
In the Brazilian market, the 6x2 configuration for commercial vehicles is widely used. These vehicles feature a driven rear axle and a non-driven axle. For the non-driven axle, it is common to use a lifter system that allows the axle to be lifted when the vehicle is running empty. This system provides benefits such as reduced fuel consumption, lower tire wear, and reduced toll costs when charges are based on the number of axles in contact with the ground. Given these advantages, the system has a high demand, making it mandatory to perform a durability test prior to its market implementation. This paper will present the validation methodology for the lifter system bracket. To achieve this, the following stages will be discussed: CAE, instrumentation, data acquisition, test bench concept, test execution and results.
Leme, Cristianoda Costa Rodrigues, GilsonFigueiredo, Guilherme Galvãode Souza Maria, Heitor CunhaPires, Luciano Rogério
This study employs computational fluid dynamics (CFD) to analyze airflow and thermal characteristics within an agricultural tractor, focusing on operator comfort and component safety. Initial simulations identified hotspots, such as the brake pedals, operator platform, and hand throttle, where temperatures exceeded acceptable limits (rise over ambient, ROA). A multi-step approach—including sealing air leaks, adding heat insulation materials, and optimizing the deflector guard—was implemented to mitigate excessive heat. While these modifications significantly improved temperature conditions on the right platform, the left brake pedal remained problematic. Further enhancements, such as sealing an electrical socket and modifying the shroud design, effectively reduced heat exposure. The improved shroud also led to a slight decrease in static pressure (2.21%) and an 8.61% reduction in power consumption, improving airflow efficiency. Although an alternative ring fan design reduced power
Mohan, AnandSoni, PeeyushSethuraman, SriramanGovindan, SenthilkumarSakthivel, AnanthBabu, Rathish Maller
Rollover protective structures (ROPS) that absorb energy during vehicle rollovers play a crucial role in providing integrated passive safety for operators restrained by seat belts. These protective structures, integrated into the vehicle frame, are designed to absorb high-impact energy and deform in a controlled manner without intruding into the occupant’s safe zone. This research focuses on the detailed analytical design procedure and performance evaluation criteria of the two-post open ROPS used on motor graders against lateral loads. An experimental test on a standard tubular square hollow section (SHS) column subjected to lateral load has demonstrated a significant correlation between the post-yield behavior of plastic hinge development and energy absorption, compared with results from various formulations adopted in finite element analysis (FEA). To reduce design iteration time and the cost of physical destructive testing, the complete equipment experimental setup is virtually
J., Avinash
This SAE Recommended Practice is intended as the definition of a standard test, but it may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 6000 rpm stepped power test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 6000 rpm and is intended as a standard procedure for common use by both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction material b Fluid c Reaction plates These three variables must be clearly identified when reporting the results of using
Automatic Transmission and Transaxle Committee
This SAE Standard establishes the minimum construction and performance requirements for seven conductor 1/8-1/10-5/12 cable for use on trucks, trailers and converter dollies for 12 VDC nominal applications. Where appropriate, the standard refers to two types of cables (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications.
Truck and Bus Electrical Systems Committee
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Truck and Bus Electrical Systems Committee
In the heavy-duty commercial trucks sector, selecting the most energy-efficient vehicle can enable great reductions of the fleet operating costs associated with energy consumption and emissions. Customization and selection of the vehicle design among all possible options, also known as “vehicle specification,” can be formulated as a design space exploration problem where the objective is to find the optimal vehicle configuration in terms of minimum energy consumption for an intended application. A vehicle configuration includes both vehicle characteristics and powertrain components. The design space is the set of all possible vehicle configurations that can be obtained by combining the different powertrain components and vehicle characteristics. This work considers Class 8 heavy-duty trucks (gross combined weight up to 36,000 kg). The driving characteristics, such as the desired speed profile and the road elevation along the route, define the intended application. The objective of the
Villani, ManfrediPandolfi, AlfonsoAhmed, QadeerPianese, Cesare
Problem definition: Battery-electric commercial vehicles in particular have large battery capacities with several hundred kilowatt hours, some of which do not have enough energy for an entire working day, which is why they need to be recharged if necessary. High charging power with correspondingly high charging currents is required to recharge the electrical energy storage in an acceptable time. Due to the electrical losses, waste heat is generated, which places a thermal load on the charging components. In particular, the CCS charging inlet is subject to high thermal loads and, for safety reasons, must not exceed the maximum temperature of 90°C according to DIN EN IEC 62196-1. Depending on the ambient temperature, the charging inlet in the charging path often represents a thermally limiting component, as the charging current must be reduced before the maximum temperature is reached. Solution: Three general solution approaches are used to investigate how the CCS charging inlet can be
Krings, JochenReuss, Hans-ChristianZiegler, PeterSteinmetz, Paul
In order to mitigate the effects of climate change, the global transport sector, one of the largest emitters of CO2, needs to drastically reduce its emissions. Although hybridization and electrification are becoming increasingly popular as a solution for a variety of applications, their use in two- and three-wheelers, as well as in recreational and powersports vehicles, remains limited due to their high costs and complexity compared to conventional drivetrains with continuously variable transmissions (CVTs). Despite their affordability and simplicity, CVTs suffer from low mechanical efficiency, with transmission losses ranging from 20–50 %, highlighting a significant opportunity for improvement. In response to these limitations, this study presents the development and experimental evaluation of an electrified planetary gear set (ePGS) in a lightweight off-road vehicle. It is designed to overcome the efficiency limitations of CVTs while maintaining high driving comfort and low system
Jakoby, MoritzEngels, MichaelFahrbach, TimmAndert, Jakob
This study presents a comprehensive techno-economic assessment (TEA) of an integrated e-methanol production system building upon previously published foundational research utilizing Aspen Plus modeling for e-methanol production from sugar cane and sugar beet biomass. The established integrated system converts biomass into ethanol through fermentation and synthesizes e-methanol using both captured CO2 and syngas derived from biomass residue gasification. This approach maximizes CO2 and biomass utilization, promoting a circular carbon economy. The TEA quantifies capital expenditures (CAPEX), operational expenditures (OPEX), and levelized costs of Methanol (LCOM), providing a detailed economic analysis of the potential for commercializing e-methanol. A sensitivity analysis evaluates the impact of feedstock prices and Technology Readiness Levels (TRL), identifying key leverage points affecting financial viability. The study aims to explore the potential of utilizing existing agricultural
Fernandes, Renston JakeShakeel, Mohammad RaghibNguyen, DucduyIm, Hong G.Turner, James W.G.
The exhaust front pipe is a critical structural component in commercial vehicles, ensuring the leak-proof flow of exhaust gases into the exhaust after-treatment system while withstanding engine and frame vibrations. To isolate these vibrations, the front pipe is equipped with a flex connector capable of enduring various displacements at frequencies between 8-25 Hz. The position of the flex connector relative to the engine crank axis significantly impacts its structural reliability over its service life. This paper compares the existing design, which features a horizontally positioned flex connector, with a modified design that positions the flex connector vertically and changes the material from SS-304 to SS-321. Finite element analysis was conducted using Nastran software. The fatigue life of the existing flex connector design is approximately 1015 cycles. In contrast, the improved design demonstrates a fatigue life of 1727 cycles, representing a 70% increase in durability compared to
Chandel, KushalParoche, SonuNamdev, AkhileshJain, ShailendraPatil, Keyur
The steering system is one of the most important assemblies for the vehicle. It allows the vehicle to steer according to the driver’s intention. For an ideal steering system, the steering angle for the wheel on the left and right side should obey the Ackman equation. To achieve this goal, the optimization method is usually initiated to determine the coordinates of the hard points for the steering system. However, the location of hard points varies due to the manufacturing error of the components and wear caused by friction during their working life. To decrease the influence of geometry parameter error, and system mass, and improve the robust performance of the steering system, the optimization based on Six Sigma and Monte Carlo approach is used to optimize the steering system for an off-road vehicle. At last, the effect is proved by the comparison of other methods. The maximum error of the steering angle is decreased from 7.78° to 2.14°, while the mass of the steering system is
Peng, DengzhiDeng, ChaoZhou, BingbingZhang, Zhenhua
The reliability and performance of steering systems in commercial vehicles are paramount, given their direct impact on reducing hazardous driving and improving operational efficiency. The torque overlay system is designed to enhance driver control, feedback, and reduce driver fatigue. However, vulnerabilities such as water ingress under certain environmental conditions have raised significant reliability requirements. This article discusses the systematic investigation into how radial bearing sideloading led to the input shaft seal failing to contact the input shaft. Water was allowed a path to enter the TOS module, affecting the electronic sensor, and faulting out the ADAS functionality. Improvement to the bearing support and sealing design culminated to an enhanced TOS module package able to withstand testing procedures that mimic the environmental and use case situation which caused the ingress.
Bari, Praful RajendraKintner, Jason
John Deere's newest combustion engines are designed to accommodate alternative fuels and evolving technologies as requirements demand. Approaching the John Deere Power Systems (JDPS) exhibit at the Bauma 2025 tradeshow in Munich, Germany, a lineup of next-generation internal combustion engines served as sentinels of sorts, greeting any visitors before they could view the other technologies on display, including new, more compact Kreisel Electric high-voltage batteries. This prominent location underscores the prominence that diesel and alternative-fueled combustion engines will maintain in the off-highway vehicle sector for years to come.
Gehm, Ryan
While new sustainability efforts aim to curb the carbon footprint of the commercial vehicle industry, old methods continue to be among the most effective. Sustainability has been among the hottest topics for the commercial vehicle industry over the past decade. OEMs, suppliers and various governmental agencies across the globe are touting new advances in clean powertrain tech that reduces the industry's dependence on fossil fuel while also considering the complete carbon footprint of the vehicle from cradle to grave. Though these initiatives have their merits, there are old-school methods of reducing the environmental impact of keeping the world moving. Remanufacturing is decidedly not the sexiest of methods for promoting the concept of sustainability. But recycling existing materials and components is a proven tactic for reducing waste and energy consumption.
Wolfe, Matt
The sustainability trend continues to grow in the off-highway sector. Wherever possible, manufacturers rely on electric vehicles to contribute to climate protection goals. Therefore, heating and cooling solutions need to fit these given circumstances. Eliminating the traditional waste heat from the combustion engine requires new strategies for temperature regulation, for the cabin as well as for the battery. The aim is to efficiently control all thermally relevant areas in the vehicle.
Touzet, Adrien
The switch to electrified off-highway vehicles can help reduce reliance on hydraulic components that decrease system efficiency via parasitic losses. The off-highway machine industry is embracing new technologies to optimize operations, specifically regarding electric and hybrid off-highway equipment. The electric off-highway equipment market is poised for growth, with an expected 12.5% compound annual growth rate (CAGR) from 2025-2034, reaching over $17 billion, according to Market Research Future. These off-highway vehicles operate on tough terrain and require unprecedented amounts of power for long duty cycles. Diesel engines have always been the conventional application for this kind of work, but now hybrid and electric vehicles are starting to gain traction thanks to new innovations and more investment. While the implications of replacing traditional combustion engines with hybrid or electric counterparts can be intimidating, learning the challenges and opportunities each option
Liu, Zifan
April saw two major tradeshows take place, playing host to numerous advanced vehicle and technology reveals from global OEMs and suppliers - some of which are detailed in these pages. Bauma in Munich, Germany, a leading trade fair for the construction and mining vehicle industries, saw around 600,000 visitors from more than 200 countries and regions, as well as over 3,600 exhibitors from 57 nations. Billed as the largest advanced CV technology show, ACT Expo engaged more than 12,000 stakeholders from at least 54 countries, including over 2,700 fleet operators. But just as present as the technology itself at these shows was the ongoing uncertainty stemming from the Trump administration's volatile trade policy announced on April 2 involving steep tariffs that have been adjusted frequently in the ensuing weeks.
Gehm, Ryan
Continuous rubber track systems for heavy applications are typically designed using multiple iterations of full-scale physical prototypes. This costly and time-consuming approach limits the possibility of exploring the design space and understanding how the design space of that kind of system is governed. A multibody dynamic simulation has recently been developed, but its complexity (due to the number of model’s inputs) makes it difficult to understand and too expensive to be used with multi-objective optimization algorithms (approximately 3 h on a desktop computer). This article aims to propose a first design space exploration of continuous rubber track systems via multi-objective optimization methods. Using an existing expensive multibody dynamic model as original function, surrogate models (artificial neural networks) have been trained to predict the simulation responses. These artificial neural networks are then used to explore the design space efficiently by using optimization
Faivre, AntoineRancourt, DavidPlante, Jean-Sébastien
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
This paper presents an analytical approach for identifying suspension kingpin alignment parameters based on screw axis theorem and differential calculation model. The suspension kingpin caster and inclination alignment parameters can produce additional tire force, which affects vehicle handling dynamics. In wheel steering process, the multi-link suspension control arms lead to movement of the imaginary kingpin, which can cause change in suspension kingpin alignment parameters. According to the structure mechanism of commercial vehicle multi-link independent suspension, the kinematics characteristics of imaginary kingpin were analyzed based on the screw axis theorem. The angular velocity and translation velocity vectors were calculated. In order to avoid the influence of bushing deformation, the unique differential identification model was established to evaluate the suspension kingpin alignment parameters, and the identification results were compared with the ADAMS/Car data. The
Ding, JinquanHou, JunjianZhao, DengfengGuo, Yaohua
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
Heavy Duty (HD) linehaul vehicles are majorly used in transportation of goods and heavy loads between different cities or long distances. Considering the current trend, payload capacity of these heavy-duty trucks are increasing due to constant increase in the load demand. Due to which engine torques of these HD vehicles are increasing which in turn increases the transmission input torque. At higher torque levels, gear excitation also increases and transmission becomes more susceptible towards higher noise radiation. The transmission is an integral part of the driveline in a heavy duty commercial vehicle. Along with speed and torque conversion, the transmission design is crucial to achieve better fuel economy. Important factors to consider in the transmission design are duty cycle, torque capacity, fuel economy and overall weight. Global vehicle pass-by noise regulations for HD commercial vehicles are becoming more stringent and transmissions are expected to be very quiet. Historically
Rastogi, SarthakMilind, T. R.
Platform based vehicle development is standardized at John Deere. The challenges of frontloading the integration of individual components within different platforms using predictive methods is key to shortening the development cycle. Components are individually characterized on test benches and results cannot directly be used to evaluate system performance. Invariant characterization is needed instead, which is possible through techniques such as blocked loads estimation. To evaluate the applicability of such methods, the component-based loads and vehicle in-situ operational loads need to be compared. The confident use of these methods for obtaining structural and acoustic loads enables the use of hybrid system models, enhancing early NVH response predictions. The objective of this work was to enable the confident use of test stand measurements in predictive models across various vehicle platforms. This study compares a powertrain characterization in a vehicle against a test stand to
Vesikar, Prasad BalkrishnaEdgington, JasonDrabison II, John
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants.
A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
This SAE Standard establishes terminology and the content of commercial literature specifications for self-propelled crawler and wheeled material handlers, pedestal mounted material handlers and their equipment as defined in 3.1. Illustrations used here are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been provided to describe the principles to be used in applying this document. (Material handlers share many design characteristics with hydraulic excavators and log loaders; primarily 360 degree continuous rotation of the upperstructure relative to the undercarriage or mounting. They differ in their operating application. Material handlers are used for the handling of scrap material and normally utilize grapples or magnets. Hydraulic excavators are used for the excavation of earth, gravel and other loose material utilizing a bucket. Log loaders are used for the handling of logs and trees and normally utilize
MTC1, Earthmoving Machinery
This SAE Standard provides a uniform method to calculate the lift capacity of scrap and material handlers, establishes definitions and specifies machine conditions for the calculations. This document applies to scrap and material handlers as defined in SAE J2506 that have a 360 degrees continuous rotating upper structure. It does not apply to equipment that is incapable of lifting a load completely off the ground. This document applies to those machines that are crawler, wheel, rail and pedestal or stationary mounted.
MTC1, Earthmoving Machinery
Improving electric vehicles’ overall thermal management strategy can directly or indirectly improve battery efficiency and vehicle range [1]. In this study, the effect of the coolant type used in BTMS (battery thermal management system) units used for heating batteries in cold weather conditions was investigated in electric buses. In this investigation, tests were performed with two types of antifreeze, which have different characteristics. The study evaluated the impact of coolant flow, BTMS circulation pump performance, and battery heating using these two types of antifreeze in the BTMS coolant line. In addition to carrying out tests, 1D computational fluid dynamics models’ simulations were carried out for both types of antifreeze, and the results were validated with experimental findings. In this study, a 12-m EV Citivolt vehicle of Anadolu Isuzu was used for tests. As a result, it was observed that differences in the properties of the antifreeze that is used in BTMS coolant line
Çetir, ÖzgürBirgül, Çağrı Emre
Items per page:
1 – 50 of 6134